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Abstract. Partial order reduction has traditionally been based on persis-
tent sets, ample sets, stubborn sets, or variants thereof. Recently, we have
presented a strengthening of this foundation, using source sets instead
of persistent/ample/stubborn sets. Source sets subsume persistent sets
and are often smaller than they are. We introduced source sets as a basis
for Dynamic Partial Order Reduction (DPOR), in a framework which
assumes that processes are deterministic and that all program executions
are finite. We also show how to use source sets for partial order reduction
in a framework which does not impose these restrictions. Finally, we
compare source sets with persistent sets, providing some insights into
conditions under which source sets and persistent sets do or do not differ.

1 Introduction

Verification and systematic testing of concurrent programs are difficult, since
they must consider all the different ways in which processes/threads can interact.
Model checking [19, 6] addresses this problem by systematically exploring the
state space of a given program and verifying that each reachable state satisfies
a given property. A serious hindrance to the applicability of model checking is
the state-space explosion problem, i.e., that the number of possible interleavings
grows exponentially with the length of program execution. There are several
approaches that limit the number of explored interleavings. Among them, Partial
Order Reduction (POR) [27, 18, 9, 7] stands out, as it provides full coverage of all
behaviours that can occur in any interleaving, even though it explores only a
representative subset. POR is based on the observation that two interleavings
can be regarded as equivalent if one can be obtained from the other by swapping
adjacent, non-conflicting (independent) execution steps. POR exploits this obser-
vation by guaranteeing that for each possible interleaving, it explores one that is
equivalent to it. This is sufficient for checking many interesting safety properties,
including race freedom, absence of global deadlocks, and absence of assertion
violations [27, 9, 7].

? This work was carried out within the Linnaeus centre of excellence UPMARC (Uppsala
Programming for Multicore Architectures Research Center), partly supported by the
Swedish Research Council.



2 Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas

Partial order reduction approaches are based on reducing the set of process
steps that are explored at each scheduling point. This set of process steps has
been given different names, including stubborn sets [27], persistent sets [9], and
ample sets [7]. These approaches are rather similar: their differences are mainly
due to the considered model of computation and the class of properties to be
checked. In the following, we will consider the approach based on persistent sets.
Recently, we have proposed an improvement over the persistent set technique,
which is based on a new class of sets called source sets [2]. Source sets subsume
persistent sets (i.e., any persistent set is also a source set), and source sets are
often smaller than persistent sets. Moreover, source sets are provably minimal,
in the sense that the set of explored processes from some scheduling point must
be a source set in order to guarantee exploration of all equivalence classes. This
implies that techniques based on source sets have the potential to produce better
reduction than techniques based on persistent sets.

In our previous work [2], we introduced source sets in the context of stateless
model checking, as a basis for Dynamic Partial Order Reduction (DPOR). We
used a framework, which assumes as restrictions on analyzed programs that
processes (or threads) are deterministic and that all program executions are
finite. We demonstrated the power of source sets by using them as the basis for
two DPOR algorithms:(i) Source-DPOR, which minimally adapts the original
DPOR algorithm due to Flanagan and Godefroid [8] to use source sets instead
of persistent sets, leading to notably better reduction, and (ii) Optimal-DPOR,
which is provably optimal in the sense that it explores exactly one representative
execution in each equivalence class.

In this paper, we consider how to use source sets for partial order reduc-
tion in a framework which does not impose the restrictions of deterministic
processes and terminating computations. We therefore consider a framework
of arbitrary finite-state concurrent programs, in which processes can be non-
terminating and exhibit control non-determinism. This is essentially the class of
programs that is considered in classical works [27, 18, 9, 7] on POR that employ
ample/persistent/stubborn sets, and is used, e.g., in the Promela language of the
widely used SPIN model checker [11]. For this model, we show in this paper how
source sets can be used as a basis for POR in enumerative state-space exploration.
We also show how the theory of POR can equally well be based on source sets,
and that the underlying theory is at least as simple as when using persistent sets.

We first consider the basic principles for partial order reductions, as they
have been formulated for non-deterministic finite-state concurrent programs in
standard texts; for example, in the survey by Clarke et al. [7] or the textbook by
Baier and Katoen [3, Chapter 8]. For simplicity, we limit the exposition to the
detection of local assertion violations and deadlocks. We show that the use of
ample/persistent/stubborn sets can be replaced by source sets.

We thereafter consider the framework of stateless model checking for termi-
nating programs, but allowing control non-determinism, thereby generalizing
the standardly used restriction to deterministic processes [8, 2]. We present a
generalization of the Source-DPOR algorithm to this setting.



Comparing Source Sets and Persistent Sets for Partial Order Reduction 3

Finally, we make a direct comparison between source sets and persistent sets,
with the purpose to characterize under which conditions source sets provide a
strict advantage over persistent sets. We provide examples of situations in which
sources sets are guaranteed to be strictly smaller than corresponding persistent
sets, and also situations in which this is not the case.

To keep the presentation simple, we do not include complementary techniques,
most notably sleep sets [10]. Sleep sets are complementary to persistent sets and
source sets; especially in stateless model checking they are essential for reduction.
Including sleep sets, as we did in our prior paper [2], makes the algorithms,
and particularly their correctness proofs, more complex. For simplicity, we have
omitted them from this paper, but the observed differences between source sets
and persistent sets remain essentially the same also in the presence of sleep sets.

Related Work Early persistent set techniques [27, 9, 7] relied on static analysis to
compute persistent sets. Sleep set techniques [10] were also used to dynamically
prevent explorations that would be redundant. The DPOR algorithm of Flanagan
and Godefroid [8] showed how to construct persistent sets on-the-fly “by need”,
leading to better reduction. Similar techniques have been combined with dynamic
symbolic execution, which is also known as concolic testing, where new test runs
are initiated in response to detected races by flipping these races using postponed
sets [24]. Since then, several variants, improvements, and adaptations of DPOR
for stateless model checking [14, 26] and concolic testing [23, 21] have appeared, all
based on persistent sets. In 2014, we introduced source sets, which are provably
more succinct than persistent sets, as a basis for two DPOR algorithms [2].
We subsequently applied one of them, namely the Source-DPOR algorithm, to
programs executing under the TSO and PSO memory model [1].

Other techniques for reducing state-space explosion in model checking include,
unfoldings [16], which can in principle achieve better reduction than POR in
number of interleavings. However, such techniques [13, 20] have larger cost per
explored execution than techniques based on POR, and one of them [13] also needs
an additional post-processing step for checking non-local properties such as races
and deadlocks. Another line of work exploits a weaker form of equivalence, the
maximal causal model for a concurrent computation from a given execution trace,
a notion defined by Serbanuta et al. [25]. This was used recently [12] for a stateless
model checking algorithm, which also explores fewer traces than classical DPOR
techniques. The corresponding algorithm, called Maximal Causality Reduction,
relies on an offline constraint analyzer to formulate constraints that are then
solved using an SMT solver.

For the analyses of timed systems, such as those performed by the UPPAAL
model checker [5], partial order reduction techniques have been proposed [4, 22],
but they have not achieved reductions that are comparable in magnitude to those
observed for untimed concurrent programs.

Organization In the next section, we introduce our computational model. In
Sect. 3 we formulate a partial-order view of program executions, the partial-order
framework, along with the definition of source sets. In Sect. 4 we show that
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source sets can be used as a basis for POR in state-space exploration. In Sect. 5
we consider how to actually construct source sets, and consider two settings:
static computation of source sets, as performed in model checkers such as SPIN,
and dynamic computation, as performed in DPOR. We present algorithms for
constructing source sets in both these settings. In Sect. 6 we recall the definition
of persistent sets, and show how, under various conditions, source sets are strictly
smaller than persistent sets, but that the strictness may disappear in some
settings. Finally, in Sect. 7 we summarize the findings of the paper.

2 Framework

Let us introduce the technical background material. First, we present our model
of concurrent programs, and thereafter the concepts of independence, races, and
the happens-before relation. To keep the exposition simple, we assume a simple
model of concurrent programs as composed of a finite set of processes, each of
which is finite-state, can be non-terminating, and exhibit control non-determinism.
Processes communicate by reading from and writing to a set of shared variables.
Locks can be seen as shared variables that are manipulated in a certain way.

2.1 Computation Model

We model a concurrent program as a transition system TS = 〈P,X , S, s0, T 〉,
where P is a finite set of processes (or threads), X is a finite set of shared
variables, S is a finite set of global states, each of which consists of a valuation
of the shared variables and a local state of each process, s0 ∈ S is the initial
global state, and T is a finite set of transitions. Each transition t belongs to a
unique process, denoted t̂. We assume that each transition can be represented as
a guarded command over the shared variables and the local state of its processes.
If the guard of transition t evaluates to true in s, we say that t is enabled in s;
we denote this by s ` t and write t(s) for the unique state that results after t is
executed from state s. We let enabled(s) be the set of transitions that are enabled
in s. A process is said to be blocked in some state s if none of its transitions is
enabled in s. Often, the local state of a process will include a control location,
which is updated by transitions in the usual way.

For a sequence w = t1 . . . tk of transitions, we write s ` w to denote that the
sequence w can be executed from s, i.e., that there are states s1 . . . sk such that
with s0 = s we have si−1 ` ti and si = ti(si−1) for i = 1, . . . , k, and write w(s)
for sk. If s ` w we say that w is an execution sequence from s. An execution
sequence of TS is an execution sequence from its initial state. We will use w and
v with sub- and superscripts for execution sequences from some state, and E
with sub- and superscripts for execution sequences from the initial state. Since
transitions are deterministic, an execution sequence w from s takes the program
to a unique state w(s). When s is the initial state, we will use s[E] to denote
E(s0). We sometimes use execution sequences instead of states in concepts and
notations; e.g., we sometimes write E ` w to denote s[E] ` w. For a sequence of
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transitions w, we let w \ t denote w with the first occurrence of t removed; if
t 6∈ w, then w \ t is w.

For a set of sequences of transitions W , we write s `W to denote that s ` w
for each w ∈W . We write E(s) for the set of execution sequences w with s ` w.

2.2 Partial Order Representation

The basic idea in partial order reduction is to consider executions as partial orders
on transitions. Executions that are represented by the same partial order are
considered equivalent. We therefore formalize how to view executions as partially
ordered sets of events.

Let E be an execution sequence. An event of E is a particular occurrence of
a transition in E. More precisely, an event is a pair 〈t, i〉, representing the ith
occurrence of transition t in the execution sequence. We use e, e′, . . . to range
over events. We let [e] denote the transition of e, and ê denote the process of [e].
We let dom(E) denote the set of events 〈t, i〉 which are in E (i.e., 〈t, i〉 ∈ dom(E)
iff E contains at least i occurrences of t). We use <E to denote the total order
between events in E, i.e., e <E e′ denotes that e occurs before e′ in E. We
use next[E](t) to denote the event that transition t represents when executed
immediately after E.

The partial order view of an execution sequence is obtained by defining a
happens-before relation on its events. Intuitively, the happens-before relation
captures the causal ordering between events in an execution sequence. More
precisely, it captures the orderings that are important for the result of the
execution sequence. For each execution sequence E, the happens-before relation
→E is defined on dom(E) as the transitive closure of the relation  E defined by
letting e E e′ if e <E e′ (i.e., e occurs before e′in E) and either

(i) e and e′ are performed by the same process, or
(ii) some shared variable is accessed by both e and e′, and at least one of e or e′

performs a write access.

Note that two events that are different occurrences of the same transition can
access different sets of variables, e.g., if the accesses are conditional on some
test. It follows that →E is a partial order on dom(E). Any linearization E′

of →E on dom(E) is an execution sequence that has exactly the same events
as E (i.e., dom(E′) = dom(E)) and the same happens-before relation →E′ as
→E . This means that the relation →E induces a set of equivalent execution
sequences, all with the same happens-before relation. We will sometimes refer to
such equivalence classes as Mazurkiewicz traces [15]. We use E ' E′ to denote
that E and E′ are linearizations of the same happens-before relation, and [E]'
to denote the equivalence class of E. If E ' E′, then all variables are modified
by the same sequence of statements, implying that s[E] = s[E′].

Example 1. In Fig. 1, the three processes p, q, and r perform dependent accesses
to a shared variable x. In this example, let us consider two accesses as dependent
if they concern the same variable and one of them is a write. Since there are no
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writes to y and z here, accesses to y and z are not dependent with anything else.
For this program, there are four Mazurkiewicz traces (i.e., equivalence classes of
executions), each characterized by its sequence of accesses to x (three accesses can
be ordered in six ways, but two pairs of orderings are equivalent since they differ
only in the ordering of adjacent reads, which are not dependent). An execution
sequence and its corresponding happens-before relation is shown in Fig. 2.

Partial order reduction reduces the effort for analyzing a concurrent system
by analyzing only a representative subset of all execution sequences. The idea is
that for each execution sequence E of TS, it is sufficient to analyze a sequence E′

which is equivalent to E. In fact, it is sufficient to analyze a sequence E′ which
is equivalent to some extension of E, i.e., such that E′ ' E.v for some v. Any
local assertion violation or global deadlock in E is then also visible in E′. This
relation between E′ and E is important, so we will introduce some additional
notation that will make the subsequent exposition more convenient.

Definition 1. Let E and E′ be execution sequences.

– Let E v E′ denote that there is a sequence w such that E.w is an execution
sequence with E.w ' E′.

– Let E ∼ E′ denote that there are sequences w and w′ such that E.w and
E′.w′ are execution sequences with E.w ' E′.w′.

Intuitively, E v E′ denotes that the sequence E is a possible way to start an
execution that is equivalent to E′; thus E can be thought of a “partial order
prefix” of E′, in the sense that the events in E are a downward-closed subset of
the events in E′, with the same happens-before relation as in E′. Analogously,
E ∼ E′ denotes that the sequence E is a possible way to start an execution
that is equivalent to an execution sequence of the form E′.w′; thus E and E′ are
“consistent” in the sense that they can be extended to produce two equivalent
sequences.

We also introduce relativized versions of these definitions.

Definition 2. Let E be an execution sequence. Then

– v v[E] w denotes that E.v v E.w,
– v ∼[E] w denotes that E.v ∼ E.w.
– v '[E] w denotes that E.v ' E.w.

We will sometimes use v[s] for v[E], where E is such that s is s[E], and analogously
for ∼[s] and '[s] (note that v[E] and ∼[E] and '[E] are uniquely determined by
s[E]). An important property is that

p: q: r:
write x; read y; read z;

read x; read x;

Fig. 1. Writer-readers code excerpt.



Comparing Source Sets and Persistent Sets for Partial Order Reduction 7

p q q r r

E′ w
E

q: r(x)

q: r(y) p: w(x) r: r(z)

r: r(x)

Fig. 2. A sample execution sequence of the program in Fig. 1 is shown to the left. This
execution sequence is annotated by a happens-before relation (the dotted arrows). To
the right, the happens-before relation is shown as a partial order.

– v v[E] w and w ∼[E] w
′ implies v ∼[E] w

′.

Note that v v[E] w and w ∼[E] w
′ does not in general imply v v[E] w

′. As a
simple counterexample, let v and w be p and let w′ be the empty sequence 〈〉,
and observe that v′ ∼[E] 〈〉 for any sequence v′. From this observation, it also
follows that ∼[E] is not transitive.

Finally, we introduce special notation and terminology for the case that w
consists of a single transition:

Definition 3 (Initials and Weak Initials). For an execution sequence w from
s, the set I[s](w) of initials and the set WI[s](w) of weak initials are sets of
transitions defined as follows:

– t ∈ I[s](w) iff t v[s] w, and
– t ∈WI[s](w) iff t ∼[s] w.

We let s ` t♦w denote that s ` t.w and next[E](t) 6→E.t.w e for each e ∈
dom[E.t](w) (i.e., the event of t does not “happen before” any event in w), where
E is such that s is s[E]. Intuitively, s` t♦w means that t and w are independent
after the state s. If s ` t♦w and s is s[E], then E.t.w ' E.w.t, which implies
s[E.t.w] = s[E.w.t], i.e., t and w can be swapped without changing the resulting
state. In the special case when w contains only one transition t′, then s` t♦t′
denotes that the transitions t and t′ are independent after s. We use s 6` t♦w to
denote that s ` t and s ` w, but that s` t♦w does not hold.

As examples, in Fig. 2, we have q.r v[E′] q.q.r.r but q.q 6v[E′] r.r. We also
have q.q ∼[E′] r.r since E′.q.q.r.r ' E′.r.r.q.q. In Fig. 2, we further have E′`q♦r
since q and r are not happens-before related in E′.r.q. We also observe that
I[E′](w) = {q}, as q is the only process occurring in w and its first occurrence
has no predecessor in the dotted relation in w. Furthermore, WI[E′](w) = {q, r},
since r is not happens-before related to any event in w.

3 Principles of Partial Order Reduction

The purpose of partial order reduction is to reduce the state-space explosion that
arises from the many possible interleavings of transitions of concurrent processes.
Instead of generating and analyzing all executions of a concurrent system, POR
generates and analyzes only a representative subset.
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Following other works [9, 7], we can consider partial order reduction as con-
structing a reduced state graph. A transition system 〈P,X , S, s0, T 〉 induces a
labeled state-transition graph AG, whose nodes are the states in S, with labeled

edges of the form s
t−→ s′ whenever t(s) = s′. Each execution sequence of the

concurrent system corresponds to a path from the initial node of AG. One can
explain POR as constructing a reduced state-transition graph AR, whose nodes
are a subset SR of S, and whose edges are a subset of the edges of AG. The
reduced graph AR must still cover all behaviors of AG in the sense that for
any execution sequence E of AG, there is an execution sequence E′ in AR with
E v E′. Note that the above principle of constructing a reduced state-transition
graph represents the situation both in stateful model checking, with an arbitrary
AG, as well as in stateless model checking, where AG is tree-shaped.

In enumerative state-space exploration, AG is constructed by a recursive
exploration of all enabled transitions from global states already found to be
reachable, starting from the initial global state. When applying partial-order
reduction, only a subset of the enabled transitions are explored from any global
state, thereby constructing a reduced state-transition graph AR. Let us consider
what are the restrictions on this subset. Consider a global state s. The above
requirement that AR must cover all behaviors of AG can be satisfied by requiring
that for any execution sequence w from s in AG, there is an execution sequence
w′ from s in AR with w v[s] w

′. Let now w′ be of the form t.w′′, i.e., let t be the
first transition in w′. From w v[s] t.w

′′ it follows that w ∼[s] t, i.e., t ∈WI[s](w).
Since w is an arbitrary execution sequence from s, we conclude that the set of
transitions explored from s must include some transition in WI[s](w) for each
execution sequence from w. Thus, in the reduced state graph, it is is necessary
to explore at least one transition in WI[s](w) for each execution w from s. We
therefore give a name to such sets.

Definition 4 (Source Sets). Let s be a state, and let W be a set of execution
sequences from s. A set T of transitions is a source set for W after s if for each
w ∈W we have WI[s](w) ∩ T 6= ∅.

We say that T is a source set after s to denote that T is a source set for E(s).
For an execution sequence E, we say that T is a source set (for W ) after E if T
is a source set (for W ) after s[E].

The key property is that if T is a source set after s, then for each execution
sequence w ∈W , there is a transition t ∈ T and an execution sequence w′ such
that E.t.w′ ' E.w.v for some sequence v. In particular, if E.w is maximal, then
E.t.w′ ' E.v. Therefore, when an exploration algorithm intends to cover all of
E(s), the set of transitions that are chosen for exploration from s must be a
source set after s. We formulate this observation as a theorem.

Theorem 1 (Key Property of Source Sets). Let s be a state, and let W ′

be a subset of E(s) such that for each w ∈ E(s) there is a w′ ∈W ′ with w v[s] w
′.

Then the set of first transitions of sequences in W ′ is a source set after E.

This theorem implies that a necessary condition for the correctness of POR
is that the set of explored transitions is a source set. As we will show in the next
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section, this condition is actually sufficient if AG is acyclic. If AG may contain
cycles, one more condition will be needed.

4 Partial Order Reduction in State-Space Exploration

In this section, we show how source sets can be used for partial order reduction
in enumerative model checking. This section has borrowed inspiration from the
presentation by Clarke, Grumberg, Minea, and Peled [7, Sect. 4], that shows
how to use ample sets (which for the purposes of this paper are essentially the
same as persistent sets) in POR. We show that source sets can be used instead of
ample sets or persistent sets to obtain reduction. Since, as we show in Section 6,
source sets are at least as powerful as persistent sets of ample sets, the obtained
reduction will be at least as good and sometimes better.

Let us consider the conditions for producing a reduced state transition graph
AR by restricting the set of enabled transitions that are explored from each state.
We have the following main theorem.

Theorem 2. Assume a concurrent system with global state graph AG. Let AR

be a reduced state transition graph obtained from AG by restricting the set of
transitions that are explored from each state. If the following two conditions are
satisfied:

1. for each state s in AR, the set of explored transitions is a source set after s,
and

2. for each cycle in AR, if a transition t is enabled in all states of the cycle,
then t must be explored from some state of the cycle,

then for each execution E in AG, there is an execution E′ in AR with E v E′.

Proof. We will prove the following stronger property:

for each state s ∈ AR and execution sequence w from s in AG, there is
an execution w′ in AR with w v[s] w

′

by induction on the length of w. The base case is trivial. For the inductive step,
by condition (1), AR explores some transition t in WI[s](w) from s. We have two
cases.

– t ∈ w. From t ∈WI[s](w) we infer t.(w \ t) ' w. By the induction hypothesis
applied to the state t(s) and execution sequence w \ t from t(s), the reduced
state graph AR contains a sequence w′′ with (w \ t) v[t(s)] w

′′, implying
that AR contains the sequence t.w′′ from s. We furthermore have that
t.(w \ t) v[s] t.w

′′, i.e., since t.(w \ t) '[s] w we have w v[s] t.w
′′, meaning

that we can take t.w′′ as w′.
– t 6∈ w. Let us use t1 to denote t. Then t1 ∈WI[s](w) and t1 6∈ w imply s` t1♦w,

which implies that w is an execution sequence also from t1(s). Therefore,
again by condition (1), AR explores some transition t2 in WI[t(s)](w) from t(s).
Continuing in this way, we have two cases:
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(i) there is a sequence t1t2 . . . tk such that for i = 1, . . . , k, the sequence w
is an execution from (t1 . . . ti−1)(s) and (t1 . . . ti−1)(s)` ti♦w but tk ∈
I[(t1...tk−1)(s)](w). By extending the reasoning from the first case, we have
that AR contains a sequence t1 . . . tk.w

′′ from s such that tk.(w \ tk) v[s]

t1 . . . tk−1w
′′. Since tk.(w \ tk) '[s] w, we have w v[s] t1t2 . . . tk−1w

′′,
meaning that we can take t1t2 . . . tk−1w

′′ as w′.
(ii) there is an unbounded sequence t1t2 . . . such that for i = 1, 2, . . ., the

sequence w is an execution from t1 . . . ti−1(s) and t1t2 . . . ti−1(s)` ti♦w.
It follows that the sequence of states t1 . . . ti−1(s) must form a loop
somewhere, and furthermore that the first transition of w is enabled in
all states of that loop. By condition (2), the first transition must then be
executed from some state of the loop, and we are back to the previous
case. ut

5 Computing Source Sets

In the previous section, we showed how source sets can be used for partial
order reduction in model checking. In this section, we consider the problem of
how to actually compute source sets, given some transition system model. The
definition of source sets can not be used directly for this purpose, since it is
formulated in terms of all possible sequences that should be analyzed, and we
do not want to explore all of them in the first place. For the case of persistent
sets, a variety of techniques for computing them have been proposed. One broad
classification of techniques is into static techniques, which compute source sets by
analyzing the program source, and dynamic techniques, which compute persistent
sets incrementally by analyzing already performed exploration. We will present
algorithms for computing source sets in both these settings. We first present a
technique for static computation of source sets, and thereafter a dynamic one.

5.1 Static Computation of Source Sets

Early approaches to partial order reduction [27, 18, 9] computed persistent sets
statically, by analyzing the program text. Various static algorithms were proposed
for computing persistent sets, ample sets, or stubborn sets; these algorithms
are not so different from each other, and are related to an earlier algorithm by
Overman [17]. Below, we present an analogous technique for static computation
of source sets.

We say that a transition t is may-enabled in a state s if it is enabled in s or
can become enabled after a sequence of transitions from processes other than
t̂. An access is defined to be a read or a write to some shared variable. Two
accesses conflict if they access the same shared variable and at least one of them
is a write.

For the computation of source sets, we assume that for each state we can
compute an over-approximation of the set of may-enabled transitions in that state.
Define a may-set in a state s to be a set of transitions which contains exactly
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one may-enabled transition of each process that has a may-enabled transition
in s; for this definition, we use the computed over-approximation of the set of
may-enabled transitions. We further assume that we can compute the following,
possibly overapproximating, sets. This can be done, e.g., by static analysis of the
control flow of the code of each process.

– init accesses [s](t), for an enabled transition t, contains the set of accesses t

can perform when t is executed as the first transition of process t̂ from s.
– future accesses [s](t), for a may-enabled transition t, contains the set of ac-

cesses that can be performed by t̂ in any execution sequence from s, in which
t is the first transition of t̂.

We expect that init accesses [s](t) ⊆ future accesses [s](t).
The following theorem provides a sufficient characterization of source sets.

Theorem 3. Let s be a global state, A set T ⊆ enabled(s) of transitions is a
source set after s if each may-set T ′ in s contains a non-empty subset T ′′ such
that

– for each t′′ ∈ T ′′ and each t′ ∈ (T ′ \ T ′′), no access in init accesses [s](t
′′)

conflicts with any access in future accesses [s](t
′).

Proof. We use the definition of source sets (Definition 4). Consider a sequence
w ∈ E(s). Define a may-set T ′ in s which for each process p that has a transition
in w contains the transition of p that occurs first; if p has no transition in w then
T ′ can contain any may-enabled transition of p. By the condition in the theorem,
the set T ′ has a subset T ′′ ⊆ T such that for each t′′ ∈ T ′′ and each t′ ∈ (T ′ \T ′′),
no access in init accesses [s](t

′′) conflicts with any access in future accesses [s](t
′).

We split the proof into two cases.

1. w contains no transition in T ′′. We then claim that s` t′′♦w for each t′′ ∈ T ′′.
This follows by establishing that no access by t′′, when performed in s,
conflicts with any access by any transition in w. To see this, consider an
arbitrary transition t′′′ in w. Let t′ be the first transition of process t̂′′′ in w.
The condition in the theorem then implies that no access in init accesses [s](t

′′)
conflicts with any access in future accesses [s](t

′), in particular not with any
access by t′′′.

2. w contains a transition in T ′′. Then let t′′ be the first of these. Then w has
a prefix of the form v.t′′, and by using the condition in the theorem in the
same way as in the previous case, we infer that s` t′′♦v, which implies that
t′′ ∈ I[s](w), i.e., t′′ ∈WI[s](w). ut

Let us illustrate a use of Theorem 3, and also contrast it with persistent sets.
Consider the simple program with two processes in Fig. 3. Here, the set {t2, t3}
is a source set, which satisfies the conditions in Theorem 3. If we choose T ′ as
{t1, t3} in the theorem, then we can choose T ′′ as {t3}. Note that {t2, t3} is not
a persistent set: any persistent set must include all transitions.
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p: q:
write x; (t1) write y; (t3)

or
write y; (t2)

Fig. 3. Non-deterministic program.

5.2 Dynamic Computation of Source Sets

Let us next consider how source sets can be computed dynamically, i.e., by
actually exploring execution sequences from a state. The motivation for the
dynamic approach is that static analysis often over-approximates possible con-
flicts between transitions, thereby limiting the achievable reduction. Dynamic
approaches improve the precision by recording actually occurring conflicts during
the exploration and using this information to construct source sets on-the-fly,
“by need”. The dynamic approach has been particularly successful in stateless
model checking, under the name Dynamic Partial Order Reduction (DPOR), first
presented by Flanagan and Godefroid [8]. DPOR requires that the state space
is acyclic and finite. This means that executions must terminate by themselves
within a bounded number of steps. Then the state space is a finite tree, built
from execution sequences E. Each execution sequence E leads to a unique s[E].
From the point of view of the exploration, two different execution sequences E
and E′ are considered to be different states, even if s[E] = s[E′].

Let us consider how to compute source sets dynamically. A näıve approach
may consume a significant effort in exploring sequences from s[E] only for the
purpose of computing source sets, exploration which is otherwise wasted. A key
idea of DPOR is to compute source sets, not by separate exploration, but by
analyzing the execution sequences that are anyway explored for analyzing the
transition system. More precisely, if E is an explored execution sequence, then the
set of transitions which will be explored from s[E] is constructed incrementally
by the DPOR algorithm. Following [8], we use backtrack(E) to denote this set
of transitions. When initiating the exploration from s[E], the set backtrack(E)
is initialized with the enabled transitions of an arbitrary process. During the
exploration from s[E], the algorithm explores sequences of the form t.w from
s[E], for each t ∈ backtrack(E). These sequences are analyzed and, if needed,
transitions are added to backtrack(E), which will then induce exploration of
additional sequences, etc. The key idea is that whenever a sequence of form
t.w′.t′ is explored from s[E], in which the events corresponding to t and t′ are
in a race, then the DPOR algorithm must ensure that backtrack(E) contains a
transition which begins some execution sequence in which this race is reversed.
At the end of the exploration, the set backtrack(E) should be a source set after
s[E].

Let us now make this idea more precise in our context. We first introduce
some notation. For an execution sequence E and an event e ∈ dom(E), let:

– pre(E, e) denote the prefix of E up to, but not including, the event e.
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– notdep(e, E) denote the sub-sequence of E consisting of the events that occur
after e but do not “happen after” e (i.e., the events e′ that occur after e such
that e 6→E e′).

Let E be an execution sequence, and let e and e′ be two events in dom(E), with
e <E e′. We say that e and e′ are in a reversible race, denoted e -E e′, if

– ê 6= ê′ and e→E e′ and there is no event e′′ ∈ dom(E), different from e′ and
e, such that e→E e′′ →E e′, i.e., e and e′ are in a race, and

– pre(E, e) ` notdep(e, E).[e′], i.e., e′ can be executed even if e is not, i.e., it is
not the case that e′ is enabled by e.

Intuitively, e -E e′ denotes that there is an equivalent execution sequence E′ ' E
in which e and e′ are adjacent, and that e does not enable e′. Therefore, the
order of e and e′ can be reversed.

Example 2. In Fig. 2, there are two pairs of events e and e′ that are in a race,
namely 〈p, 1〉, 〈q, 2〉 and 〈p, 1〉, 〈r, 2〉. It also holds for both these pairs that e -E e′

since both q and r are enabled before 〈p, 1〉. In other words, both the races in
the program are reversible.

We will now derive sufficient conditions for adding transitions to backtrack(E).
For this derivation, we assume, as inductive hypothesis, that whenever t ∈
backtrack(E), our algorithm explores all sequences in E(E.t) in the sense that
for each w ∈ E(E.t) it explores a sequence w′ with w v[E.t] w

′. This inductive
hypothesis can also be used to build a proof of correctness the resulting DPOR
algorithm (see [2, 8]).

The requirement that backtrack(E) be a source set after s[E] upon finishing
the exploration implies that upon finishing the exploration from s[E], there should
be no execution sequence w from s[E] with WI[E](w)∩ backtrack(E) = ∅. Assume,
to derive a contradiction, that such a sequence w anyway exists. W.l.o.g. we
can assume that w does not have any proper prefix with this property. It then
follows from Definition 4 that w is of form w′.t′ such that E ` t♦w′ for some
t ∈ backtrack(E). To see this, note that by the assumption that w is shortest there
is a transition t in WI[E](w

′)∩backtrack(E), and since we cannot have t ∈ I[E](w
′)

(this would imply t ∈ I[E](w)), we must have E` t♦w′. Since t ∈ backtrack(E), it
could be hoped that the exploration will explore a sequence of the form t.w′.t′

from s[E]. However, in spite of the fact that E ` (w′.t′), it is not certain that
E ` (t.w′.t′), since t′ may be disabled by t (note that E.t.w′ ' E.w′.t since
E` t♦w′). We must therefore consider two cases.

1. E ` (t.w′.t′), i.e., t′ is not disabled by t after E.w′. Let the events in E.t.w′.t′

corresponding to t and t′ be e and e′, respectively. Then e -E.t.w′.t′ e
′, i.e.,

e and e′ are in a reversible race, since e depends with e′ but not with any
event in w′. In this case, since t is already in backtrack(E), by the above
inductive hypothesis, some sequence of the form w′′ with w′.t′ v[E.t] w

′′ is
explored from s[E.t]. Since the sequence w′.t′ is a partial-order prefix of w′′,
the race between e and e′ will occur also in E.t.w′′, i.e., w′′ has a prefix
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w′′′.t′ where t′ corresponds to e′, such that e -E.t.w′′′.t′ e
′. Now let u be

notdep(e, E.t.w′′′), i.e., u consists of the events of w′′′ that do not happen-after
e (note that e corresponds to t in E.t.w′′′). It follows that u v[E.t] w

′′′, hence
that u v[E.t] w

′′, which together with w′.t′ v[E.t] w
′′ implies w′ ∼[E.t] u.

Noting that no events in w′ nor in u happen-after e, we derive w′ ∼[E] u.
Moreover, since w′ and u contain the same events that happen-before e′

after E, we infer w′.t′ ∼[E] u.t
′. Let us now impose the requirement that

backtrack(E) must contain some transition t′′ in I[E](u.t
′): if backtrack(E) does

not already contain such a transition, then one is added. Then w′.t′ ∼[E] u.t
′

and t′′ in I[E](u.t
′) implies t′′ ∈ WI[E](w

′.t′), i.e., t′′ ∈ WI[E](w). This
violates the assumption WI[E](w) ∩ backtrack(E) = ∅, and we have derived
our contradiction.
The conclusion in this case is that the dynamic computation of source works
if it has the property that whenever a race of the form e -E.t.w′′′.t′ e′

is encountered during exploration, then backtrack(E) must contain some
transition in I[E](u.t

′), where u.t′ is as above.
2. E 6` (t.w′.t′), i.e., t′ is disabled by t after w′. In this case, we can only rely

on the fact that E ` (t.w′). As in the previous case, it is guaranteed that a
sequence of the form w′′ such that w′ v[E.t] w

′′ will be explored from s[E.t]

We would now like to find some prefix of w′′ which plays the same role as
w′′′ in the preceding case, i.e., such that thereafter t′ could be executed but
has been disabled by t. If so, we could detect a “race” between the (blocked)
execution of t′ and e (corresponding to t), and proceed as in case 1. The
problem is that, in general, there may not be such a prefix. Namely, it may
be the case that w′′ contains other transitions of t̂′ that are independent
from the events in w′, and change the control location of t̂′ so that t′ cannot
be performed even if it had not been disabled by t. This can be solved by
requiring that the race detection in the construction of source sets consider
the possible subsequences u of w′′ that may be equivalent with w′, for which
w′ '[E] u could be possible. Since the race detection does not know the
sequence w′′′, it must consider any subsequence u with u v[E] w

′′. For any
such subsequence, we let u play the same role as in the previous case, and
continue as in the previous case.

In conclusion, we have derived requirements on how to add transitions to the
set backtrack(E), which guarantee that backtrack(E) is a source set when the
exploration from s[E] has completed. The above inductive hypothesis can then be
used to prove that the resulting DPOR algorithm explores all equivalence classes
of executions, in the same way as in Theorem 2.

Let us now collect this reasoning into an algorithm. Algorithm 1 shows an
adaptation of the Source-DPOR algorithm [2, Algorithm 5] to our setting, without
the use of sleep sets.

Source-DPOR uses the recursive procedure Explore(E) to perform a depth-
first search, where E can be interpreted as the stack of the search, i.e. the
past execution sequence explored so far. The algorithm maintains, for each
E′ ≤ E, a set backtrack(E′) of transitions that will eventually be explored from
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ALGORITHM 1: Source-DPOR algorithm.

Initial call : Explore(〈〉)
1 Explore(E)
2 foreach e ∈ dom(E) do
3 let E′ = pre(E, e);
4 let w = notdep(e, E);
5 foreach subsequence u of w such that u v[E′] w do
6 foreach transition t that is blocked in s[E] do
7 if [e] disables t after E.u then
8 let v = u.t;
9 if I[E′](v) ∩ backtrack(E′) = ∅ then

10 add some t′ ∈ I[E′](v) to backtrack(E′);

11 if there is some enabled process p at s[E] then
12 backtrack(E) := all enabled transitions of p;
13 while ∃t ∈ backtrack(E) do
14 foreach e ∈ dom(E) such that(e -E.t next[E](t)) do
15 let E′ = pre(E, e);
16 let v = notdep(e, E).t;
17 if I[E′](v) ∩ backtrack(E′) = ∅ then
18 add some t′ ∈ I[E′](v) to backtrack(E′);

19 Explore(E.t);

E′. Each set backtrack(E) is a set of transitions that are enabled from s[E].
It will be gradually expanded during the exploration; at the end it will be a
source set after E. Explore(E) initializes backtrack(E) to consist of all enabled
transitions of some arbitrary process (line 12). Thereafter, for each transition t
in backtrack(E) the algorithm performs two phases: race detection (lines 14–18)
and state exploration (line 19). In addition, for each explored execution E, it
performs a race detection for disabled transitions (lines 2–10).

In the race detection phase, which corresponds to case 1 above and starts at
line 14, the algorithm finds the events e ∈ dom(E) that are in a reversible race
with the next step of t. This next step of t corresponds to event e′ in the above
case 1. For each such event e ∈ dom(E), the algorithm must explore execution
sequences in which the race is reversed. This is done as explained in case 1 above,
where E′ in the algorithm corresponds to E in case 1, where E in the algorithm
corresponds to E.t.w′′′ in case 1, where t in the algorithm corresponds to t′ in
case 1, and where v in the algorithm corresponds to u.t′ in case 1.

The race detection for disabled transitions, corresponding to case 2 above, is
at lines 2–10. It is done for each execution sequence E, as explained in the text
in case 2, where E′ in the algorithm corresponds to E in case 2, where E in the
algorithm corresponds to E.t.w′′ in case 2, where u in the algorithm corresponds
to u in case 2, and where t in the algorithm corresponds to t′ in case 2.
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6 Relating Source Sets and Persistent Sets

In this section, we provide some comparisons between source sets and persistent
sets. We first define persistent sets. Thereafter, we show some properties of
source sets and persistent sets that distinguish them from each other, followed by
theorems that provide conditions under which source sets can be strictly smaller
than persistent sets.

6.1 Persistent Sets

Let us first define persistent sets in our framework. Adapted to our context, a
set T of transitions is a persistent set for W after s if for each sequence in W ,
the first step that is dependent with the first step of some transition in T must
be taken by some transition in T . A formalization could go as follows.

Definition 5 (Persistent Sets). Let s be a state, and let W ⊆ E(s) be a set
of execution sequences from s. A set T of transitions is a persistent set for W
after s if for each prefix w of some sequence in W , which contains no occurrence
of a transition in T , we have E` t♦w for each t ∈ T .

We say that T is a persistent set after s to mean that T is a persistent set
for E(s) after s. We note that the definition of persistent sets is slightly more
complex than the definition of source sets. In particular, since its definition
involves universal quantification over all elements of the persistent set, the
elements of a persistent set are not independent of each other. This is noted in
the following theorem.

Theorem 4. If T is a source set after s and T ⊆ T ′, then T ′ is a source set
after s. This property does not hold for persistent sets, i.e., it is possible that T
is a persistent set after s, but T ′ is not.

In other words, persistent sets have the unpleasant property that adding a process
may disturb the persistent set so that even more process may have to be added.
This property is relevant in the context of DPOR, where the first member of the
persistent set is often chosen rather arbitrarily (it is the next process in the first
exploration after E), and where the persistent set is expanded by need.

For source sets, Theorem 4 follows directly from Definition 4. For persistent
sets, a counter-example is provided by the program in Fig. 1, where {q} is a
persistent set, but {p, q} is not.

Continuing the comparison between source sets and persistent sets, we first
note some rather direct properties, including the following.

– Any persistent set is a source set.
– Any one-process source set is a persistent set.

An interesting question is then whether there are situations where any persistent
set contains a strictly smaller source set. We note that the program in Fig. 1
does not illustrate such a situation, since the smallest persistent sets and the
smallest source sets coincide: they are either {q} or {r}. Nevertheless, the answer
to this question is yes, and we formulate this as a theorem.
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Theorem 5. There are programs for which any persistent set from the initial
state contains a strictly smaller source set.

Proof. We give an example. In Fig. 4, the three processes p, q, and r perform
dependent accesses to the shared variables x, y, and z. Two accesses are dependent
if they access the same variable and at least one is a write. For this program,
there are 75 possible execution sequences, partitioned over 7 Mazurkiewicz traces
(there are 8 ways to direct the three races in the program, but it is not possible
to let the read precede the write in all of them).

Initially: x = y = z = 0

p: q: r:
m := x; (p1) n := y; (q1) o := z; (r1)
if (m = 0) then if (n = 0) then if (o = 0) then

z := 1; (p2) x := 1; (q2) y := 1; (r2)

Fig. 4. Program with non-minimal persistent sets.

In Fig. 4, it is obvious that a single transition cannot be a source set. For
instance, the set {p1} does not contain the initials of execution q1.q2.p1.r1.r2,
since q2 and p1 perform conflicting accesses. On the other hand, any subset
containing two enabled transitions is a source set. To see this, let us choose
{p1, q1} as the source set. Obviously, {p1, q1} contains an initial of any execution
that starts with either p1 or q1. Any execution sequence which starts with r1 is
equivalent to an execution obtained by moving the first step of either p1 or q1 to
the beginning:

– If q1 occurs before r2, then q1 is an initial, since it does not conflict with
any other transition.

– If q1 occurs after r2, then p1 is independent of all steps, so p1 is an initial.

We claim that {p1, q1} cannot be a persistent set. The reason is that the execution
sequence r1.r2 does not contain any transition in the persistent set, but its second
step is dependent with q1. By symmetry, it follows that no other two-transition
set can be a persistent set. ut

6.2 Fine-Grained Source Sets

It follows rather directly from the definition that for persistent sets we have the
following property:

If some enabled transition of process p is in the persistent set at s, then
all enabled transitions of process p are in the persistent set at s.



18 Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas

Initially: x = y = flg = 0

p: q:
await (flg = 0) then flg := 1; (p1) await (flg = 0) then flg := 1; (q1)

or or
x := 1; (p2) y := 1; (q2)

Fig. 5. Program with fine-grained source set.

The property follows by observing that if transition t of process p is in the
persistent set, and t′ is some other enabled transition of p, then the execution
sequence t′ is dependent with t, and therefore t′ must be in the persistent set.

For source sets, however, this property need not hold. Consider the program
in Fig. 5. Here the transitions (p1) and (q1) should be interpreted as guarded
commands that are enabled only when flg = 0. (It is possible to make example
programs also without disabling transitions, but merely changing their effect
depending on some test.) We claim that the set {(p2), (q2)} is a source set from
the initial state. For instance, if an execution sequence E begins with (p1), then
(q1) is disabled, so (q2) is a weak initial of E.

6.3 Excluding Conditionals

We note that the example in Fig. 4 uses conditionally executed statements. This
is not a coincidence. In fact, it turns out that if the code of the processes does
not contain any branches or conditionals, i.e., all executions of a process access
the same variables in the same order, then Theorem 5 does not hold as long as
processes are deterministic. Still recall however, that non-minimal source sets
need not be persistent sets.

If we allow non-determinism, then it was shown in Fig. 3 that there are simple
programs whose minimal source sets are strictly included in any persistent sets.
In the absence of both conditionals and non-determinism, minimal source sets
and persistent sets are the same, as shown in the following theorem.

Theorem 6. For programs, in which each process performs a single sequence
of unconditional reads and writes, minimal source sets coincide with minimal
persistent sets.

Proof. To see this, consider a program consisting of a set of processes, in which
each process executes a deterministic straight-line program without conditionals.
We can uniquely identify a transition by the process that executes it. Let us
consider the program in its initial state. For processes p, q, let pB q denote that
the first step of p is dependent with some step of q. It can easily be seen that
persistent sets satisfy the following property:

P is a persistent set iff p ∈ P and pB q implies q ∈ P .
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This follows rather naturally from the definition of persistent sets: if p ∈ P and
p B q and q 6∈ P , then consider the sequence of steps of q up to and including
the step that is dependent with the first step of p. This sequence is outside P ,
but is dependent with the first step of some process in P , hence P is not a
persistent set. The above property implies that each minimal persistent set is a
terminal strongly connected component (SCC) in the direct graph whose nodes
are processes, and whose directed edges are defined by the relation B. Conversely,
a terminal SCC P is a persistent set, since any execution sequence that does not
contain steps of processes in P is by definition independent of the first steps ot
processes in P .

For source sets, it also holds that a source set must include a terminal SCC in
the direct graph defined by the relation B. Namely, suppose some set T does not
include a terminal SCC. This means that for each p1 ∈ T there is a sequence of
processes p1 p2 . . . pn with pi ∈ T and pi B pi+1 for i = 1, . . . , n− 1, but pn 6∈ T .
Consider a longest such sequence. We first assume that it includes all processes in
T . Let the execution sequence E consist of all the steps of process pn, thereafter
the steps of process pn−1 and so on, until finally all steps of p1. It is obvious that
no process in T can be a weak initial of E. This argument can also be extended to
the case where there is no sequence that includes all processes in T . Conversely,
any set which includes a terminal SCC is a source set, since for any execution
sequence E we can take as initial the first occurring process of that SCC. ut

7 Concluding Remarks

In this paper, we have shown that source sets are suitable as a general foundation
for partial order reduction. We have shown that source sets can be used both
in enumerative model checking, as performed by SPIN, and in stateless model
checking for possibly non-deterministic terminating programs. We have also
highlighted some differences between source sets and persistent sets, thereby
providing some insights into conditions under which source sets and persistent
sets do or do not differ.

Since source sets are more succinct, and often strictly more succinct than
corresponding persistent sets, it means that source sets can replace persistent
sets as a foundation for partial order reduction.
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