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Abstract

We formulate a compositional specification theory for interface automata,
where a component model specifies the allowed sequences of input and out-
put interactions with the environment. A trace-based linear-time refinement
is provided, which is the weakest preorder preserving substitutivity of com-
ponents, and is weaker than the classical alternating simulation defined on
interface automata. Since our refinement allows a component to be refined
by refusing to produce any output, we also define a refinement relation that
guarantees safety and progress. The theory includes the operations of paral-
lel composition to support the structural composition of components, logical
conjunction and disjunction for independent development, hiding to support
abstraction of interfaces, and quotient for incremental synthesis of compo-
nents. Our component formulation highlights the algebraic properties of the
specification theory for both refinement preorders, and is shown to be fully
abstract with respect to observation of communication mismatches. Exam-
ples of independent and incremental component development are provided.

Keywords: component-based design, interfaces, specification theory,
compositionality, refinement, substitutivity, synthesis

1. Introduction

The interface automata of de Alfaro and Henzinger [11] are an influen-
tial formalism for modelling the interactions between components and their
environment. Components are assumed to communicate by synchronisation
of input and output (I/O) actions, with the understanding that outputs are
non-blocking. If an output is issued when a component is unwilling to re-
ceive it, a communication mismatch is said to occur. This allows one to
reason about the allowed behaviours of the environment, which is crucial in
assume-guarantee reasoning, for example.
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An important paradigm for developing complex reactive systems is component-
based design, which can be underpinned by a specification theory. A specifi-
cation captures the requirements for a component to function in an intended
system context, while operators and refinement relations allow for the com-
posing and comparing of specifications in analogy with how components are
composed and refined towards an overall system design. Substitutive refine-
ment is essential for dynamic systems of components in this respect, as it
allows for the replacement of components without introducing errors to the
system.

The original theory of interface automata defines a substitutive refinement
in terms of alternating simulation [2], along with a parallel composition op-
erator for observing component interaction. In subsequent papers, variants
of the framework have been extended with additional operators, including
conjunction (defined by Doyen et al. for synchronous automata [15]) and
quotient for supporting incremental development (defined by Bhaduri and
Ramesh for deterministic automata [4]).

In this article, we formulate a theory for components that is conceptually
similar to interface automata, but is based on a linear-time notion of substitu-
tive refinement involving trace containment. We define a specification theory
for component behaviours, which includes the operations of: parallel compo-
sition for structural composition of components; conjunction for supporting
independent development, by constructing a component that will work in
any environment compatible with at least one of its arguments; disjunction
for constructing a component that has an environment compatible for both
of its operands; hiding to support abstraction in hierarchical development;
and quotient for incrementally synthesising new components to satisfy par-
tial requirements. We prove compositionality for all the operations and show
that the specification theory enjoys strong algebraic properties.

Our formalism addresses the following shortcomings of the interface au-
tomata theory as formulated by de Alfaro and Henzinger in [11]:

� Alternating simulation is conceptually more complex than refinement
based on trace containment, which is standard in widely used theo-
ries such as CSP [5] and I/O automata [27, 20]. Further, alternating
simulation is overly strong in comparison to our refinement based on
traces, which is the weakest preorder preserving compatibility with the
environment.

� It is not clear how to extend a refinement relation based on alternating
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simulation so that it also preserves liveness properties. This should be
contrasted with the conceptually simple handling of liveness properties
in formalisms such as I/O automata, which use trace inclusion. In the
case of our refinement, we are able to extend it with the notion of quies-
cence to guarantee observational progress, in addition to substitutivity.
We prove that compositionality results for all the operations continue
to hold for this enhanced refinement.

The contribution of this article is therefore a compositional, linear-time
specification theory for interface automata based on fully abstract substitu-
tive and progress-preserving refinement. Our framework includes all desirable
operations on components known from the literature, and satisfies strong al-
gebraic properties, including the characterisation of conjunction and disjunc-
tion, respectively, as the meet and join of the refinement preorder. The theory
naturally supports a component-based design process that starts with initial
design considerations, from which the operations of the theory are applied
compositionally in a stepwise fashion, relying on substitutivity to guarantee
that no errors will be introduced, even if components are refined at runtime.

A preliminary version of this article appeared as [6], where we introduced
the operations of parallel, conjunction and quotient, but did not consider an
extension with quiescence. To demonstrate the applicability of the theory to
component-based design, the quotient operation was used to synthesise medi-
ator components in [18] and [3]. Furthermore, the flexibility and expressive-
ness of the theory has been shown through a compositional assume-guarantee
reasoning framework [8, 9] and a real-time extension [10, 7].

1.1. Related Work

Interface automata. The models in this article are conceptually similar to
interface automata [11], which are essentially finite state automata with I/O
distinction on actions. A key difference is that our refinement preorder is a
linear-time alternative to the alternating simulation of Alur et al. [2] defined
on interface automata. Both refinements are substitutive, but alternating
simulation is overly strong due to the conflict between non-determinism in
the automaton and the selection of a matching transition to complete the
simulation. Effectively, our notion of parallel composition is the same as for
interface automata, except that we encode inconsistency due to communi-
cation mismatches explicitly in the model. To the best of our knowledge,
conjunction and disjunction have not been defined on interface automata,
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although Doyen et al. [15] define conjunction (called shared refinement) on
a synchronous component model. A definition of quotient has been provided
for deterministic interface automata by Bhaduri and Ramesh [4], which mir-
rors the method developed by Verhoeff [40].

I/O automata. Due to Lynch and Tuttle [27], and Jonsson [20], I/O au-
tomata are highly similar to interface automata, except that each state is
required to be input-enabled. This input receptiveness means that commu-
nication mismatches cannot arise between a component and its environment.
Consequently, substitutive refinement can be cast in terms of trace contain-
ment [20]. The operation of parallel composition is defined in the same
way as for interface automata, except that consideration need not be given
to inconsistencies. Conjunction can be defined as a synchronous product,
meaning that its set of traces is the intersection of its operands’ traces. Dis-
junction can be defined similarly. Hiding is already defined on outputs by
Jonsson [20], and quotient can be defined in a straightforward manner as
demonstrated by Drissi and von Bochmann [16].

We mention a process-algebraic characterisation of I/O automata due to
de Nicola and Segala [13], which is also applicable to interface automata,
since a process exhibits chaotic behaviour on receiving a non-enabled input.
Refinement is defined by trace inclusion, but this does not extend to incon-
sistent trace containment. Consequently, the theory is not able to distinguish
a non-enabled input from one that is enabled and can subsequently behave
chaotically. Furthermore, high-level operations such as conjunction and quo-
tient are not defined. Note that the CCS of Milner [28] merely has a syntactic
distinction of inputs from outputs, so we give it no further attention.

Logic LTSs. Devised by Lüttgen and Vogler [25], these are labelled transi-
tion system (LTS) models, without I/O distinction, augmented by an in-
consistency predicate on states. A number of compositional operators are
considered (parallel composition, conjunction, disjunction, external choice,
and hiding [26]), and refinement is given by ready-simulation, a branching
time relation that requires the refining component not to introduce any new
inconsistency and equality of offered actions at each state in the simula-
tion chain. This formulation of refinement differs from our intuition behind
substitutivity, meaning that their operations, such as conjunction, are incom-
parable to ours. Taking inspiration from [25], in Section 4 we formulate an
operational model of components that are I/O automata augmented by an
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inconsistency predicate for indicating communication mismatches (and, con-
sequently, non-enabled inputs), making our formalism achieve similar goals
as interface automata, but with notation and semantics derived from I/O
automata and Logic LTSs.

Circuit trace structures. Dill [14] presents a trace-based theory for modelling
circuits, with I/O distinction, which conceptually uses the same basic se-
mantic model as in our framework. A circuit can be characterised by prefix
closed sets of traces, which corresponds exactly with our component model
in Section 2. Dill’s conformance is also similar to our substitutive refinement,
except that we generalise this to allow non-identical (static) interfaces, but
his liveness extension is based on infinite traces, rather than finite traces and
quiescence. Additionally, we formulate a richer collection of compositional
operators.

Wolf [41] extends Dill’s trace structures to synchronous circuits, where
the refinement preorder is based on inclusion between trace sets as in our
work, except that processes are restricted to having the same interfaces. As
in [14], conjunction, disjunction and quotient are not considered. Process
spaces introduced by Negulescu [29, 30] are an abstract theory of process
executions which allows one to separate assumptions on the environment
from the requirements of processes. Dill’s trace structures can be instantiated
in this theory, but our results are not derivable. Meanwhile, Passerone [31]
defines an algebra that consists of a set of denotations, called agents, for the
elements of a model, and of the main operations that the model provides to
compose and manipulate agents. The operators considered are inspired by
those of [14], but again do not capture the rich collection we consider.

Receptive process theory. Josephs et al. [22] formulate an I/O extension of
CSP [17] for modelling asynchronous circuits. The work differs from ours in
that processes must communicate through unbounded buffers, which elimi-
nates the possibility of communication errors arising through non-enabledness
of inputs. Avoiding this, Josephs [21] formulates a theory of receptive pro-
cesses, where components must communicate directly with one another. This
has connections to our liveness framework, since a receptive process is mod-
elled by means of its failures (communication mismatches and divergences)
and quiescent traces (violations of liveness). Consequently, the refinement
relation is similar to our progress-sensitive refinement, except that we give an
explicit treatment of divergence. Josephs’ work does not consider conjunction
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and quotient (the latter is defined on the restricted class of delay-insensitive
networks [23], where it is referred to as factorisation; however, this does not
match our setting).

Modal interfaces. A modal specification characterises sequences of (non I/O)
interactions between a component and its environment, along with modali-
ties on the interactions, indicating whether an interaction may or must be
possible. Raclet et al. [33, 35, 34] introduce a specification theory for modal
specifications that considers a substitutive refinement relation, along with
the operations of parallel composition, conjunction and quotient [32]. Their
notion of liveness and progress is based on must-modalities, and thus dif-
fers from our trace-based formulation. The theory is extended in [35, 34] to
modal interfaces (modal specifications with I/O distinction), where a map-
ping is given from deterministic interface automata without hidden actions
to modal interfaces. This is similar to the theory of Larsen et al. [24], except
that: a number of technical issues are resolved, relating to compatibility and
parallel composition; refinement is based on trace-containment, rather than
being game-based; and additional compositional operators are defined.

A weakness of [35, 34] is that the compositionality results for the different
operators must be given with respect to either strong or weak refinement
relations (the former for parallel and quotient, the latter for conjunction)
when the components to be composed have dissimilar alphabets. This has
repercussions for parallel composition, which is an asynchronous operator on
interface automata, but is treated synchronously on modal interfaces by a
lifting on alphabets. This lifting is essentially equivalent to requiring that a
refining component is enabled in every state on each input that is not in the
interface of the original component. Consequently, there are also differences
between the quotient operators of the two frameworks, since they should be
the adjoint of their respective parallel operations.

Ioco-testing theory. Our work is related to the ioco theory for model based
testing due to Tretmans [38], which only considers the operators of parallel
composition, hiding and choice. Aarts and Vaandrager [1] show the similar-
ities between interface automata and the ioco theory. A key result of that
paper relates quiescence-extended alternating simulation refinement on in-
terface automata with the ioco relation, under determinism of models. In
comparison with our framework, this implies that the ioco relation coincides
with our progress-sensitive refinement for components free of divergence.
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1.2. Outline

Section 2 begins by introducing a trace-based theory of interface au-
tomata, and defines substitutive refinement, along with the collection of
compositional operators. In Section 3, we extend the trace-based theory by
formulating a refinement preorder guaranteeing substitutivity together with
preservation of progress, for which we generalise the compositional operators.
An operational theory of components is presented in Section 4, for both the
substitutive and progress-sensitive frameworks. A detailed comparison of our
work with interface automata is given in Section 5, while Section 6 concludes.

2. A Trace-Based Theory of Substitutable Components

In this section, we introduce a trace-based representation for components
modelled as interface automata. The formulation captures the essential in-
formation relating to whether a component can work in an arbitrary en-
vironment without introducing communication mismatches, which is vital
for checking substitutability of components. Based on this representation,
we introduce a weakest refinement relation preserving safe substitutivity of
components and provide definitions of compositional operators for our theory.

Definition 1 (Component). A component P is a tuple 〈AIP ,AOP , TP , FP〉
in which AIP and AOP are disjoint sets referred to as the inputs and outputs
respectively (the union of which is denoted by AP), TP ⊆ A∗P is a set of
observable traces, and FP ⊆ A∗P is a set of inconsistent traces. The trace
sets must satisfy the constraints:

1. FP ⊆ TP

2. TP is prefix closed

3. If t ∈ TP and t′ ∈ (AIP)∗, then tt′ ∈ TP

4. If t ∈ FP and t′ ∈ A∗P , then tt′ ∈ FP .

If ε 6∈ TP , we say that P is unrealisable, and is realisable contrariwise.

The sets AIP and AOP make up the interface of P , i.e., the interaction
primitives that the component is willing to observe, while the trace sets en-
code the possible interaction sequences over the component’s interface. TP
consists of all observable sequences of interactions that can arise between
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the component and the environment. As inputs are controlled by the envi-
ronment, any trace in TP is extendable by a sequence of inputs, since the
component cannot prevent these inputs from being issued (this is referred
to as input-receptivity). Traces contained in FP are deemed to be inconsis-
tent, which can encode, e.g., run-time errors and communication mismatches.
As interface automata are not required to be input receptive, we use FP to
record the traces in TP that involve non-enabled inputs. Under this treat-
ment of inputs, we say that our theory is not input enabled, even though TP
is closed under input extensions. Once an inconsistency has arisen, the re-
sulting behaviour is unspecified, so we assume that subsequent observations
of the component are chaotic.

Throughout this article, we use the following running example to demon-
strate the suitability of our framework for component-based design. The
interested reader is referred to [3] for an application of the theory to medi-
ator synthesis and to [7] for further examples, including examples of timed
components.

Example 1. A multi-function device capable of printing and scanning is
modelled as a component Device in Figure 1. The device can be placed in
print mode or scan mode, can receive job details, and can print and scan.
From the perspective of the device, actions print and scan should be treated as
outputs (indicated by !), while all other actions are inputs (indicated by ?).

Concerning the diagrammatic representation, the interface of a compo-
nent is given by the actions labelling transitions in the figure (note that, in
general, the interface may contain actions that do not occur in a component’s
behaviour). For compactness, we avoid giving an explicit representation for
input transitions immediately leading to an inconsistent state, since they can
be inferred from the input-receptivity of observable traces. Furthermore, at
this stage of the article, whether a node is a circle or a square is irrelevant;
the distinction will become apparent in Section 3, Example 7.

From hereon let P , Q andR be components with signatures 〈AIP , AOP , TP ,
FP〉, 〈AIQ,AOQ, TQ, FQ〉 and 〈AIR,AOR, TR, FR〉 respectively.

Notation. Let A and B be sets of actions. For a trace t, write t � A for the
projection of t onto A. Now for T ⊆ A∗, write T � B for {t � B : t ∈ T},
T ⇑ B for {t ∈ B∗ : t � A ∈ T} and T ↑ B for T · (B \ A) · (A ∪ B)∗.
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job details? print!

job details?

job details? scan!

job details?

scan mode?

print mode?

print mode?

scan mode?

print mode?

scan mode?

scan!

print!

Figure 1: Multi-function Device.

2.1. Refinement

The refinement relation on components should support safe substitutivity,
meaning that, for Q to be used in place of P , we require that Q exists safely
in every environment that is safe for P . Whether an environment is safe
or not for a component depends on the interaction sequences between the
two. The affirmative holds if the environment can prevent the component
from performing an inconsistent trace. As outputs are controlled by the
component, it follows that a safe environment must refuse to issue an input
on any trace from which there is a sequence of output actions that allow the
trace to become inconsistent.

Given a component P , we can formulate the most general safe component
E(P), containing all of P ’s observable and inconsistent traces, but satisfying
the additional property: if t ∈ TP and there exists t′ ∈ (AOP)∗ such that tt′ ∈
FP , then t ∈ FE(P). This has the effect of making the component immediately
inconsistent whenever it has the potential to become inconsistent under its
own control. If the environment respects this safe component, by not issuing
any input that results in an inconsistent trace, then the component can
never encounter an inconsistent trace. Note that if ε ∈ FE(P) then there is
no environment that can prevent P from performing an inconsistent trace.
However, for uniformity we still refer to E(P) as the safe component of P .

Definition 2. The safe component for P is defined as E(P) = 〈AIP ,AOP , TP∪
FE(P), FE(P)〉, where FE(P) = {t ∈ TP : ∃t′ ∈ (AOP)∗ · tt′ ∈ FP} · A∗P .
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Based on safe components, we can now give the formal definition of sub-
stitutive refinement.

Definition 3 (Refinement). Q is said to be a refinement of P, written
Q vimp P, iff:

I1. AIP ⊆ AIQ
I2. AOQ ⊆ AOP
I3. AIQ ∩ AOP = ∅

I4. TE(Q) ∩ A∗P ⊆ TE(P)

I5. FE(Q) ∩ A∗P ⊆ FE(P).

For Q to be a refinement of P , the interface of Q must be substitutable
for the interface of P , meaning that Q must be willing to accept all of P ’s
inputs, while it must produce only a subset of P ’s outputs, as witnessed
by I1 and I2. Condition I3 ensures that P and Q are compatible, that is,
they are not allowed to mix action types. In [6] we did not impose this
constraint, as it is not necessary to guarantee substitutivity. However, in
this article we choose to include the constraint for three reasons: (i) it is not
necessarily meaningful to convert outputs into inputs during refinement; (ii)
compositionality of hiding does not hold without this constraint; and (iii)
mixing of action types is problematic for assume-guarantee reasoning, which
deals with the behaviour of the environment.

Condition I4 ensures that the observable behaviour of Q is contained
within the behaviour of P , except for when an input in AIQ \ AIP is encoun-
tered. An environment for P cannot issue such an input, so we are not
concerned with the ensuing behaviour of Q, which should be unconstrained.
Finally, condition I5 ensures that Q cannot introduce any new errors that are
not in P ’s behaviour. Note that checking FQ∩A∗P ⊆ FP would be too strong
to use for the last clause, as we are only interested in trace containment up
to the point where an environment can issue a bad input, from which the
component can become inconsistent autonomously.

Definition 4. P and Q are said to be equivalent, written P ≡imp Q, iff
P vimp Q and Q vimp P.

Lemma 1. Refinement is reflexive, and is transitive subject to preservation
of action types: R vimp Q, Q vimp P and AIR ∩ AOP = ∅ implies R vimp P.
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Proof. Reflexivity is trivial, while transitivity follows by the transitivity of
subset inclusion. �

We are now in a position to define the compositional operators of our
theory. In general, the compositional operators are only partially defined,
specifically on components that are said to be composable. This is a syntactic
check on the interfaces of the components to be composed, which ensures that
their composition is meaningful. For each operator, we state the required
composability constraints.

2.2. Parallel Composition

The parallel composition of two components yields a component repre-
senting the combined effect of its operands running asynchronously. The
composition is obtained by synchronising on common actions and inter-
leaving on independent actions. This makes sense even in the presence of
non-blocking outputs, because communication mismatches arising through
non-enabledness of inputs automatically appear as inconsistent traces in the
composition, on account of our component formulation. To support broad-
casting, we make the assumption that inputs and outputs synchronise to
produce outputs. As the outputs of a component are controlled locally, we
also assume that the output actions of the components to be composed are
disjoint, in which case we say that the components are composable. In prac-
tice, components that are not composable can be made so by employing
renaming.

Definition 5. Let P and Q be composable for parallel, i.e., AOP ∩ AOQ = ∅.
Then P || Q is the component 〈AIP||Q,AOP||Q, TP||Q, FP||Q〉, where:

� AIP||Q = (AIP ∪ AIQ) \ (AOP ∪ AOQ)

� AOP||Q = AOP ∪ AOQ

� TP||Q = [(TP ⇑ AP||Q) ∩ (TQ ⇑ AP||Q)] ∪ FP||Q

� FP||Q = [(TP ⇑ AP||Q) ∩ (FQ ⇑ AP||Q)] · A∗P||Q ∪
[(FP ⇑ AP||Q) ∩ (TQ ⇑ AP||Q)] · A∗P||Q.
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In words, the observable traces of the composition are simply those traces
that are inconsistent, plus any trace whose projection onto AP is a trace of
P and whose projection onto AQ is a trace of Q. A trace is inconsistent if it
has a prefix whose projection onto the alphabet of one of the components is
inconsistent and the projection onto the alphabet of the other component is
an observable trace of that component.

The definition of parallel composition for interface automata as defined
by de Alfaro and Henzinger [11] also includes backward propagation of in-
consistencies. This is not necessary in our framework, since an equivalent
technique is implicitly performed as part of refinement, as we do not insist
on a canonical representation for components. A canonical representation
for a component could easily be obtained by applying the E operator, should
this be considered desirable. In such a setting, the class of component rep-
resentations would be the safe components (cf. Definition 2).

Lemma 2. Parallel composition is associative and commutative.

Proof. Commutativity is trivial. For associativity, we show that FP||(Q||R) =
F(P||Q)||R, given that the T -set equivalence is similar. As a shorthand, we use
A to denote AP||(Q||R), which is equal to A(P||Q)||R.

FP||(Q||R) = [TP ⇑ A ∩ FQ||R ⇑ A] · A∗ (i)

∪ [FP ⇑ A ∩ TQ||R ⇑ A] · A∗

= [TP ⇑ A ∩ ((FQ ⇑ AQ||R ∩ TR ⇑ AQ||R) · A∗Q||R) ⇑ A] · A∗ (ii)

∪ [TP ⇑ A ∩ ((TQ ⇑ AQ||R ∩ FR ⇑ AQ||R) · A∗Q||R) ⇑ A] · A∗ (iii)

∪ [FP ⇑ A ∩ (TQ ⇑ AQ||R ∩ TR ⇑ AQ||R) ⇑ A] · A∗

∪ [FP ⇑ A ∩ FQ||R ⇑ A] · A∗ contained within (i), so within (ii) and (iii)

= [TP ⇑ A ∩ (FQ ⇑ A ∩ TR ⇑ A)] · A∗

∪ [TP ⇑ A ∩ (TQ ⇑ A ∩ FR ⇑ A)] · A∗

∪ [FP ⇑ A ∩ (TQ ⇑ A ∩ TR ⇑ A)] · A∗

= [(TP ⇑ A ∩ FQ ⇑ A) ∩ TR ⇑ A] · A∗

∪ [(TP ⇑ A ∩ TQ ⇑ A) ∩ FR ⇑ A] · A∗

∪ [(FP ⇑ A ∩ TQ ⇑ A) ∩ TR ⇑ A] · A∗
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= [(TP ⇑ AP||Q ∩ FQ ⇑ AP||Q) ⇑ A ∩ TR ⇑ A] · A∗

∪ [(TP ⇑ AP||Q ∩ TQ ⇑ AP||Q) ⇑ A ∩ FR ⇑ A] · A∗

∪ [(FP ⇑ AP||Q ∩ TQ ⇑ AP||Q) ⇑ A ∩ TR ⇑ A] · A∗

= [FP||Q ⇑ A ∩ TR ⇑ A] · A∗

∪ [TP||Q ⇑ A ∩ FR ⇑ A] · A∗

= F(P||Q)||R

�

The following result shows that parallel composition is monotonic on re-
finement, subject to restrictions on the interfaces to be composed and com-
posability. A corollary of this result is that mutual refinement is a congruence
for parallel, subject (only) to composability.

Theorem 1. Let P, Q, P ′ and Q′ be components such that P and Q are
composable, AP ′ ∩ AQ′ ∩ AP||Q ⊆ AP ∩ AQ and AOP||Q ∩ AIP ′||Q′ = ∅. If

P ′ vimp P and Q′ vimp Q, then P ′ || Q′ vimp P || Q.

Proof. It is easy to show that the conditions on alphabets are satisfied. To
show t ∈ FE(P ′||Q′) ∩ A∗P||Q implies t ∈ FE(P||Q) (and respectively for the T -

sets), assume that the result holds for all strict prefixes of t. So there exists
t′′ ∈ (AOP ′||Q′)∗ such that tt′′ ∈ FP ′||Q′ . By the conditions on alphabets, it
also follows that tt′′ ∈ A∗P||Q. It can now be shown that tt′′ � AP = tt′′ � AP ′

(and similarly for AQ and AQ′), for suppose that there exists a ∈ AP \ AP ′

on the trace tt′′. Then a ∈ AOP , which implies a 6∈ AP ′||Q′ , as a 6∈ AQ′ by
compatibility and composability. Instead, if a ∈ AP ′ \AP , then a ∈ AIP ′ . As
a ∈ AP ′||Q′ ∩ AP||Q, it must hold that a ∈ AIQ, but, by the conditions of the
theorem, it would follow that a ∈ AIP , which is contradictory.

So, without loss of generality, suppose tt′′ � AP ′ ∈ FP ′ and tt′′ � AQ′ ∈
TQ′ . By refinement at the component level, it follows that tt′′ � AP ∈ FE(P)
and tt′′ � AQ ∈ TE(Q). From this, it is easy to show that tt′′ ∈ FE(P||Q), and
so t ∈ FE(P||Q) as required. The T -set containment is a simplification, since
it is not necessary to consider the t′′ extension. �

Parallel composition is claimed to be monotonic for modal interfaces with-
out any conditions on the interfaces (except for composability), according to
Raclet et al. in [34]. This is due to the authors using strong refinement, which
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is more restrictive than vimp, since it requires that all actions in AIP ′ \ AIP
and AIQ′ \ AIQ never produce unsafe behaviour (see Section 2.7 for a more
detailed consideration).

Example 2. The most liberal User that can interact with the Device (shown
in Figure 1) is a component obtained from Device by interchanging inputs
and outputs (given that we do not explicitly represent traces making the com-
ponent receptive). The definition of parallel composition guarantees that the
composition of the Device along with the resultant User is free of inconsisten-
cies (i.e., communication mismatches), and is a transition system equal to
that of the Device and the User, but with all actions converted to outputs.

Note that, if a user wished to perform the trace print mode! scan mode!,
then this would also be a trace in the parallel composition, since print mode?
scan mode? is a trace of Device, albeit an inconsistent one, which is why it is
not explicitly represented in Figure 1. Consequently, the trace would also be
inconsistent in the parallel composition.

2.3. Conjunction

The conjunction operator on components can be thought of as supporting
independent development, in the sense that it yields the coarsest component
that will work in any environment safe for at least one of its operands. Con-
sequently, the conjunction of components is the coarsest component that is
a refinement of its operands (i.e. is the meet operator), which is why it is
frequently referred to as the shared refinement operator [15, 35].

In a number of frameworks, including that of Logic LTSs due to Lüttgen
and Vogler [25], conjunction represents synchronous parallel composition,
formed as the intersection of the good behaviours of the components to be
composed. In contrast, our conjunction is a substitutive refinement of each
component. Therefore, an input must be accepted in the conjunction if at
least one of the components accepts it, while an input should be accepted in
the synchronous parallel only if all of the appropriately alphabetised compo-
nents accept it.

Conjunction is only defined on composable components, where P and Q
are composable for conjunction if the sets AIP∪AIQ and AOP ∪AOQ are disjoint.

Definition 6. Let P and Q be components composable for conjunction, i.e.,
such that the sets AIP ∪ AIQ and AOP ∪ AOQ are disjoint. Then P ∧ Q is the
component 〈AIP∧Q,AOP∧Q, TP∧Q, FP∧Q〉, where:
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� AIP∧Q = AIP ∪ AIQ

� AOP∧Q = AOP ∩ AOQ

� TP∧Q = (TE(P) ∪ (TE(P) ↑ AIQ)) ∩ (TE(Q) ∪ (TE(Q) ↑ AIP))

� FP∧Q = (FE(P) ∪ (TE(P) ↑ AIQ)) ∩ (FE(Q) ∪ (TE(Q) ↑ AIP)).

The T and F sets are defined such that any trace in the conjunction is a
trace of both P andQ, unless if there is an input along the trace that does not
belong in the alphabet of one of the components (say Q). On encountering
such an input, the remainder of the trace would be in TE(Q) ↑ AIP , which has
the effect of leaving the behaviour of P unconstrained.

Lemma 3. Conjunction is associative, commutative and idempotent.

Proof. Obvious, given the algebraic properties of the set operations. �

The following theorem demonstrates that conjunction really does cor-
respond to the meet operator, and that it is monotonic under refinement,
subject to composability.

Theorem 2. Let P and Q, and P ′ and Q′, be components composable for
conjunction. Then:

� P ∧Q vimp P and P ∧Q vimp Q

� R vimp P and R vimp Q implies R vimp P ∧Q

� P ′ vimp P and Q′ vimp Q implies P ′ ∧Q′ vimp P ∧Q.

Proof. For the first claim, we consider just inconsistent trace containment
(the proof for observable traces being similar) on P ∧ Q vimp P . Let t ∈
FE(P∧Q) ∩ A∗P . Then there exists t′ a prefix of t and t′′ ∈ (AOP∧Q)∗, such
that t′t′′ ∈ FP∧Q ∩ A∗P . By the definition of conjunction, we have t′t′′ ∈
FE(P) ∪ (TE(P) ↑ AIQ) and so t′t′′ ∈ FE(P), given t′t′′ ∈ A∗P .

For the second claim, we again show the containment on inconsistent
traces, as the proof for the observable traces is near identical. Let t ∈ FE(R)∩
A∗P∧Q. Then without loss of generality, either t ∈ A∗P , which from R vimp P
implies t ∈ FE(P), or there is a prefix t′a of t such that t′ ∈ A∗P and a ∈
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AIQ \ AP . By the induction hypothesis on the strict prefix t′, it follows that
t′ ∈ TE(P) and so t′a ∈ TE(P) ↑ AIQ, hence t ∈ TE(P) ↑ AIQ. A similar argument
can be applied for R vimp Q, and so t ∈ FP∧Q as required.

For the third claim, we know by the first part that P ′ ∧ Q′ vimp P ′
and P ′ ∧ Q′ vimp Q′, from which P ′ ∧ Q′ vimp P and P ′ ∧ Q′ vimp Q
can be deduced by transitivity. The result now follows by the second claim.
Note that the compatibility conditions for transitivity may not hold, but this
does not matter, since the problematic cases are when AIQ′ ∩ (AOP \ AOQ) or
AIP ′ ∩ (AOQ \ AOP) are non-empty. To circumvent the problem, for each of P
and Q it is possible to construct components P ′′ and Q′′ that have output
sets AOP ∩AOQ, obtained by deleting all traces containing outputs not in this
set. Then it certainly holds that P ′ ∧Q′ vimp P ′′ and P ′ ∧Q′ vimp Q′′, from
which it is straightforward to show, by the definition of conjunction, that
P ∧Q = P ′′ ∧Q′′. �

Example 3. To demonstrate conjunction, we consider a device that is capa-
ble of printing and faxing documents. The behaviour of this device is shown
in Figure 2. Note how this device is capable of printing multiple documents
after having received job details (indicated by the self-loop labelled with print).

The conjunction of the original multi-function device (capable of printing
and scanning, shown in Figure 1) along with this new printing/faxing device
is shown in Figure 3. The resulting device is responsive to the inputs that can
be issued for each of the separate devices, but is only willing to perform func-
tions that can be executed by both. Therefore, the resulting device is unable
to scan or fax documents, even though it can be placed in these modes. More-
over, the device is only able to print a single document after having received
job details. Such behaviour may seem unnecessarily restrictive and undesir-
able; however, the resulting device is the most general that can be used safely
in place of the original printing/scanning device and the printing/faxing de-
vice. Consequently, the resulting device can only introduce communication
mismatches that both of the original devices can introduce.

One reason why the conjunction in Figure 3 is so restrictive is that it can-
not perform any output action that is not in the interface of both conjuncts.
If we improve on this situation by extending the set of actions of the device
in Figure 1 with fax mode and fax, and extending the set of actions of the
device in Figure 2 with scan mode and scan, so that the components to be
conjoined have identical interfaces, then the conjunction is a component as
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job details? print!

job details?

print!

job details? fax!

job details?

fax mode?

print mode?

print mode?

fax mode?

print mode?

fax mode?

fax!

print!

Figure 2: A printing and faxing device.

shown in Figure 4. This device is capable of scanning and faxing documents,
but cannot be placed in scan mode after it has been placed in fax mode and
vice versa, although it can still be switched into print mode and back.

We remark that if, instead, we used conjunction defined as the intersec-
tion of behaviours (i.e. synchronous parallel, as in [25]), this would yield a
device that cannot be used safely in place of either. The problem is that the
behaviour would be unspecified when the device is placed in either scan mode
or fax mode, which means it will not work in any environment compatible
with the printing/scanning device, nor the printing/faxing device.

2.4. Disjunction

Disjunction is the dual of conjunction, so corresponds to the join opera-
tor on the refinement preorder. Therefore, the disjunction of a collection of
components is the finest component that they each refine, meaning that the
disjunction will work in environments safe for both of its operands. Compos-
ability of components under disjunction is the same as for conjunction.

Definition 7. Let P and Q be components composable for disjunction, i.e.,
such that the sets AIP ∪ AIQ and AOP ∪ AOQ are disjoint. Then P ∨ Q is the
component 〈AIP∨Q,AOP∨Q, TP∨Q, FP∨Q〉, where:

� AIP∨Q = AIP ∩ AIQ

� AOP∨Q = AOP ∪ AOQ
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job details?

job details? print!
job details?

job details? fax mode?

scan mode?

scan mode?

fax mode?

scan mode?

fax mode?

print mode?

print!

Figure 3: The conjunction of the printing/scanning and printing/faxing devices.

� TP∨Q = [(TP ∪ TQ) ∩ A∗P∨Q] ∪ FP∨Q

� FP∨Q = [(FP ∪ FQ) ∩ A∗P∨Q] · A∗P∨Q.

Essentially, as the disjunction should be refined by its arguments, the
behaviours of P and Q should be contained within the behaviour of P ∨ Q.
Similarly, if a trace is inconsistent in one of P or Q, then it must also be
inconsistent within the disjunction.

Lemma 4. Disjunction is associative, commutative and idempotent.

Proof. Commutativity and idempotence are trivial. For associativity, we
show that FP∨(Q∨R) = F(P∨Q)∨R, since the T -set equivalence follows by the
same reasoning.

FP∨(Q∨R) = [(FP ∪ FQ∨R) ∩ A∗P∨(Q∨R)] · A∗P∨(Q∨R)

= [(FP ∪ [(FQ ∪ FR) ∩ A∗Q∨R] · A∗Q∨R) ∩ A∗P∨(Q∨R)] · A∗P∨(Q∨R)

= [(FP ∪ (FQ ∪ FR)) ∩ A∗P∨(Q∨R)] · A∗P∨(Q∨R)

= [((FP ∪ FQ) ∪ FR) ∩ A∗(P∨Q)∨R] · A∗(P∨Q)∨R
= [([(FP ∪ FQ) ∩ A∗P∨Q] · A∗P∨Q ∪ FR) ∩ A∗(P∨Q)∨R] · A∗(P∨Q)∨R
= [(FP∨Q ∪ FR) ∩ A∗(P∨Q)∨R] · A∗(P∨Q)∨R
= F(P∨Q)∨R
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Figure 4: The conjunction of the printing/scanning and printing/faxing devices when the
components have identical interfaces incorporating all actions.
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�

As for conjunction, disjunction has an analogous set of algebraic proper-
ties, obtained by reversing the direction of refinement.

Theorem 3. Let P and Q, and P ′ and Q′, be components composable for
disjunction. Then:

� P vimp P ∨Q and Q vimp P ∨Q

� P vimp R and Q vimp R implies P ∨Q vimp R

� P ′ vimp P and Q′ vimp Q implies P ′ ∨Q′ vimp P ∨Q.

Proof. For the first claim, suppose t ∈ FE(P) ∩ A∗P∨Q. Then there exists
a prefix t′ of t and a trace t′′ ∈ (AOP)∗ such that t′t′′ ∈ FP . Necessarily,
t′t′′ ∈ A∗P∨Q, and so t′t′′ ∈ FP∨Q. This implies t ∈ FE(P∨Q) as required.
The T -set containment is similar, and so P vimp P ∨ Q. Equivalently, it is
straightforward to show Q vimp P ∨Q.

For the second claim, suppose t ∈ FE(P∨Q) ∩ A∗R. Then there exists t′, a
prefix of t and t′′ ∈ (AOP∨Q)∗, such that t′t′′ ∈ FP∨Q ∩ A∗R and, without loss
of generality, t′t′′ ∈ (FP ∩A∗P∨Q) · A∗P∨Q. Therefore there is a prefix tp of t′t′′

such that tp ∈ FP ∩ A∗P∨Q ∩ A∗R. From P vimp R, it follows that tp ∈ FE(R)

and so t ∈ FE(R) as required. Showing the T -set containment is similar.
For the third claim, we know by the first part that P vimp P ∨ Q and

Q vimp P ∨ Q, from which P ′ vimp P ∨ Q and Q′ vimp P ∨ Q can be
deduced by transitivity (assuming the compatibility constraints are satis-
fied). The result now follows by the second claim. When the compatibility
constraints are not satisfied, it must be because AIP ′ ∩ AOQ or AIQ′ ∩ AOP is
non-empty. It is possible to construct components P ′′ and Q′′ with input
actions AIP ′ ∩AIQ′ , obtained from P ′ and Q′ by deleting all traces containing
an input not in AIP ′∩AIQ′ . Then certainly P ′′ vimp P∨Q and Q′′ vimp P∨Q,
from which the result can be deduced by observing that P ′∨Q′ = P ′′∨Q′′. �

Example 4. A user wishing to use a multi-function device is non-deterministically
allocated the printing/scanning device (Figure 1) or the printing/faxing de-
vice (Figure 2). The most general behaviour allowed by the user (such that
communication mismatches are not introduced) is obtained by inverting the
inputs and outputs on the disjunction of the two devices. The disjunction is
shown in Figure 5.
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job details? print!

print!

job details?
print mode?

print!

Figure 5: The disjunction of the printing/scanning and printing/faxing devices.

2.5. Hiding

We introduce hiding to support abstraction for hierarchical development.
Hiding is a unary operator on components that has the effect of contracting
the interface by removing an action. Taking intuition from a simple analogy
in which inputs correspond to buttons and outputs correspond to lights, the
resulting behaviour of a component under hiding of action b is as follows:

� If b is an input, then the b-button will never be pressed. This means
that no behaviour is observable beyond a b on a trace, so all traces
should be pruned on encountering a b.

� If b is an output, then hiding suppresses the visibility of the b-light.
The component should thus silently skip over b, which corresponds to
projecting out b from all traces.

From this, we give the formal definition, which is dependent on the type
of action to be hidden.

Definition 8. Let P be a component and let b be an action. The hiding of
b in P is a component P/b = 〈AIP/b,AOP/b, TP/b, FP/b〉, where:

� AIP/b = AIP \ {b}

� AOP/b = AOP \ {b}

� TP/b =

{
TP � AP/b if b ∈ AOP
TP ∩ A∗P/b otherwise

� FP/b =

{
FP � AP/b if b ∈ AOP
FP ∩ A∗P/b otherwise.
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The soundness of this definition requires careful consideration when b is
an output. For a trace tb ∈ TP and input a ∈ AIP , observe that ta is a safe
trace of P/b (i.e., ta ∈ TP/b \ FP/b) iff both ta and tba are safe traces of P .
Taking intuition from b being a hidden light, this behaviour is correct since
it cannot be known precisely when the light will illuminate, so it is only safe
for the environment to issue the input a after t if the component is willing
to accept a both before and after the light has been silently illuminated.

Theorem 4. Let P and Q be components and let b an action. If Q vimp P,
then Q/b vimp P/b.

Proof. Begin by noting that E(Q)/b = E(Q/b) (and similarly for P). In
the case that b ∈ AIQ, let t ∈ FE(Q/b) ∩ A∗P/b. Then t ∈ FE(Q)/b and so
t ∈ FE(Q)∩A∗Q/b∩A∗P/b. By Q vimp P we have t ∈ FE(P)∩A∗P/b. This means
that t ∈ FE(P/b) as required. The observable trace containment can be shown
similarly. Note that this case also applies when b 6∈ AP ∪ AQ.

For the case when b ∈ AOP , assume that t ∈ FE(Q/b)∩A∗P/b, from which we
know t ∈ FE(Q)/b. Suppose there is a t′ ∈ FE(Q) such that t′ � AQ/b = t. Then
t′ ∈ A∗P and so from Q vimp P it follows that t′ ∈ FE(P). As t′ ∈ A∗P ∩ A∗Q,
it follows that t′ � AP/b = t. Hence t ∈ FE(P)/b, which implies t ∈ FE(P/b) as
required. The T -set containment is similar. �

Example 5. Disaster strikes and the Device becomes broken such that it will
no longer scan documents (depicted as BrokenDevice in Figure 6). As a result,
the BrokenDevice should not be placed in scan mode. The updated behaviour
of the device is given by BrokenDevice / scan mode, as shown in Figure 7.
The resulting component model contracts the interface of the BrokenDevice
by being indifferent to scan mode requests.

2.6. Quotient

The final operation that we consider is that of quotient, which provides
functionality to synthesise components from a global specification and partial
implementation. Given a component representing a system R, together with
an implementation of one component P in the system R, the quotient yields
the coarsest component for the remaining part ofR to be implemented. Thus,
the parallel composition of the quotient with P should be a refinement of R.
Therefore, quotient can be thought of as the adjoint of parallel composition.
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scan mode?scan mode?
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Figure 6: BrokenDevice without the ability to scan.

job details? print!

job details?

print mode?
print!

Figure 7: BrokenDevice after hiding the scan mode functionality.

A necessary condition for the existence of the quotient is that AOP ⊆ AOR,
otherwise refinement will fail on the alphabet containment checks.

Definition 9. Let P and R be components such that AOP ⊆ AOR. The quo-
tient of P from R is the component R/P with signature 〈AIR/P ,AOR/P , TR/P ,
FR/P〉, where:

� AIR/P = AIR \ AIP

� AOR/P = AOR \ AOP

� TR/P is the largest prefix-closed and input-receptive subset of
{t ∈ A∗R/P : ∀t′ ∈ A∗R · t′ � AR/P = t and t′ � AP ∈ TP =⇒ t′ ∈
TE(R)} ∩
{t ∈ A∗R/P : ∀t′ ∈ A∗R ·t′ � AR/P = t and t′ � AP ∈ FP =⇒ t′ ∈ FE(R)}

� FR/P = {t ∈ TR/P : ∀t′ ∈ A∗R · t′ � AR/P = t and t′ � AP ∈ TP =⇒
t′ ∈ FE(R)}.
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Explaining the intuition behind the definition, observe that whenever
R is inconsistent, the parallel composition of P and the quotient can be
inconsistent, so the quotient itself can be inconsistent. Similarly, if a trace is
not in P , then it will not be encountered in the composition P || R/P , hence
it should be inconsistent in the quotient (so that we obtain the least refined
solution). These two conditions correlate with t � AP ∈ TP =⇒ t ∈ FE(R)

in the definition of FR/P .
If P is inconsistent on a trace t when R is not inconsistent, then the

parallel composition of P and the quotient would be inconsistent if t is in
the quotient. Similarly, if t is a trace of P , but not of R, then the parallel
composition would have a behaviour that is not in R, if t were included in
the quotient. Both of these situations are problematic, since the composition
of P and the quotient would not be a refinement of R. Consequently, the
quotient must suppress the last output on its behaviour of this trace, so
that the composition can never encounter the inconsistency (or additional
behaviour) that P will introduce. In our definition, this correlates with
the requirement that TR/P is the largest input-receptive set satisfying the
conditions that t � AP ∈ FP =⇒ t ∈ FE(R) and t � AP ∈ TP =⇒ t ∈ TE(R).

Although R/P is always defined when AOP ⊆ AOR, it may not be a re-
alisable component, even if both R and P are realisable. Unfortunately,
there is no syntactic check on the interfaces of R and P that can determine
whether R/P is realisable or not. This can only be inferred by examining
the behaviours of R and P .

Theorem 5. Let P, Q and R be components. Then P || Q vimp R iff:

� R/P is defined (i.e., AOP ⊆ AOR)

� P || (R/P) vimp R

� AIQ = AIR/P implies Q vimp R/P.

Proof. For the first claim, if P || Q vimp R, then AOP||Q ⊆ AOR. As AOP||Q =

AOP ∪ AOQ, it follows that AOP ⊆ AOR i.e., the quotient is defined. Instead,
if R/P is defined, then AOP ⊆ AOR. Taking Q = 〈AIR,AOR \ AOP , ∅, ∅〉 gives
P || Q vimp R.

For the second claim, let t ∈ FE(P||(R/P)) ∩A∗R. Then there exists a prefix
t′ of t and t′′ ∈ (AOP||(R/P))∗ such that t′t′′ ∈ FP||(R/P) ∩ A∗R. Without loss of
generality, suppose there is no prefix of t′t′′ in FP||(R/P). Then either t′t′′ �
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AP ∈ FP and t′t′′ � AR/P ∈ TR/P , or t′t′′ � AP ∈ TP and t′t′′ � AR/P ∈ FR/P .
If the former holds, then t′t′′ ∈ FE(R) by the definition of TR/P , which implies
t ∈ FE(R). In the case of the latter, if follows by the definition of FR/P that
t′t′′ ∈ FE(R), from which it can be deduced that t ∈ FE(R). Now suppose
that t ∈ (TP||(R/P) \ FE(P||(R/P))) ∩ A∗R. Then it follows that t � AP ∈ TP
and t � AR/P ∈ TR/P . By the definition of TR/P , it follows that t ∈ TE(R) as
required.

For the third claim, first suppose t ∈ FE(Q) ∩ A∗R/P . Then there exists a

prefix t′ of t and t′′ ∈ (AOQ)∗ such that t′t′′ ∈ FQ. Note that t′t′′ ∈ A∗R/P . Let
t′′′ ∈ A∗R be an arbitrary trace such that t′′′ � AR/P = t′t′′. If t′′′ � AP ∈ TP ,
then t′′′ ∈ FE(R), since P || Q vimp R. Therefore, by the arbitrariness of t′′′,
it follows that t′t′′ ∈ FR/P unless t′t′′ 6∈ TR/P (which can only be if prefix-
closure or input-receptiveness does not hold, but this would imply t′t′′ 6∈ FQ).
Hence t ∈ FE(R/P) as required. Now suppose that t ∈ (TQ \ FE(Q)) ∩ A∗R/P .
Again, let t′′′ ∈ A∗R be an arbitrary trace such that t′′′ � AR/P = t. If
t′′′ � AP ∈ TP , then t′′′ ∈ TE(R), and if t′′′ � AP ∈ FP , then t′′′ ∈ FE(R), since
P || Q vimp R. By the arbitrariness of t′′′, it follows that t ∈ TR/P . �

This definition of quotient generalises that supplied in [6] and[4], both of
which require that the interface of R/P synchronises with all actions of P .
Although in this article we take AIR/P = AIR \ AIP , our definition works for

any set such that AIR \ AIP ⊆ AIR/P ⊆ AR, with the results of Theorem 5
continuing to hold. In other words, the quotient operation can be param-
eterised on the set AIR/P of input actions of R/P . For any such choice of

AIR/P , the construction of TR/P and FR/P for this extended set of inputs re-

mains unchanged from Definition 9 (having redefined AIR/P). Consequently,

we can take AIR/P = AIR ∪ AOP , which allows the interface of the quotient
to observe all actions of P and hence capture more specific behaviours. In
general, it is not possible to start with the original quotient R/P (having
inputs AIR \ AIP) and refine it to a component Q over the extended set of
inputs such that P || Q vimp R can be inferred, since parallel composition
has interface restrictions for monotonicity to hold (cf. Theorem 1).

The next theorem shows that quotient is well-behaved with respect to
refinement.

Theorem 6. Let P, Q and R be components such that Q vimp P.

� If Q/R is defined and AIR ∩ AOP = ∅, then Q/R vimp P/R.
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� If R/P is defined and (AIQ \ AIP) ∩ AR = ∅, then R/Q wimp R/P.

Proof. For the first property, note that definedness of Q/R implies defined-
ness of P/R. Consequently, R || (Q/R) vimp Q vimp P . The con-
straint AIR ∩ AOP = ∅ ensures that transitivity holds, from which we derive
R || (Q/R) vimp P . Hence Q/R vimp P/R by Theorem 5.

For the second property, definedness of R/P implies definedness of R/Q.
From Q vimp P , we obtain Q || (R/P) vimp P || (R/P) by Theorem 1 (the
conditions of which are satisfied by (AIQ \AIP)∩AR = ∅). By Theorem 5 we
know P || (R/P) vimp R, and so we obtain Q || (R/P) vimp R by transitiv-
ity (Lemma 1), given that (AIQ \AIP)∩AR = ∅ ensures that action types are
not mixed. Finally, by Theorem 5, it follows that R/Q is the minimal solu-
tion to Q || X vimp R, and so R/P vimp R/Q, given that AIR/P = AIR/Q.
�

Example 6. To demonstrate quotient, we assume that the action job details
can encode two types of behaviour, depending on the mode of the device.
When Device is in print mode, the job details should encode information per-
taining to printing, such as the document to be printed. Conversely, when
Device is in scan mode, the job details should contain information indicative
of scanning functionality, such as the resolution at which scanning must be
performed. This essentially means that, after the job details have been sent
to Device, the device mode may not be changed until the current job has been
printed or scanned. This constraint is represented by the component Con-
straint in Figure 8. The Constraint component is an observer that generates
errors when bad sequences of actions are seen, which is why all actions are
treated as inputs. The behaviour of the constrained device is given by Device
|| Constraint.

The most general behaviour of a user that interacts with the constrained
device is given by the quotient User2 = ErrorFree/(Device || Constraint) (as
depicted in Figure 10). ErrorFree is the component having a single state with
a self-loop for each action (treated as an output). As ErrorFree does not
possess any inconsistent states, the quotient operation guarantees that User2
|| Device || Constraint is free of inconsistencies, hence User2 || Device conforms
to the behaviour of Constraint.
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Figure 8: Constraint on job details.

print mode!

scan mode!
job details!
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Figure 9: An ErrorFree component

The computation of quotient can be automated. Applications of quotient
to mediator synthesis were demonstrated by Inverardi and Tivoli [18], and
Bennaceur et al. [3], with the latter presenting a prototype implementation.

2.7. Full Abstraction

In this section, we demonstrate that our refinement relation precisely
characterises safe substitutivity of components, by means of a testing frame-
work that places components in parallel with an arbitrary environment and
checks for inconsistency. Based on this testing scenario, we show that ≡imp
is fully abstract for the full collection of operators in the specification theory.

Definition 10. Let P and Q be components. Then Q is inconsistency sub-
stitutable for P, denoted by Q vFimp P, iff ε ∈ FE(Q) implies ε ∈ FE(P).

From this definition, we can show that vimp is the weakest preorder rep-
resenting safe-substitutivity.

Theorem 7. Let P and Q be components such that AIP ⊆ AIQ, AOQ ⊆ AOP
and AIQ ∩ AOP = ∅. Then:

Q vimp P iff ∀R · AOR = AIP and AIR = AOQ =⇒ Q || R vFimp P || R.
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Figure 10: Component representing User2.

Proof. First suppose Q vimp P . Then, from the constraint on the interface
for R, we have that Q || R vimp P || R by Theorem 1, since the constraints
for that Theorem are satisfied. Hence Q || R vFimp P || R as required.

For the other direction, suppose that Q 6vimp P . Then there exists a
smallest t such that t ∈ FE(Q) ∩ A∗P and t 6∈ FE(P), or t ∈ TE(Q) ∩ A∗P and
t 6∈ TE(P).

In the case of the former, it follows (by the minimality of t) that there
exists t′ ∈ (AOQ)∗ such that tt′ ∈ FQ, and, moreover, tt′ ∈ A∗P . Consequently,
tt′ ∈ A∗R, so we construct an R such that FR = ∅ and TR is the smallest set
containing tt′ that makes R a component. Now tt′ ∈ TR implies tt′ ∈ FQ||R,
and so ε ∈ FE(Q||R) given tt′ ∈ (AOQ||R)∗. However, as t 6∈ FE(P), it follows

that t 6∈ FE(P||R), hence ε 6∈ FE(P||R), which means Q || R 6vFimp P || R as
required.

In the case of the latter, it is sufficient to consider t ∈ TQ ∩ A∗P . Note
that t ∈ A∗R by definition, so we construct an R such that FR = {t′′ ∈ A∗R :
t is a prefix of t′′} and TR is the least set making R a component. There-
fore t ∈ FQ||R, which yields ε ∈ FE(Q||R) given t ∈ (AOQ||R)∗. However, as
t 6∈ TE(P), it follows that t 6∈ TE(P||R), hence ε 6∈ TE(P||R). From this we obtain
ε 6∈ FE(P||R), so Q || R 6vFimp P || R as required. �

The conditions on the interfaces of P and Q are required for Theorem 7
to hold, since Q || R vimp P || R does not imply that AIP ⊆ AIQ, AOQ ⊆ AOP
and AIQ ∩ AOP = ∅.
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We now elaborate on our claim that vimp is the weakest preorder preserv-
ing substitutivity of components. Indeed, Theorem 7 supports this claim, but
this is due to our formulation of an environment, in that we assume AOR ∩
(AIQ \ AIP) = ∅. If this constraint does not hold, then our refinement is not
the weakest preorder preserving substitutivity. To see why, consider the com-
ponents P = 〈AI ,AO,A∗, ∅〉 and Q = 〈AI

.
∪ {x},AO, (A

.
∪ {x})∗,A∗ ↑ {x}〉

for which Q vimp P . Then the component R = 〈AO,AI
.
∪{x}, (A

.
∪{x})∗, ∅〉

is an environment safe for P but not for Q (note that in Theorem 7 this R
is not treated as an environment for P).

Supposing that we wish R to be classified as a valid environment for
P , it becomes necessary to reformulate the definition of refinement in order
to maintain the weakest substitutive preorder property. The necessary al-
teration essentially requires that AIQ = AIP . We choose not to adopt this
convention, since our substitutive preorder would no longer be weaker than
the alternating refinement defined by de Alfaro and Henzinger for interface
automata. There is, of course, no reason why a user of our theory could not
adopt this stronger requirement.

From our characterisation of vimp as the weakest substitutive preorder,
we obtain a full abstraction result for ≡imp on the specification theory, with
respect to checking of inconsistency equivalence ≡Fimp (i.e., vFimp ∩ wFimp).
Our definition of full abstraction is taken from van Glabbeek [39] (Definition
16), which means that ≡imp is the coarsest congruence for the operators of
our specification theory with respect to simple inconsistency equivalence.

Corollary 1. Substitutive equivalence ≡imp is fully abstract for parallel com-
position, conjunction, disjunction, hiding and quotient with respect to obser-
vational equivalence of inconsistency.

Proof. Note that, under ≡imp, none of the alphabet constraints (other than
those for composability) are required for the compositionality results to hold
in Theorems 1, 2, 3, 4 and 6. Consequently, ≡imp is a congruence for all of the
compositional operators. Taking this along with Theorem 7 shows that ≡imp
is the coarsest such equivalence with respect to observational equivalence of
inconsistency. �

We do not obtain full abstraction for vimp, since the compositional op-
erators do not form a pre-congruence under vimp, due to the compatibility
constraints. The constraints are, however, automatically satisfied for ≡imp.
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3. Extending the Component Theory: Preservation of Progress

A perceived shortcoming of interface automata (and hence our theory in
Section 2) is that the principle of substitutivity requires a refining compo-
nent to be no more expressive on the output it can produce, in comparison to
the behaviour of the original. In fact, the most refined component will have
an interface that is unwilling to produce any external stimuli whatsoever.
Refinement resulting in absence of external behaviour is frequently seen in
the literature, one such example being the trace semantics of CSP [17], in
which every process can be refined by the deadlocked process STOP. Such
refinements preserve safety, but they do not require any meaningful compu-
tation to be performed. To resolve this issue, the refinement relation should
be adapted by instilling a notion of liveness/progress.

In this section, we adapt the substitutive refinement relation of Section 2.1
by forcing a refining component to make progress whenever the original can.
Our choice of progress is based on the notion of quiescence; a trace is said to
be quiescent just if it cannot be extended by an output. Quiescence differs
from deadlock in that a deadlocked component is unwilling to accept any
input (or produce any output), whereas a quiescent component may be able
to accept input. The updated refinement relation requires substitutability, as
in Section 2.1, but also that any non-quiescent trace of the original component
is non-quiescent in the refining component. Our choice of quiescence, in place
of fairness sets [37, 36], is motivated by the desire to utilise only finite-length
traces, as in Section 2. In addition to quiescence, a component should not be
allowed to make progress by performing an unbounded amount of internal
computation. As a result, our refinement relation must also take into account
the divergence of a component. Note that, in contrast to CSP [17], we do
not require divergent traces to be extension closed.

The remainder of this section presents an updated component formula-
tion, together with the formal definition of the substitutive and progress-
sensitive refinement relation. Revised definitions for the compositional oper-
ators are presented, and the algebraic results are re-established.

Definition 11. A progress-sensitive component P (henceforth referred to as
a component) is a tuple 〈AIP ,AOP , TP , FP , DP , KP〉 in which 〈AIP ,AOP , TP , FP〉
is a component as in Definition 3, and:

� DP is a set of extended divergent traces such that FP ⊆ DP ⊆ TP
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� KP is a set of extended quiescent traces such that
{t ∈ TP : @o ∈ AOP · to ∈ TP} ∪DP ⊆ KP ⊆ TP .

The set DP consists of all divergent and inconsistent traces of P , while
KP also contains the quiescent traces of P . Note that, due to the possibility
of internal computation (which introduces non-deterministic behaviour), the
quiescent traces of a component are not completely determined by TP and
FP . In our framework, a separate treatment of divergence is given in order
to guarantee that a refining component makes observable progress. This is
in contrast to the receptive process theory of Josephs [21] and the work of
Jonsson [19], for example.

We now redefine P , Q and R to be components with signatures 〈AIP ,
AOP , TP , FP , DP , KP〉, 〈AIQ,AOQ, TQ, FQ, DQ, KQ〉 and 〈AIR,AOR, TR, FR, DR,
KR〉 respectively.

3.1. Refinement

As in Section 2.1, refinement of component Q by component P needs
to talk about the most general safe representations E(P) and E(Q). This
carries across to the new setting effortlessly, by taking DE(P) = DP ∪ FE(P)
and KE(P) = KP ∪ FE(P). Based on this, we give the formal definition of
refinement.

Definition 12. Q is said to be a progress-sensitive refinement of P, written
Q vlimp P, iff Q vimp P, DE(Q) ∩ A∗P ⊆ DE(P) and KE(Q) ∩ A∗P ⊆ KE(P).

ByQ vimp P we mean refinement as in Definition 3 after having projected
out DP , KP , DQ and KQ from P and Q; this condition guarantees that Q
is substitutable for P . The additional constraints DE(Q) ∩ A∗P ⊆ DE(P) and
KE(Q) ∩ A∗P ⊆ KE(P) ensure that Q is only allowed to diverge when P can
diverge, and can only be quiescent when P is quiescent. It is these final
clauses that force a refining component to make observable progress whenever
the original can.

Equivalence of components, indicated using ≡limp, can easily be defined
by means of mutual refinement, i.e., is equal to vlimp ∩(vlimp)−1.

Lemma 5. Progress-sensitive refinement is reflexive, and transitive subject
to preservation of action types.
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Proof. Follows by the exact same reasoning as in Lemma 1. �

3.2. Parallel Composition

As parallel composition is not related to refinement, the definition remains
largely unchanged, excepting the sets of extended divergent and quiescent
traces. To compute these sets, it is straightforward to observe that a trace
is divergent in the parallel composition if its projection onto the alphabet of
at least one of the components is a divergent trace, and is quiescent if its
projections onto the alphabets of both components are quiescent.

Definition 13. Let P and Q be composable for parallel. Then P ||l Q is the
component 〈AIP||Q,AOP||Q, TP||Q, FP||Q, DP||Q, KP||Q〉, where:

� DP||Q = [(DP ⇑ AP||Q) ∩ (TQ ⇑ AP||Q)] ∪
[(TP ⇑ AP||Q) ∩ (DQ ⇑ AP||Q)] ∪ FP||Q

� KP||Q = [(KP ⇑ AP||Q) ∩ (KQ ⇑ AP||Q)] ∪DP||Q.

Given the effect of divergence and quiescence on parallel composition, it
is not surprising that the monotonicity result is unchanged.

Theorem 8. Let P, P ′, Q and Q′ be components such that P and Q are
composable, AP ′ ∩ AQ′ ∩ AP||Q ⊆ AP ∩ AQ and AIP ′||Q′ ∩ AOP||Q = ∅. If

P ′ vlimp P and Q′ vlimp Q, then P ′ ||l Q′ vlimp P ||l Q.

Proof. By Theorem 1, we know that the T and F -set containments hold. In
the difficult case, suppose t ∈ DP ′||Q′ \FE(P ′||Q′). Then, without loss of gener-
ality, we know t � AP ′ ∈ DP ′ and t � AQ′ ∈ TQ′ . By the alphabet constraints
(as elaborated in the proof of Theorem 1) it follows that t � AP ′ = t � AP
and t � AQ′ = t � AQ. Hence, from P ′ vlimp P and Q′ vlimp Q, it follows that
t � AP ∈ DE(P) and t � AQ ∈ TE(Q), yielding t ∈ DE(P||Q) as required. The
quiescent trace containment is similar. �
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3.3. Conjunction

As conjunction corresponds to the meet operator on the refinement pre-
order, its definition in the progress-sensitive setting is substantially altered.
In particular, we require that a trace in the conjunction can only be quiescent
if it is permitted to be quiescent in both of the components to be conjoined.
For substitutability, it is necessary to synchronise on outputs, which means
that the conjunction can introduce new undesirable quiescence. Hence, it is
necessary to perform a backward pruning, which removes an output at an
earlier stage to avoid violating the constraints on quiescence later on. Of
course, removing outputs at an earlier stage can introduce more quiescence,
so pruning must be applied iteratively.

Definition 14. Let P and Q be composable for conjunction. Then P ∧l Q
is the component 〈AIP∧Q,AOP∧Q, TP∧Q \Err, FP∧Q \Err,DP∧Q \Err,KP∧Q \
Err〉, where:

� DP∧Q = (DE(P) ∪ (TE(P) ↑ AIQ)) ∩ (DE(Q) ∪ (TE(Q) ↑ AIP))

� KP∧Q = (KE(P) ∪ (TE(P) ↑ AIQ)) ∩ (KE(Q) ∪ (TE(Q) ↑ AIP))

� Err is the smallest set containing {t ∈ TP∧Q : ∃t′ ∈ (AIP∧Q)∗ ·
tt′ 6∈ KP∧Q and ∀o ∈ AOP∧Q · tt′o 6∈ TP∧Q \ Err} · A∗P∧Q.

Err captures the quiescent traces in P ∧Q that are not quiescent in both
P and Q. These traces correspond to a clash of requirements between safety
and progress, so are subsequently removed from the behaviour of P ∧lQ. In
removing these traces, we can introduce further quiescence, which is why Err
is defined as a least fixed point. Note that, unlike in the original definition,
the conjunction of two realisable components may not be realisable.

Theorem 9. Let P and Q, and P ′ and Q′ be components composable for
conjunction. Then:

� P ∧l Q vlimp P and P ∧l Q vlimp Q

� R vlimp P and R vlimp Q implies R vlimp P ∧l Q

� P ′ vlimp P and Q′ vlimp Q implies P ′ ∧l Q′ vlimp P ∧l Q.
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Proof. For the first claim, we just need to show divergent and quiescent trace
containment, which is a straightforward modification to Theorem 2. The
proof for observable and inconsistent trace containment remains unchanged.

For the second claim, under the assumption that TE(R) ∩ Err = ∅, the
observable and inconsistent trace containments remain as in Theorem 2, and
the divergent and inconsistent trace containments are a straightforward ex-
tension. We therefore need to show that TE(R) ∩ Err = ∅, by proving
that TE(R) ∩ Xi = ∅ for each i ∈ N, where Xi is the i-th approximation
of Err defined as a fixed point. Clearly the result holds for i = 0 (since
X0 = ∅), so we show that it holds for i = k + 1 given that it holds
for i = k. Suppose t ∈ TE(R) ∩ Xk+1. Then by Theorem 2 we know
t ∈ TE(P∧Q) ∩ Xk+1 (since Err ⊆ A∗P∧Q), which means that there exists
t′ ∈ (AIP∧Q)∗ such that tt′ 6∈ KE(P∧Q) and ∀o ∈ AOP∧Q · tt′o 6∈ TE(P∧Q) \ Xk.
From tt′ ∈ TE(P∧Q) ∩KE(P∧Q), we know that tt′ ∈ TE(R) ∩KE(R). Thus, there
exists o′ ∈ AOR such that tt′o′ ∈ TE(R), which means that tt′o′ ∈ TE(P∧Q).
Hence tt′o′ ∈ Xk, but this implies tt′o′ 6∈ TE(R), which is contradictory.

For the third claim, under the assumption that (TE(P ′∧Q′) \ ErrP ′∧Q′) ∩
ErrP∧Q = ∅, the observable and inconsistent trace containments follow as
before in Theorem 2, and the divergent and quiescent containments can
be shown similarly. To show that (TE(P ′∧Q′) \ ErrP ′∧Q′) ∩ ErrP∧Q = ∅,
ErrP∧Q can be approximated as for the previous claim. The proof is then a
straightforward modification, having noted that t ∈ TE(P ′∧Q′) \ErrP ′∧Q′ and
t′ ∈ (AIP∧Q)∗ implies tt′ ∈ TE(P ′∧Q′) \ ErrP ′∧Q′ . �

Example 7. In the progress-sensitive setting, we assume that a square node
in a figure indicates non-quiescent behaviour, meaning that some output must
occur. Based on this, we now consider the conjunction of Device in Figure 1
with the printing and faxing device of Figure 2, under the assumption that
the components have identical interfaces incorporating all actions. The T ,
F and K sets (prior to the removal of the Err traces) can be obtained from
the pictorial representation of the original Figure 4 (note that the D set is
empty, since there are no τ transitions).

The upper non-quiescent state in Figure 4 is problematic, because the
behaviour is quiescent in reality, since no output can be offered. Therefore,
this state must be removed (including the last output from which there is a
sequence of inputs leading to this state, according to the definition of Err),
which leads to the deletion of the immediately preceding print transition. Note
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that the circular state to the left of the upper quiescent state does not need to
be removed, since it is allowed to be quiescent. The lower non-quiescent state
is not problematic, because the component can always perform the print self-
loop. Consequently, the actual conjunction, after having removed the Err
traces, is shown in Figure 11.

3.4. Disjunction

Recall that the definition of conjunction is complicated by the fact that,
after a common trace, one of the components may be quiescent while the
other is not. It is this behaviour that forces us to prune the traces contained
in Err, which are subject to the conflicts of requirements between progress
and safety. Being the dual of conjunction, the disjunctive operator does not
share a similar fate, since the disjunction can always avoid conflicts by being
less strict on the requirements of safety and progress.

Definition 15. Let P and Q be composable for disjunction. Then P ∨lQ is
the component 〈AIP∨Q,AOP∨Q, TP∨Q, FP∨Q, DP∨Q, KP∨Q〉, where:

� DP∨Q = [(DP ∪DQ) ∩ A∗P∨Q] ∪ FP∨Q

� KP∨Q = [(KP ∪KQ) ∩ A∗P∨Q] ∪ FP∨Q.

Under progress-sensitive refinement, the algebraic properties of disjunc-
tion continue to hold.

Theorem 10. Let P and Q, and P ′ and Q′ be components composable for
disjunction. Then:

� P vlimp P ∨l Q and Q vlimp P ∨l Q

� P vlimp R and Q vlimp R implies P ∨l Q vlimp R

� P ′ vlimp P and Q′ vlimp Q implies P ′ ∨l Q′ vlimp P ∨l Q.

Proof. A straightforward extension of Theorem 3. The divergent and qui-
escent trace containment proofs are identical to showing containment of the
observable traces. �
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Figure 11: Progress-sensitive conjunction of the printing/scanning and printing/faxing
devices when the components have identical interfaces incorporating all actions
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3.5. Hiding

The removal of inputs from a component’s interface can have no effect
on the quiescence or divergence of traces. This is not true for outputs in our
setting, although there are a number of ways to handle quiescence. Therefore,
the reasoning needs careful attention, once we have considered the definition.

Definition 16. Let P be a component and let b be an action. The hiding of
b in P is a component P /l b = 〈AIP/b,AOP/b, TP/b, FP/b, DP/b, KP/b〉, where:

� DP/b =

{
DP � AP/b ∪ div if b ∈ AOP
DP ∩ A∗P/b otherwise

� KP/b =

{
KP � AP/b ∪ div if b ∈ AOP
KP ∩ A∗P/b otherwise

� div = {t � AP/b : t ∈ TP and ∀i ∈ N · tbi ∈ TP}.

According to our definition, in the case that b is an output, divergence
can be introduced after a trace t under two circumstances. The first is when
there is a sequence of b actions leading to a divergent trace, while the second
corresponds to the introduction of divergence outright, whereby t can be
extended by an arbitrary number of b actions. This makes sense, and is
common to a number of formulations of hiding (e.g., CSP [17]).

In the case of quiescence, a trace t is quiescent if t can diverge, or if there
is a sequence of b actions leading to a quiescent state. This means that, if
a component can only produce the single output b and cannot diverge after
the trace t, then it is not necessarily the case that the component becomes
quiescent on t after hiding b. This formulation of quiescence is justified since,
immediately after the trace t, the component can perform internal compu-
tation, which can affect the subsequently offered outputs. This can be seen
clearly in the operational setting (see Section 4.5), and corresponds to the
notion that quiescence should only be considered in stable states. Moreover,
this interpretation ensures that hiding is compositional under refinement.

Theorem 11. Let P and Q be components and let b be an action. If Q vimp
P, then Q /l b vimp P /l b.
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Proof. The divergent and quiescent trace containments follow by the same
reasoning as in Theorem 4 when b ∈ AIQ or b 6∈ AP ∪ AQ, and the observ-
able and inconsistent containments are entirely unchanged. When b ∈ AOP ,
suppose that t ∈ DQ/b ∩ A∗P/b. Then there exists t′ ∈ TQ ∩ A∗P such that

t′ � AQ/b = t and t′ ∈ DQ or ∀i ∈ N · t′bi ∈ TQ. In the case of the
former, it follows that t′ ∈ DE(P), and so t ∈ DE(P/b) as required, given
t′ � AQ/b = t′ � AP/b. For the latter case, t′ ∈ TQ∩A∗P implies t′ ∈ TE(P), and
moreover, t′bi ∈ TE(P) for each i ∈ N. Hence t ∈ DE(P/b). Quiescent trace
containment is similar. �

3.6. Quotient

The definition of quotient remains largely unchanged from the substitu-
tive case, except for the need to remove two types of trace:

1. Quiescent (resp. divergent) traces in the parallel composition of P and
R/P that are non-quiescent (resp. non-divergent) in R. As we are
unable to alter the traces of P , it is necessary to prune all behaviour
from (and including) the last available output inAOR/P on the projection
of these traces onto AR/P , in order to avoid reaching such conflicts.

2. Traces of R/P that introduce new quiescence conflicts, after having
repeatedly removed traces satisfying this or the previous condition.

Definition 17. Let P and R be components such that AOP ⊆ AOR. The quo-
tient of P fromR is the componentR /l P with signature 〈AIR/P ,AOR/P , TR/lP ,
FR/lP , DR/lP , KR/lP〉, where:

� XR/lP = X l
R/P \ Err for X ∈ {T, F,D,K}

� T lR/P is the largest prefix-closed and input-receptive subset of

TR/P ∩ {t ∈ A∗R/P : ∀t′ ∈ A∗R · t′ � AR/P = t and t′ � AP ∈ DP =⇒
t′ ∈ DE(R)}

� F l
R/P = T lR/P ∩ FR/P

� Dl
R/P = {t ∈ T lR/P : ∀t′ ∈ A∗R · t′ � AR/P = t and t′ � AP ∈ TP =⇒

t′ ∈ DE(R)}
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� K l
R/P = {t ∈ T lR/P : ∀t′ ∈ A∗R · t′ � AR/P = t and t′ � AP ∈ KP =⇒

t′ ∈ KE(R)}

� Err is the smallest set containing
{t ∈ T lR/P : ∃t′ ∈ (AIR/P)∗ · tt′ 6∈ K l

R/P and ∀o ∈ AOR/P · tt′o 6∈ T lR/P \
Err} · A∗R/P .

The definition of T lR/P ensures that, by the intersection with TR/P , any

trace of P ||l (R /l P) must also be in R, and that any inconsistent trace of
P ||l (R /l P) is also inconsistent in R. The additional constraint intersected
with TR/P ensures that P ||l (R /l P) only diverges when R can diverge. For
R /l P to be the least refined solution to P ||l X vlimp R, any trace in T lR/P
is:

� inconsistent, when it is not a trace of P ||l (R /l P) or is inconsistent
in R; is

� divergent, when it is not a trace of P ||l (R /l P) or is divergent in R;
and is

� quiescent, when it is not a trace of P ||l (R /l P), is not quiescent in
P ||l (R /l P) (due to P not being quiescent) or is quiescent in R.

The resulting trace sets X l
R/P for X ∈ {T, F,D,K} do not form a com-

ponent, since it does not follow that {t ∈ T lR/P : @o ∈ AOR/P · to ∈ T lR/P} is

a subset of K l
R/P . Err is defined to capture such conflicts, which are subse-

quently removed from the quotient. As the removal of traces can introduce
quiescence, the set is defined as a fixed point. Due to the possibility of Err
capturing all traces in T lR/P , it follows that (as for conjunction) the quotient
of two realisable components may not be realisable, and this can only be
determined by examining the behaviours of P and R. However, the quotient
is always defined when AOP ⊆ AOR.

Theorem 12. Let P, Q and R be components. Then P ||l Q vlimp R iff:

� R /l P is defined (i.e., AOP ⊆ AOR)

� P ||l (R /l P) vlimp R

� AIQ = AIR/P implies Q vlimp R /l P.
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Proof. The reasoning for the first claim is identical to that in Theorem 5.
For the second claim, inconsistent and observable trace containment follows
by Theorem 5, having noticed that FR/lP ⊆ FR/P and TR/lP ⊆ TR/P . For
divergent traces, suppose t ∈ (DP||l(R/lP) \ FE(P||l(R/lP))) ∩ A

∗
R. Then either

t � AP ∈ DP and t � AR/P ∈ TR/lP , or t � AP ∈ TP and t � AR/P ∈ DR/lP .
For the former, it follows by the definition of T lR/P that t ∈ DE(R), while, for

the latter case, it follows by the definition ofDl
R/P that t ∈ DE(R), as required.

For the quiescent containment, suppose t ∈ (KP||l(R/lP) \DE(P||l(R/lP)))∩A
∗
R.

Therefore, t � AP ∈ KP and t � AR/P ∈ KR/lP . By the definition of K l
R/P it

follows that t ∈ KE(R) as required.
For the third claim, we first show that XE(Q) ⊆ X l

E(R/P) for each X ∈
{T, F,D,K} (noting that X l

E(R/P) = X l
R/P), and thereafter show that TE(Q)∩

Err = ∅, from which it can be inferred that XE(Q) ⊆ XR/lP . First note that,
if t ∈ TE(Q), then certainly t ∈ A∗R/P , since AIQ = AIR/P and R /l P has the
largest possible set of outputs. Now begin by supposing that t ∈ FE(Q). Then
there exists a prefix t′ of t and t′′ ∈ (AOQ)∗ such that t′t′′ ∈ FQ. Note that
t′t′′ ∈ A∗R/P . By Theorem 5, it follows that t′t′′ ∈ FR/P ∩ TR/P . Therefore,

we must show that t′t′′ ∈ T lR/P . So let t′′′ ∈ A∗R be an arbitrary trace such
that t′′′ � AR/P = t′t′′. If t′′′ � AP ∈ DP , then t′′′ ∈ DE(R) as required,
since t′′′ ∈ DP||lQ and P ||l Q vlimp R. Thus t′t′′ ∈ T lR/P , unless if the trace

is removed due to non prefix-closure/input-receptiveness. But if either of
these do not hold, then it can be shown that t′t′′ 6∈ TE(Q). Consequently,
t ∈ F l

E(R/P) as required. Now suppose that t ∈ (DQ \ FE(Q)). Then, for any
t′′′ ∈ A∗R such that t′′′ � AR/P = t, if t′′′ � AP ∈ TP , then t′′′ ∈ DP||lQ, which
by P ||l Q vlimp R yields t′′′ ∈ DE(R). Hence t ∈ Dl

R/P as required. Similarly,

if t ∈ KQ \ DE(Q), then for any t′′′ ∈ A∗R such that t′′′ � AR/P = t, it holds
that, if t′′′ � AP ∈ KP , then t′′′ ∈ KE(R), since P ||l Q vlimp R and it must
be the case that t′′′ ∈ KP||lQ. Thus t ∈ K l

R/P as required.
For the final part of the third claim, in order to demonstrate that TE(Q)∩

Err = ∅, we show TE(Q) ∩ Xi = ∅ for each i ∈ N, where Xi is the i-th
iteration of finding the fixed point defining Err. When i = 0, Xi = ∅, so
the result trivially holds. Now suppose i = k + 1, and assume that the re-
sult holds for i = k. If t ∈ TE(Q) ∩ Xk+1, then we know t ∈ T lR/P ∩ Xk+1

by the previous part. Consequently, there exists t′ ∈ (AIR/P)∗ such that

tt′ 6∈ K l
R/P and @o ∈ AOR/P · tt′o ∈ T lR/P \ Xk. Note that tt′ ∈ TE(Q), and

by the previous part tt′ 6∈ KQ as tt′ 6∈ K l
R/P . Hence, there exists o′ ∈ AOQ
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such that tt′o′ ∈ TE(Q), which implies tt′o′ ∈ T lR/P . It therefore follows that

tt′o′ ∈ Xk so that tt′o′ ∈ T lR/P \Xk holds. But by the induction hypothesis,
this allows us to conclude that tt′o′ 6∈ TE(Q), which is contradictory. Thus
TE(Q) ∩Xk+1 = ∅ and so TE(Q) ∩ Err = ∅. �

Theorem 13. Let P, Q and R be components such that Q vlimp P.

� If Q /l R is defined and AIR ∩ AOP = ∅, then Q /l R vlimp P /l R.

� If R /l P is defined and (AIQ\AIP)∩AR = ∅, then R /l Q wlimp R /l P.

Proof. The proof is the same as in Theorem 6 when using Theorems 8 and 12
in place of Theorems 1 and 5, and Lemma 5 in place of Lemma 1. �

Example 8. To demonstrate quotient in the quiescent framework, suppose
that a user wishes to interact with BrokenDevice (Figure 6), but without ever
reaching a quiescent state, i.e., a point from which the system as a whole
is blocked waiting for input. Note that User2 (as shown in Figure 10) is
not a suitable candidate, since, after placing BrokenDevice in scan mode and
sending job details, the system becomes blocked due to BrokenDevice never
offering to scan. (Note that the allocation of quiescent and non-quiescent
behaviours in BrokenDevice and User2 has been added arbitrarily, since the
quiescent conditions on BrokenDevice do not follow from those on Device, and
similarly for User2.)

We generate a satisfying user as User3 = ErrorFree /l BrokenDevice, the
result of which is shown in Figure 12. ErrorFree is the component having
chaotic behaviour over all actions, which we treat as outputs (Figure 9).
As ErrorFree does not have inconsistencies, and moreover is non-quiescent
(since the single node is a square), it follows that User3 ||l BrokenDevice is
both inconsistency free and does not become quiescent.

The quotient is computed in two phases: first the computation of the T , F ,
D and K sets is performed, after which traces in Err are removed. The first
phase generates a component equal to BrokenDevice, but with inputs and out-
puts interchanged, along with circular and square nodes. In the second phase,
we see that the trace 〈scan mode, job details〉 is quiescent, but is required to
make progress. We therefore remove the trace 〈scan mode, job details〉 from
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job details! print?

job details!

print mode!
print?

Figure 12: Component representing User3

the T , F , D and K sets. But now the trace 〈scan mode〉 becomes quies-
cent, so we must also remove this trace. The empty trace ε is not quiescent,
since print mode can be performed. Consequently, the behaviour of User3
must never place the BrokenDevice into scan mode, since any trace exhibiting
scan mode is contained within Err. This is shown in Figure 12.

As a variant of the example, if BrokenDevice had all circular nodes, then
the T , F and D sets of the quotient would remain as in BrokenDevice, having
interchanged inputs and outputs, and the K set would be equal to F , meaning
all nodes are squares. But then the trace 〈print mode, job details〉 would be
quiescent, as is the trace 〈scan mode, job details〉, so these traces would be
included within the Err and subsequently removed. Consequently, all states
would have to be pruned, meaning that no safe user, ensuring progress, can
exist.

4. Operational Theory of Components

In this section, we outline an operational representation for components,
and demonstrate the relationship between these operational models and the
trace-based models of Sections 2 and 3. From this, we supply operational
definitions for the compositional operators of our theory.

Definition 18. An operational component P is a tuple 〈AIP,AOP , SP,−→P,
s0P, FP〉, where:

� AIP is a finite set of input actions

� AOP is a finite set of output actions, disjoint from AIP

� SP is a finite set of states

� −→P⊆ SP × (AP ∪ {τ})× SP is the transition relation
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� s0P ∈ SP is the designated initial state

� FP ⊆ SP is the set of inconsistent states.

The transition relation satisfies the properties that: (i) ⊥P
a−→P ⊥P for

each a ∈ AP ∪ {τ} and ⊥P ∈ FP; and (ii) for each s ∈ SP and a ∈ AIP there

exists s′ ∈ SP such that s
a−→P s

′. These conditions ensure that all states are
input-receptive, and that the inconsistent states are chaotic.

If a component does not have an initial state we say that it is unrealisable,
and is realisable otherwise.

It is important that the set of states SP is finite, so that divergence of a
state can be determined in finite time. This allows us to decide which inputs
are safe, and which outputs may eventually be issued, for a particular state.

Notation. A relation
ε

=⇒P⊆ SP × SP is defined by p
ε

=⇒P p
′ iff p(

τ−→P)∗p′.
Generalising

ε
=⇒P for visible actions a ∈ A, we obtain p

a
=⇒|P p′ iff there

exists pa such that p
ε

=⇒P pa
a−→P p

′, and p
a

=⇒P p
′ iff there exists pa such

that p
a

=⇒|P pa
ε

=⇒P p
′. The extension to words w = a1 . . . an is defined in

the natural way by p
w

=⇒P p
′ iff p

a1=⇒P . . .
an=⇒P p

′.
Henceforth, let P, Q and R be operational components with signatures

〈AIP,AOP , SP,−→P, s
0
P, FP〉, 〈AIQ,AOQ, SQ,−→Q, s

0
Q, FQ〉 and 〈AIR,AOR , SR,−→R,

s0R, FR〉 respectively.

4.1. Refinement

We now give semantic mappings from operational models to trace-based
models that preserve both substitutive and progress-sensitive behaviour.

Definition 19. Let P be an operational component. Then JPK is the trace-

based component 〈AIP,AOP , TJPK, FJPK〉, where TJPK = {t : ∃s ∈ SP · s0P
t

=⇒P s}
and FJPK = {t : ∃s ∈ FP · s0P

t
=⇒P s}.

The trace-based representation of an operational model simply records
the component’s interface, and its sets of observable and inconsistent traces.

Definition 20. Let P be an operational component. Then JPKl is the progress-
sensitive trace-based component 〈AIP,AOP , TJPK, FJPK, DJPKl , KJPKl〉, where:

� DJPKl = {t : ∃s · s0P
t

=⇒P s and s can diverge}
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� KJPKl = {t : ∃s · s0P
t

=⇒P s and @o ∈ AOP ∪ {τ} · s
o−→P} ∪DJPKl.

The progress-sensitive trace-based representation of an operational model
includes the constituents of a standard trace-based component, together with
a set of extended divergent traces and a set of extended quiescent traces. The
inclusion of inconsistent traces within the divergent and quiescent trace sets is
a condition of being a progress-sensitive component (cf. Definition 11). Note
that DJPKl includes all inconsistent traces, since every inconsistent state is
divergent. Moreover, only stable states (without outgoing τ transitions) are
able to be quiescent (although the extended quiescent trace set includes diver-
gences). This has similarities with the stable-failures and failures-divergences
models of CSP [17].

Based on these mappings to trace-based models, the justification of which
is presented in Section 4.7, we can formulate definitions of refinement on
operational models.

Definition 21. Let P and Q be operational components. Then Q is a sub-
stitutable refinement of P, written Q vop P, iff JQK vimp JPK. Similarly, Q
is a substitutable and progress-sensitive refinement of P, written Q vlop P, iff
JQKl vlimp JPKl.

As in the trace-based setting, we can define the safe representation of
an operational component that becomes inconsistent as soon as the original
component has the potential to become inconsistent under its own control.

Definition 22. The safe representation of the operational component P is
itself an operational component E(P) = 〈AIP,AOP , SP,−→E(P), FE(P)〉, where:

� FE(P) is the smallest set containing FP and satisfying the property: if

s
a−→P s

′ with a ∈ AOP ∪ {τ} and s′ ∈ FE(P), then s ∈ FE(P).

� −→E(P) is the smallest set containing −→P that is also chaotic on all
states contained in FE(P).

We now present operational definitions for all the operators considered in
the trace-based section with respect to both the substitutive and progress-
sensitive refinement preorders. For each operator, we make explicit the re-
lationship with the trace-based definition. This allows the compositionality
results from the trace-based sections to carry across to this operational set-
ting.
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4.2. Parallel Composition

We give a single operational definition of parallel composition applicable
to both the substitutive and progress-sensitive refinements.

Definition 23. Let P and Q be components composable for parallel. Then
the parallel composition of P and Q is the component P || Q = P ||l Q =
〈AI ,AO, S,−→, s0, F 〉, where:

� AI = (AIP ∪ AIQ) \ (AOP ∪ AOQ)

� AO = AOP ∪ AOQ

� S = SP × SQ

� −→ is the smallest relation respecting the chaotic nature of inconsistent
states and satisfying the following rules:

P1. If p
a−→P p

′ with a ∈ AP \ AQ ∪ {τ}, then (p, q)
a−→ (p′, q)

P2. If q
a−→Q q

′ with a ∈ AQ \ AP ∪ {τ}, then (p, q)
a−→ (p, q′)

P3. If p
a−→P p′ and q

a−→Q q′ with a ∈ AP ∩ AQ, then (p, q)
a−→

(p′, q′).

� s0 = (s0P, s
0
Q)

� F = (SP × FQ) ∪ (FP × SQ).

Conditions P1 to P3 ensure that the parallel composition of components
interleaves on independent actions and synchronises on common actions. For
P3, given the parallel composability constraint, synchronisation can take
place between an output and an input, or two inputs.

The following theorem shows the relationship between parallel composi-
tion on operational and trace-based components. Consequently, the mono-
tonicity results from the trace-based sections are applicable here.

Theorem 14. Let P and Q be components composable for parallel composi-
tion. Then JP || QK = JPK || JQK and JP ||l QKl = JPKl ||l JQKl.

Proof. Trivial, as the trace-based definition of parallel composition inter-
leaves on independent actions and synchronises on common actions. This is
precisely captured by the operational definition. �
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4.3. Conjunction

We now formulate an operational definition of conjunction. As this opera-
tor corresponds to the meet of the refinement preorder, its definition depends
on the refinement type we are considering. For substitutive refinement, we
have a straightforward definition that considers the enabled actions in any
pair of states. When considering the progress-sensitive refinement, we first
apply the substitutive definition, but then have to prune bad states that
violate progress. These bad states are defined inductively.

Definition 24. Let P and Q be components composable for conjunction such
that, without loss of generality, ⊥P ∈ FP and ⊥Q ∈ FQ. Then the substitutive
conjunction of P and Q is a component P ∧ Q = 〈AIP ∪ AIQ,AOP ∩ AOQ, S,
−→, s0, F 〉, where:

� S = SE(P) × SE(Q)

� −→ is the smallest relation satisfying the following rules:

C1. If a ∈ AP ∩ AQ, p
a

=⇒|E(P) p′ and q
a

=⇒|E(Q) q
′, then (p, q)

a−→
(p′, q′)

C2. If a ∈ AIP \ AIQ and p
a

=⇒|E(P) p′, then (p, q)
a−→ (p′,⊥Q)

C3. If a ∈ AIQ \ AIP and q
a

=⇒|E(Q) q
′, then (p, q)

a−→ (⊥P, q
′)

C4. If p does not diverge and p
τ−→E(P) p′, then (p, q)

τ−→ (p′, q)

C5. If q does not diverge and q
τ−→E(Q) q

′, then (p, q)
τ−→ (p, q′)

C6. If p diverges and q diverges, then (p, q)
τ−→ (p, q).

� s0 = (s0P, s
0
Q)

� F = FE(P) × FE(Q).

In contrast to the definition in [6], here we give a more elaborate handling
of τ transitions in order to use the same base definition for conjunction under
substitutivity and progress. The original definition permitted τ transitions
to proceed independently, which allows the conjunction to diverge if at least
one of the components can diverge. However, this is not acceptable under
our progress-sensitive refinement preorder. Instead, we must only allow the
conjunction to diverge on occasions when both components are willing to
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diverge. This is achieved by condition C6 and the fact that the remaining
conditions work on the τ -closure of the components.

We now inductively define the pruned conjunction of two components,
which is used for defining conjunction under the progress-sensitive preorder.

Definition 25. Let P and Q be components composable for conjunction. The
progress-sensitive conjunction of P and Q, denoted P ∧l Q, is obtained from
P ∧ Q by pruning all states in X, the smallest set defined inductively by:

� If p is stable, p
o−→E(P) for some o ∈ AOP , and @a ∈ AOP∧Q · (p, q)

a−→
(p′, q′) with (p′, q′) 6∈ X, then (p, q) ∈ X

� If q is stable, q
o−→E(Q) for some o ∈ AOQ, and @a ∈ AOP∧Q · (p, q)

a−→
(p′, q′) with (p′, q′) 6∈ X, then (p, q) ∈ X

� If (p, q)
a−→ (p′, q′) for a ∈ AIP∧Q implies (p′, q′) ∈ X, then (p, q) ∈ X.

Note that P ∧l Q may prune the initial state in P ∧ Q, in which case we
say that P ∧l Q is unrealisable. As for parallel, there is a correspondence
between conjunction at the operational and trace-based levels.

Theorem 15. Let P and Q be operational components composable for con-
junction. Then JP ∧ QK = JPK ∧ JQK and JP ∧l QKl = JPKl ∧l JQKl.

Proof. Showing JP ∧ QK = JPK ∧ JQK is trivial, since if t ∈ TJP∧QK, then

(s0P, s
0
Q)

t
=⇒P∧Q (p, q). If s0P

t
=⇒P p, then t ∈ TJPK, while if s0P 6

t
=⇒P p, then

t ∈ TJPK ↑ AIQ. Similarly for Q. Either way, t ∈ TJPK∧JQK. The other direction
is similar, as is the inconsistent trace containment.

To show that JP ∧l QKl = JPKl ∧l JQKl, it is sufficient to prove that

t ∈ TJP∧QK implies: t ∈ Err iff ∀p, q · (s0P, s0Q)
t

=⇒P∧Q (p, q) implies (p, q) ∈ X.
This can be demonstrated in a straightforward manner using an inductive
argument by approximating Err and X, which are both obtained as fixed
points. �

4.4. Disjunction

As the trace-based definition of disjunction does not need to prune error
traces, the operational definition of disjunction is applicable to both the
substitutive and progress-sensitive refinements.
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Definition 26. Let P and Q be components composable for disjunction. Then
the disjunction of P and Q is the component P∨Q = P∨lQ = 〈AIP∩AIQ,AOP ∪
AOQ, S,−→, s0, F 〉, where:

� S = {s0} ∪ SP ∪ SQ, for s0 6∈ SP, SQ

� −→ is the smallest relation respecting the chaotic nature of inconsis-
tent states that contains −→P and −→Q restricted to AP∨Q, and the
transitions s0

τ−→ s0P and s0
τ−→ s0Q

� F = FP ∪ FQ.

A correspondence can be shown between the two forms of operational
disjunction and the trace-based versions.

Theorem 16. Let P and Q be components composable for disjunction. Then
JP ∨ QK = JPK ∨ JQK and JP ∨l QKl = JPKl ∨l JQKl.

Proof. Obvious given the definition of disjunction in both the substitutive
and progress-sensitive trace-based frameworks. �

4.5. Hiding

Since hiding is not concerned with the refinement preorder, it has a com-
mon definition for both the substitutive and progress frameworks.

Definition 27. Let P be a component and let b be an action. The hiding of b
from P is the component P/b = P /l b = 〈AIP \ {b},AOP \ {b}, SP,−→, s0P, FP〉,
where:

H1. If p
a−→P p

′ and a 6= b, then p
a−→ p′

H2. If p
b−→P p

′ and b ∈ AOP , then p
τ−→ p′.

As for all of the previously considered operators, there is a natural cor-
respondence between hiding on operational and trace-based models.

Theorem 17. Let P be a component, and let b be an arbitrary action. Then
JP/bK = JPK/b and JP /l bKl = JPKl /l b.
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Proof. Trivial given the trace-based definition of hiding. �

4.6. Quotient

The operational definition of quotient needs to consider all resolutions
of non-determinism in the components to be composed. For simplicity, we
therefore restrict to deterministic components without τ -transitions. We be-
gin by giving an operational definition of quotient for which we must prune
a number of states that violate inconsistency containment on the substitu-
tive refinement preorder. We then extend the pruning so that it removes
violations of the quiescence containment on the progress-sensitive refinement
relation. To improve the clarity of our definition, we further assume that the
quotient can observe all of R’s actions.

Definition 28. Let P and R be deterministic components such that AOP ⊆
AOR and, without loss of generality, ⊥R ∈ FR. Then the quotient is the com-
ponent R/P = 〈AIR/P,AOR/P, SR/P,−→, s0, FR/P〉, where:

� AIR/P = AIR ∪ AOP

� AOR/P = AOR \ AOP

� SR/P = (SR × SP) \X

� −→ is the smallest relation respecting the chaotic nature of inconsistent
states and satisfying the following rules:

Q1. If a ∈ AR/P \ AP and r
a−→R r

′, then (r, p)
a−→ (r′, p)

Q2. If a ∈ AR/P ∩ AP, r
a−→R r

′ and p
a−→P p

′, then (r, p)
a−→ (r′, p′)

Q3. If a ∈ AR/P ∩ AP and p 6 a−→P, then (r, p)
a−→ (⊥R, p)

� s0 = (s0R, s
0
P)

� FR/P = FE(R) × SP

� X ⊆ SR × SP is the smallest set satisfying:

X1. If r 6∈ FE(R) and p ∈ FP, then (r, p) ∈ X

X2. If a ∈ AOR ∩ AOP , r 6 a−→R and p
a−→P, then (r, p) ∈ X
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X3. If (r, p)
a−→ (r′, p′), a ∈ AR \ AOR/P and (r′, p′) ∈ X, then (r, p) ∈

X.

Conditions Q1 and Q2 essentially correspond to the parallel composition
of P and R, whereby the two components synchronise on common actions, and
interleave on the independent actions of R. Independent actions of P must be
inputs, so they are irrelevant to the quotient, since an environment safe for
R will never issue them. Condition Q3 states that the quotient can become
inconsistent on an input that is never issued by P (meaning the action is an
output of P). Conditions X1 and X2 capture situations where substitutivity
would be violated, while X3 propagates the violation backwards to a point
where the quotient can avoid it, by not producing an output from which the
environment can, under its own control, reach the violation.

As quotient is the adjoint of parallel composition under the refinement re-
lation, we must give an alternative characterisation for the progress-sensitive
framework. We do this by removing states that introduce quiescence errors
in the definition above.

Definition 29. Let P and R be deterministic components such that AOP ⊆
AOR . Then the progress-sensitive quotient is the component R /l P obtained
from R/P by removing states contained within the smallest X-set defined by:

� If ∃o ∈ AOR ·r
o−→R, @a ∈ AOP ·p

a−→P and @b ∈ AOR/P·(r, p)
b−→R/P (r′, p′)

with (r′, p′) 6∈ X, then (r, p) ∈ X

� If (r, p)
a−→ (r′, p′), a ∈ AR \ AOR/P and (r′, p′) ∈ X, then (r, p) ∈ X.

As usual, the operational definitions are closely related to the trace-based
definitions.

Theorem 18. Let P and R be deterministic components such that AOP ⊆ AOR .
Then JR/PK = JRK/JPK and JR /l PKl = JRKl /l JPKl.

Proof. First show that t ∈ TJR/PK ⇐⇒ t ∈ TJRK/JPK and t ∈ FJR/PK ⇐⇒ t ∈
FJRK/JPK by induction on the length of the trace t. We use L(t) as shorthand for
the predicate t � AP ∈ FJPK =⇒ t ∈ FJE(R)K and t � AP ∈ TJPK =⇒ t ∈ TJRK.

Case t ≡ ε. Suppose that ε ∈ FJRK/JPK. Then by Definition 9, ε ∈ FE(JRK) or
ε 6∈ TJPK. If the former holds, then s0R = ⊥E(R), hence s0R/s

0
P = ⊥R/P, meaning
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ε ∈ FJR/PK. If instead ε 6∈ TJPK, then s0P is not defined, so s0R/P = ⊥R/P,
meaning ε ∈ FJR/PK.

Now suppose that ε ∈ FJR/PK. Then s0R/P = ⊥R/P, so P is unrealisable or

s0R = ⊥E(R). If the former holds, then ε 6∈ TJPK, hence ε ∈ FJRK/JPK. If instead
s0R = ⊥E(R), then ε ∈ FE(JRK), hence ε ∈ FJRK/JPK.

Suppose that ε ∈ TJRK/JPK. Then for all t′ ∈ (AR \ AOR/P)∗, L(t′) holds. So

s0R/P is defined and s0R/P
t′

=⇒R/P sR/sP implies sR/sP 6∈ F . Hence ε ∈ TJR/PK.

Now suppose that ε ∈ TJR/PK. Then for all t′ ∈ (AR\AOR/P)∗, if s0R/s
0
P

t′
=⇒R/P

sR/sP, then sR/sP 6∈ F . Hence t′ � AP 6∈ FJPK or t′ ∈ FE(R) since sR/sP 6∈ F ,

and moreover, t′ ∈ TE(R) as s0R
t′

=⇒R sR. Hence L(t′) holds. If s0R/s
0
P 6

t′
=⇒R/P,

then it follows that s0P 6
t′�AP=⇒P sP, since if s0P

t′�AP=⇒P sP and s0R 6
t′

=⇒R sR then it
must be because P makes an output move that R cannot match. But then
the previous composite state would be in F , which is contradictory. Hence
ε ∈ TJRK/JPK.

Case t ≡ t′o with o ∈ AOR/P. Suppose that t′o ∈ FJRK/JPK. Then t′ ∈ FJRK/JPK,

so by the induction hypothesis we derive t′ ∈ FJR/PK. Therefore, s0R/P
t′

=⇒R/P

⊥R/P and so s0R/P
t′o

=⇒R/P ⊥R/P. Thus, t′o ∈ FJR/PK.

Now suppose that t′o ∈ FJR/PK. Then s0R/P
t′o

=⇒R/P ⊥R/P. By the definition

of ⊥R/P (defined in terms of ⊥E(R)), it follows that s0R/P
t′

=⇒R/P ⊥R/P, and so
t′ ∈ FJR/PK. By the induction hypothesis, it follows that t′ ∈ FJRK/JPK. Hence,
t′o ∈ FJRK/JPK.

Now suppose that t′o ∈ TJRK/JPK. Then by the induction hypothesis we
know that t′ ∈ TJR/PK. Moreover, for all t′′ ∈ (AR \ AOR/P)∗ it follows that

L(t′ot′′) holds. So, if s0R/s
0
P

t′ot′′
=⇒R/P sR/sP, then certainly sR/sP 6∈ F . Fur-

thermore, s0R/s
0
P

t′o
=⇒R/P s

′
R/s

′
P for some s′R/s

′
P, since s0P

t′
=⇒P s

′′
P for some s′′P

as o 6∈ AP or o ∈ AIP.
Finally, suppose that t′o ∈ TJR/PK. Then by the induction hypothesis, we

know that t′ ∈ TJRK/JPK. As s0R/s
0
P

t′o
=⇒R/P sR/sP for some state sR/sP, it follows

that sR/sP 6∈ F . Therefore, for any state s′R/s
′
P such that s0R/s

0
P
t′ot′′
=⇒R/P s

′
R/s

′
P

with t′′ ∈ (AR \ AOR/P)∗ we know that s′R/s
′
P 6∈ F . Consequently, if t′ot′′ �

AP ∈ FP then t′ot′′ ∈ FE(R), and if t′ot′′ � AP ∈ TP, then t′ot′′ ∈ TE(R). This
means that L(t′ot′′) holds, and so we derive t′o ∈ TJRK/JPK.
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Case t ≡ t′i with i ∈ AIR/P. Suppose that t′i ∈ FJRK/JPK. Then t′i � AP 6∈ TP
or t′i ∈ FE(R). By the induction hypothesis we know that t′ ∈ TJR/PK, which
by input receptiveness of components, implies that t′i ∈ TJR/PK. Now, if
t′i � AP 6∈ TP, then t′ � AP 6∈ TP when a 6∈ AOP . Hence t′ ∈ FJRK/JPK, which
by the induction hypothesis gives t′ ∈ FJR/PK, and so t′i ∈ FJR/PK. When
a ∈ AOP , condition Q3 ensures that t′i ∈ FJR/PK. If instead t′i ∈ FE(R), then as

t′i ∈ TJR/PK, we know s0R/s
0
P

t′i
=⇒R/P sR/sP. But t′i ∈ FE(R) implies sR = ⊥E(R),

hence sR/sP = ⊥R/P, meaning t′i ∈ FJR/PK.
Now suppose that t′i ∈ FJR/PK. By the induction hypothesis and input

receptiveness of components it follows that t′i ∈ TJRK/JPK. As t′i ∈ FJR/PK, it

follows that s0R/s
0
P

t′i
=⇒R/P ⊥R/P. But ⊥R/P = ⊥E(R)/sP for some sP. Hence,

t′i ∈ FE(R), which implies t′i ∈ FJRK/JPK.
Showing that t′i ∈ TJRK/JPK iff t′i ∈ TJR/PK follows by the induction hypoth-

esis and input receptiveness of components.

For the liveness equivalence, it is sufficient to show that t ∈ ErrJRK/JPK iff
t ∈ FR/P. This can be demonstrated in a straightforward manner using an
inductive argument on the approximations of ErrJRK/JPK and FR/P. Note that
the definition of ErrJRK/JPK can be greatly simplified, as we assumeAR = AR/P

along with determinism, the latter of which implies divergence freedom. �

4.7. Full Abstraction

The close correspondence between the operational and trace-based models
allows us to present a full abstraction result for the operational framework.
This relies on showing that operational refinement vop given in terms of trace
containment can be equated with contextual checking of inconsistency in the
operational models.

Definition 30. Let P and Q be operational components. Then Q is said to
be inconsistency substitutable for P, denoted by Q vFop P, iff an inconsistent
state reachable from s0Q by hidden and output actions implies there is an
inconsistent state reachable from s0P by hidden and output actions.

From this, Q vop P can be characterised by vFop when considering the
environments that Q and P can interact with. This shows that vop is the
weakest preorder preserving substitutivity.
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Theorem 19. Let P and Q be operational components such that AIP ⊆ AIQ,
AOQ ⊆ AOP and AIQ ∩ AOP = ∅. Then:

Q vop P iff ∀R · AOR = AIP and AIR = AOQ =⇒ Q || R vFop P || R.

Proof. A straightforward modification to Theorem 7. �

Based on this result, it is straightforward to show full abstraction.

Corollary 2. Operational equivalence ≡op is fully abstract for parallel com-
position, conjunction, disjunction, hiding and quotient with respect to obser-
vational equivalence of inconsistency.

Proof. Same reasoning as in Corollary 1 (with updated references). �

5. On the Relationship with Interface Automata

In this section, we relate our operational theory of components to the
interface automata defined in [11]. We show that the theory of interface
automata can be embedded within our framework, and demonstrate that the
alternating refinement relation is stronger than our substitutive preorder.

5.1. Interface Automata

We recall a general definition of interface automata [11], which, unlike the
restrictions imposed in [12], permits hidden transitions and does not insist
on determinism of inputs. Thus, an interface automaton can be thought of
as a finite-state machine with transitions labelled by input, output or τ , and
does not require input enabledness in each state.

Definition 31. An interface automaton P is a tuple 〈SP,AIP,AOP ,−→P, s
0
P〉,

where:

� SP is a finite set of states

� AIP is a finite set of input actions

� AOP is a finite set of output actions, disjoint from AIP

� −→P⊆ SP × (AP ∪ {τ})× SP is the transition relation
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� s0P ∈ SP is the designated initial state.

Substitutive refinement of interface automata is given by means of alter-
nating simulation [2], with a covariant inclusion on inputs and contravariant
inclusion on outputs. Again, we reproduce the general definition from [11],
which is free of unnecessary restrictions. First, we introduce two shorthands
for simplifying the definition:

� ActIP(p) , {a ∈ AIP : p
ε

=⇒P p
′ implies p′

a−→P}

� ActOP (p) , {a ∈ AOP : p
ε

=⇒P
a−→P}.

The set ActIP(p) denotes the input actions that may safely be issued when
P is in state p. Any action in ActIP(p) must therefore be enabled in any
state reachable from p by hidden transitions. On the other hand, ActOP (p)
represents the output actions of P that the environment must be willing
to accept. Thus, this set is the collection of outputs enabled in any state
reachable from p by hidden transitions. We now give the formal definition of
alternating refinement.

Definition 32. Interface automaton Q is said to be an alternating refine-
ment of P, written Q vIA P, just if AIP ⊆ AIQ, AOQ ⊆ AOP , and s0Q R s0P, where
R ⊆ SQ × SP is an alternating simulation satisfying the property: if q R p,
then:

AS1. ActIP(p) ⊆ ActIQ(q)

AS2. ActOQ(q) ⊆ ActOP (p)

AS3. For each a ∈ ActIP(p) ∪ ActOQ(q) and for each q
a

=⇒|Q q′, there exists

p
a

=⇒|P p′ such that q′ R p′.

Conditions AS1 and AS2 require that q can safely accept any input that
p is willing to accept, while q will only produce a subset of outputs that p
can produce. Condition AS3 propagates this constraint on to the common
successor states.
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5.1.1. Relation with Operational Components

We now indicate how to map interface automata to the operational com-
ponents as defined in Section 4. The mapping must add additional transitions
for the non-enabled inputs to a special inconsistent state ⊥.

Definition 33. Let P be an interface automaton. Then the corresponding
operational component is JPKIA = 〈AIP,AOP , SP ∪ {⊥},−→, s0P, {⊥}〉, where:

−→ = −→P ∪ {(s, a,⊥) : s ∈ SP, a ∈ AIP and @s′ · s a−→P s
′}

∪ {(⊥, a,⊥) : a ∈ {τ} ∪ AP}.

Given this definition, it should be straightforward to see that interface
automata are a subclass of our operational components, in particular, the
components that can only become inconsistent by seeing a bad input, and
that are not permitted to be inconsistent up front.

The following theorem shows the relationship between alternating refine-
ment and the substitutive preorder of our modelling framework.

Theorem 20. Let P and Q be interface automata. Then Q vIA P implies
JQKIA vop JPKIA.

Proof. Begin by supposing Q vIA P and let t be the smallest trace such
that t ∈ FE(JQKIA) ∩ A∗P and t 6∈ FE(JPKIA). By definition of interface au-
tomata, it follows that t ∈ FJQKIA and t 6∈ FJPKIA as the automata can only
be inconsistent on seeing a bad input. Moreover, as the automata cannot be
inconsistent up front, it follows that t ≡ t′a with a ∈ AIP. By minimality of t,
we know t′ ∈ TJPKIA \ FJPKIA and also that t′ ∈ TJQKIA \ FJQKIA . Consequently,

for each state q′ such that s0Q
t′

=⇒Q q′, it follows that there exists p′ such

that s0P
t′

=⇒P p′, where at each intermediate state AS1 and AS2 hold, and
q′ R p′ for an alternating simulation R. For at least one of these q′, it follows
that q′

ε
=⇒Q 6

a−→Q (given t′a ∈ FJQKIA). However, as t′a ∈ TJPKIA \ FJPKIA it
follows that a ∈ ActIP(p′). Hence AS1 is violated, meaning q′ 6R p′, which is
contradictory. Therefore, FJQKIA ∩ A∗P ⊆ FJPKIA as required.

Now suppose that Q vIA P and let t be the smallest trace such that
t ∈ (TJQKIA \ FJQKIA) ∩ A∗P and t 6∈ TJPKIA . It therefore follows that t = t′a
with a ∈ AOQ, and t ∈ (AP ∩ AQ)∗. Consequently, for each state q′ such

that s0Q
t′

=⇒Q q′, it follows that there exists p′ such that s0P
t′

=⇒P p
′, where

at each intermediate state AS1 and AS2 hold, and q′ R p′ for an alternating
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Figure 13: Interface automata distinguishing alternating simulation and vimp.

simulation R. For at least one of these q′, it follows that q′
ε

=⇒Q
a−→Q, hence

a ∈ ActOQ(q′). However, as t′a 6∈ TJPKIA it follows that a 6∈ ActOP (p′) for any p′

reachable under t′. Hence AS2 is violated, meaning q′ 6R p′, which again is
contradictory. As a result, TJQKIA ∩ A∗P ⊆ TJPKIA . �

Being a branching-time relation, alternating refinement is too strong for
substitutivity. This is demonstrated by the interface automata in Figure 13.
The automaton on the left is an alternating refinement of the one on the right,
but not vice-versa, whereas the component representations of the automata
are substitutively equivalent in our framework under ≡op. Consequently, it
is not the case in Theorem 20 that JQKIA vop JPKIA implies Q vIA P.

The existence of a matching transition in condition AS3 is the cause of
this asymmetry in the expressive power of alternating refinement and our
substitutive preorder. If we restrict to deterministic interface automata, the
choice of successor is determined, and so the two refinements coincide.

Theorem 21. Let P and Q be deterministic interface automata. Then Q vIA
P iff JQKIA vop JPKIA.

Proof. Based on Theorem 20, alternating simulation implies our trace-based
refinement. So suppose Q 6vIA P. Then there exists a smallest trace t such

that s0Q
t

=⇒Q q′, but no state p′ such that s0P
t

=⇒P p′ and q′ R p′. Note
that by determinism q′ is uniquely defined, as is p′ if it exists. If p′ exists,
then q′ 6R p′ meaning either AS1 or AS2 is violated. If AS1 is violated, then
q′ 6 a−→Q while p′

a−→P for some a ∈ AIP. Hence ta ∈ FJQKIA while ta 6∈ FJPKIA ,

which implies JQKIA 6vop JPKIA. Instead, if AS2 is violated, then q′
a−→Q

while p′ 6 a−→P for some a ∈ AOQ. Hence ta ∈ TJQKIA while ta 6∈ TJPKIA , which
also implies JQKIA 6vop JPKIA. The final possibility is that p′ does not exist,

in which case t ≡ t′a, and s0P
t′

=⇒P while s0P 6
t

=⇒P. As Q 6vIA P, it follows that
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a ∈ AOQ, but there is no matching transition in P. Consequently, t ∈ TJQKIA ,
but t 6∈ TJPKIA , which yields JQKIA 6vop JPKIA as required. �

It is worth pointing out that the definition of alternating refinement in
[12], which applies only to input-deterministic interface automata, is also too
strong for substitutivity, since the original definition of alternating refinement
relates more input-deterministic models than the later definition.

5.1.2. Compositional Operators

In this section, we briefly remark on the relation between the composition
operators for interface automata and our operational framework.

Parallel composition of interface automata P and Q can be defined as
JPKIA || JQKIA, after propagating inconsistencies backwards over output and
τ transitions, and removing the resultant inconsistent states. The obtained
model is an interface automaton only if the initial state remains. This also
provides a characterisation of compatibility for interface automata: P and
Q are compatible only if, after performing the parallel composition as just
defined, the initial state remains.

Conjunction is more problematic to define, because of the discrepancies
between alternating simulation and our substitutive refinement. If we con-
sider only deterministic interface automata, for which the refinements coin-
cide, conjunction of interface automata P and Q can be defined as JPKIA ∧
JQKIA, after having pruned all inconsistent states. Disjunction can be defined
similarly.

Hiding is also straightforward, in that removal of b from interface automa-
ton P is given by JPKIA/b, once all inconsistent states have been removed.

As quotient for interface automata is only defined on deterministic models
[4], alternating refinement and our substitutive refinement coincide. There-
fore, the quotient of interface automaton P from R is given by the removal of
inconsistent states from JRKIA/JPKIA, but is only defined when JRKIA/JPKIA
is realisable, the latter meaning that an initial state exists.

6. Conclusion and Future Work

We have developed a compositional specification theory for components
that may be modelled operationally, closely mirroring actual implementa-
tions, or in an abstract manner by means of trace structures. Both frame-
works admit linear-time refinement relations, defined in terms of traces,
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which correspond to substitutivity and progress-sensitive substitutivity re-
spectively. We define the operations of parallel composition, conjunction,
disjunction, hiding and quotient, and prove that the induced equivalence is
a congruence for these operations, allowing us to provide full abstraction
results. The simplicity of our formalism facilitates compositional reasoning
about the temporal ordering of interactions needed for assume-guarantee in-
ference (contracts), both for safety [8] and (progress-sensitive) liveness prop-
erties [9], as well as timed contracts [7].
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