
42

Source Sets: A Foundation for Optimal Dynamic Partial Order
Reduction

PAROSH AZIZ ABDULLA, STAVROS ARONIS, BENGT JONSSON, and KONSTANTINOS
SAGONAS, Uppsala University

Stateless model checking is a powerful method for program verification, which however suffers from an
exponential growth in the number of explored executions. A successful technique for reducing this number,
while still maintaining complete coverage, is Dynamic Partial Order Reduction (DPOR), an algorithm originally
introduced by Flanagan and Godefroid in 2005 and since then not only used as a point of reference but also
extended by various researchers. In this article, we present a new DPOR algorithm, which is the first to be
provably optimal in that it always explores the minimal number of executions. It is based on a novel class of
sets, called source sets, which replace the role of persistent sets in previous algorithms. We begin by showing
how to modify the original DPOR algorithm to work with source sets, resulting in an efficient and simple to
implement algorithm, called source-DPOR. Subsequently, we enhance this algorithm with a novel mechanism,
called wakeup trees, that allows the resulting algorithm, called optimal-DPOR, to achieve optimality. Both
algorithms are then extended to computational models where processes may disable each other, e.g., via locks.
Finally, we discuss trade-offs of the source- and optimal-DPOR algorithm and present programs that illustrate
significant time and space performance differences between them. We have implemented both algorithms in a
publicly available stateless model checking tool for Erlang programs, while the source-DPOR algorithm is at
the core of a publicly available stateless model checking tool for C/pthread programs running on machines
with relaxed memory models. Experiments show that source sets significantly increase the performance of
stateless model checking compared to using the original DPOR algorithm and that wakeup trees incur only a
small overhead in both time and space in practice.

CCS Concepts: • Theory of computation → Verification by model checking; Logic and verification; •
Software and its engineering→ Formal software verification; Software testing and debugging;

Additional Key Words and Phrases: dynamic partial order reduction, software model checking, systematic
testing, concurrency, source sets, wakeup trees

ACM Reference format:
Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. 2017. Source Sets: A Foundation
for Optimal Dynamic Partial Order Reduction. J. ACM ?, ?, Article 42 (April 2017), 50 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

This is a revised and extended version of a paper titled “Optimal Dynamic Partial Order Reduction” that appeared in the
Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’14), ACM, New
York, NY, USA, 373–384. DOI: http://doi.acm.org/10.1145/2535838.2535845
This work was carried out within the Linnaeus centre of excellence UPMARC (Uppsala Programming for Multicore
Architectures Research Center) and was supported in part by the EU FP7 STREP project RELEASE (287510) and the Swedish
Research Council.
Authors addresses: P. Abdulla, S. Aronis, B. Jonsson, and K. Sagonas, Department of Information Technology, Uppsala
University, Box 337, SE-751 05 Uppsala, Sweden.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 Association for Computing Machinery.
0004-5411/2017/4-ART42 $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
http://doi.acm.org/10.1145/2535838.2535845
https://doi.org/10.1145/nnnnnnn.nnnnnnn

42:2 Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas

1 INTRODUCTION
Verification and testing of concurrent programs is difficult, since one must consider all the different
ways in which processes/threads can interact. Model checking [Clarke et al. 1983; Queille and
Sifakis 1982] addresses this problem by systematically exploring the state space of a given program
and verifying that each reachable state satisfies a given property. Applying model checking to
realistic programs is problematic, however, since it requires capturing and storing a large number
of global states. Stateless model checking [Godefroid 1997] avoids this problem by exploring the
state space of the program without explicitly storing global states. A special run-time scheduler
drives the program execution, making decisions on scheduling whenever such decisions may affect
the interaction between processes. Stateless model checking has been successfully implemented in
tools, such as VeriSoft [Godefroid 2005], Chess [Musuvathi et al. 2008], and Concuerror [Christakis
et al. 2013], the tool we use in this article.

While stateless model checking is applicable to realistic programs, it suffers from combinatorial
explosion, as the number of possible interleavings grows exponentially with the length of program
execution. There are several approaches that limit the number of explored interleavings, such as
depth bounding [Russell and Norvig 2009] and context bounding [Musuvathi and Qadeer 2007].
Among them, partial order reduction (POR) [Clarke et al. 1999; Godefroid 1996; Peled 1993; Valmari
1991] stands out, as it provides full coverage of all behaviours that can occur in any interleaving,
even though it explores only a representative subset. POR is based on the observation that two
interleavings can be regarded as equivalent if one can be obtained from the other by swapping
adjacent, non-conflicting (independent) execution steps. In each such equivalence class (called a
Mazurkiewicz trace [Mazurkiewicz 1987]), POR explores at least one interleaving. This is sufficient
for checking most interesting safety properties, including race freedom, absence of global deadlocks,
and absence of assertion violations [Clarke et al. 1999; Godefroid 1996; Valmari 1991].
Existing partial order reduction approaches are essentially based on two techniques, both of

which reduce the set of process steps that are explored at each scheduling point:
• The persistent set technique, that explores only a provably sufficient subset of the en-

abled processes. This set is called a persistent set [Godefroid 1996]; variations are stubborn
sets [Valmari 1991] and ample sets [Clarke et al. 1999].

• The sleep set technique [Godefroid 1996], that maintains information about the past ex-
ploration in a so-called sleep set, which contains processes whose exploration would be
provably redundant.

These two techniques are independent and complementary, and can be combined to obtain increased
reduction.

The construction of persistent sets is based on information about possible future conflicts between
threads. Early approaches analyzed such conflicts statically, leading to over-approximations and
therefore limiting the achievable reduction. Dynamic Partial Order Reduction (DPOR) [Flanagan
and Godefroid 2005b] improves the precision by recording actually occurring conflicts during the
exploration and using this information to construct persistent sets on-the-fly, “by need”. DPOR
guarantees the exploration of at least one interleaving in each Mazurkiewicz trace when the
explored state space is acyclic and finite. This is the case in stateless model checking in which
only executions of bounded length are analyzed [Flanagan and Godefroid 2005b; Godefroid 2005;
Musuvathi et al. 2008].

Challenge. Since DPOR is excellently suited as a reduction technique, several variants, improve-
ments, and adaptations for different computation models have appeared in the literature [Flanagan
and Godefroid 2005b; Kastenberg and Rensink 2008; Lei and Carver 2006; Saarikivi et al. 2012; Sen

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

Source Sets: A Foundation for Optimal Dynamic Partial Order Reduction 42:3

and Agha 2007; Tasharofi et al. 2012]. The obtained reduction can, however, vary significantly
depending on several factors, e.g., the order in which processes are explored at each point of sched-
uling. For a particular implementation of DPOR, up to an order of magnitude of difference in the
number of explored interleavings has been observed when different strategies are used [Tasharofi
et al. 2012]. Heuristics for choosing which next process to explore have been investigated without
conclusive results [Lauterburg et al. 2010]. It has also been shown that for specific communica-
tion models, specializations of DPOR algorithms, obtained by carefully defining when execution
steps are in conflict (for example, exploiting the transitivity of the dependency relation in actor
systems [Tasharofi et al. 2012]), can achieve better reduction.

Let us explain one fundamental reason for the above variation in obtained reduction. In DPOR,
the combination of persistent set and sleep set techniques guarantees to explore at least one
complete interleaving in each Mazurkiewicz trace. Moreover, it has already been proven that the
use of sleep sets is sufficient to prevent the complete exploration of two different but equivalent
interleavings [Godefroid et al. 1995]. At first sight, this seems to imply that sleep sets can give
optimal reduction. What it actually implies, however, is that when the algorithm initiates the
exploration of an interleaving which is equivalent to an already explored one, the exploration will
begin but it will be blocked sooner or later by the sleep sets in what we call a sleep set blocked
exploration. When only sleep sets are used for reduction, the exploration effort will include an
arbitrary number of sleep set blocked explorations. It is here where persistent sets enter the picture,
and limit the number of initiated explorations. Computation of smaller persistent sets leads to
fewer sleep set blocked explorations. However, as we show in this article, persistent sets are not
powerful enough to completely prevent sleep set blocked exploration.

Another reason for the observed non-optimal reduction is that most published algorithms define
conflicts as occurring when two statements access the same shared object, and at least one of them
modifies the object. However, in many cases more reduction can be achieved by using a more refined
definition of conflicts. For instance, two writes to a shared variable need not conflict if they write
the same value. As another example, a send statement and a receive statement that access the same
message queue need not be in conflict, unless the two statements concern the same message. Thus,
a reduction technique would benefit from a refined definition of dependencies, which considers
not only the accessed shared object, but also the actual effect of each program statement in a given
execution. Such a refined definition would be particularly beneficial for programs that employ
message passing communication.
In view of these variations, a fundamental challenge is to develop an optimal DPOR algorithm

that: (i) always explores the minimum number of interleavings, regardless of scheduling decisions,
(ii) can be efficiently implemented, and (iii) is applicable to a variety of computation models,
including concurrency via message passing, communication via shared variables protected by locks,
or in more general forms of interprocess communication. Such an optimal DPOR algorithm could
be standardly implemented in stateless model checkers and test generation tools for concurrent
systems. It would also attain the maximal reduction that can be achieved using information about
conflicts between processes, implying that any further reductions must be obtained by other means,
e.g., by symbolic techniques, SAT-based approaches such as the recently proposed SATCheck
technique [Demsky and Lam 2015], or by techniques that take alternative notions of causality into
account such as Maximal Causality Reduction [Huang 2015].

Contributions. In this article, we present a fundamentally new DPOR technique, which is based
on a new theoretical foundation for partial order reduction, in which persistent sets are replaced
by a novel class of sets, called source sets. Source sets subsume persistent sets (i.e., any persistent
set is also a source set), and source sets are often smaller than persistent sets. Moreover, source sets

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

42:4 Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas

are provably minimal, in the sense that the set of explored processes from some scheduling point
must be a source set in order to guarantee exploration of all Mazurkiewicz traces. When a minimal
persistent set contains more elements than the corresponding source set, the additional elements
will always initiate sleep set blocked explorations. This implies that a necessary and sufficient
condition for the correctness of any DPOR algorithm is that the set of explored process steps is
a source set. For instance, correctness of persistent-set-based DPOR algorithms is often proved
by establishing that the set of explored process steps is always a persistent set. The results of this
article imply that in such proofs, it is enough to show the weaker property that this set is always
a source set. We thus claim that source sets are the “right” conceptual foundation for developing
DPOR techniques.
To show the power of source sets, we develop a simple DPOR algorithm, called source-DPOR,

which is based on source sets. It is derived by modifying the classical persistent-set-based DPOR
algorithm by Flanagan and Godefroid [2005b] so that persistent sets are replaced by source sets.
The modification only consists in a small change to a single test in the algorithm. The power of
source sets can be observed by noting that with this small modification, source-DPOR achieves
significantly better reduction in the number of explored interleavings than the classical DPOR
algorithm. In fact, source-DPOR explores the minimal number of interleavings for a large number
of our benchmarks in Section 11.
To further demonstrate the power of source sets, we use them to develop a provably optimal

DPOR algorithm. This is done by combining source sets with a novel mechanism, called wakeup
trees, thereby deriving the algorithm optimal-DPOR. Wakeup trees control the initial steps of future
explorations, implying that optimal-DPOR never encounters any sleep set blocked (i.e., redundant)
exploration. An important feature of wakeup trees is that they are simple data structures that
are constructed from already explored interleavings, hence they do not increase the amount of
exploration. On the other hand, they allow to reduce the number of explored executions. In our
benchmarks, maintenance of the wakeup trees reduces total exploration time when source-DPOR
encounters sleep set blocked explorations and furthermore it never requires more than 10% of
additional time in the cases where there are none or only a few sleep set blocked explorations.
Memory consumption is practically always the same between our two DPOR algorithms, and in
our experience the space cost of maintaining wakeup trees is very small. Still, as we will show, one
can construct programs where the size of wakeup trees grows exponentially, and consequently the
memory requirements of optimal-DPOR can be considerably worse than those of the source-DPOR
algorithm. However, each branch in the wakeup tree is a prefix of some actually explored execution,
and hence the size of the wakeup trees can never be larger than the size of all explored executions.
Therefore, memory consumption is a problem only in situations where any DPOR-based algorithm
needs to explore an exponential set of traces and does not seem to affect the time performance of
the optimal algorithm; see Section 9.
We show the applicability of our algorithms to a wide range of computation models, including

shared variables and message passing, by formulating them in a general setting, which only assumes
that we can compute a happens-before relation (also called a causal ordering) between the events
in an execution. For systems with shared variables, the happens-before relation can be based on
the variables that are accessed or modified by events. For message passing systems, the happens-
before relation can be based on correlating the transmission of a message with the corresponding
reception. Our approach allows to make finer distinctions, leading to better reduction, than many
other approaches that define a happens-before relation which is based on program statements,
possibly taking into account the local state in which they are executed [Clarke et al. 1999; Flanagan
and Godefroid 2005b; Godefroid 1996, 2005; Lauterburg et al. 2010; Tasharofi et al. 2012; Valmari

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

Source Sets: A Foundation for Optimal Dynamic Partial Order Reduction 42:5

p : q : r :
write x; (1) read y; read z;

read x; (2) read x; (3)

Fig. 1. Writer-readers code excerpt.

1991]. For instance, we allow a send transition to be dependent with another send transition only if
the order in which the two messages are received is significant. Similarly to preceding papers on
DPOR, we assume, for simplicity of exposition, that threads are deterministic. Our techniques can
be extended to control nondeterminism without introducing fundamentally new concepts, whereas
data nondeterminism typically requires additional symbolic techniques.

We have implemented both source-DPOR and optimal-DPOR as extensions for Concuerror [Chris-
takis et al. 2013], a stateless model checking tool for Erlang programs. Erlang’s concurrency model
focuses primarily on message passing, but it is also possible to write programs which manipulate
shared data structures. Our evaluation shows that on a wide selection of benchmarks, including
benchmarks from the DPOR literature, but more importantly on real Erlang applications of consid-
erable size, we obtain optimal or very close to optimal reduction in the number of interleavings
even with source-DPOR, therefore significantly outperforming the original DPOR algorithm not
only in number of explored interleavings but in total execution time as well.

Organization. In the next section, we illustrate the basic new ideas of our techniques.We introduce
our computational model and formulation of the partial-order framework in Section 3. To simplify
presentation, we initially assume that processes do not disable each other. In Section 4 we introduce
source sets, and establish that source sets are necessary and sufficient for soundness of any DPOR
algorithm. The source-DPOR algorithm is described in Section 5. We formalize the concept of
wakeup trees in Section 6, before describing the optimal-DPOR algorithm in Section 7. We then
extend the algorithms to computational models where processes may disable each other, e.g., via
locks, in Section 8. Section 9 discusses some trade-offs in computational cost between source-DPOR
and optimal-DPOR. Implementation of the algorithms is described in Section 10, and experimental
evaluation in Section 11. The article ends by surveying related work and offering some concluding
remarks.

2 BASIC IDEAS
In this section, we give an informal introduction to the concepts of source sets and wakeup trees,
and their improvement over existing approaches, using some small examples.

Source Sets. In Fig. 1, the three processes p, q, and r perform dependent accesses to the shared
variable x. In this example, let us consider two accesses as dependent if they access the same
variable and one of them is a write. Since there are no writes to y and z here, the accesses to y

and z are not dependent with anything else. For this program, there are four Mazurkiewicz traces
(i.e., equivalence classes of executions), each characterized by its sequence of accesses to x (three
accesses can be ordered in six ways, but two pairs of orderings are equivalent since they differ only
in the ordering of adjacent reads, which are not dependent).

Any POR method selects some subset of {p,q, r } to perform some first step in the set of explored
executions. It is not enough to select only p, since then executions where some read access happens
before the write access of p will not be explored. In DPOR, assume that the first execution to be
explored is p.q.q.r .r (we denote executions by the dotted sequence of scheduled process steps). A

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

42:6 Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas

DPOR algorithm will detect the dependency between step (1) by p and step (2) by q, and note
that it seems necessary to explore sequences that start with a step of q. The DPOR algorithm will
also detect the dependency between (1) and (3) and possibly note that it is necessary to explore
sequences that start with a step of r .
Existing DPOR methods guarantee that the set of processes explored from the initial state is a

persistent set. In short, a set P of processes is persistent in the initial state if in any execution from
the initial state, the first step that is dependent with the first step of some process in P must be
taken by some process in P . In this example, the only persistent set which contains p in the initial
state is {p,q, r }. To see this, suppose that, e.g., r is not in the persistent set P , i.e., P = {p,q}. Then
the execution r .r contains no step from a process in P , but its second step is dependent with the
first step of p, which is in P . In a similar way, one can see that also q must be in P .
In contrast, our source set-based algorithms allow S = {p,q} as the set of processes explored

from the initial state. The set S is sufficient, since any execution that starts with a step of r is
equivalent to some execution that starts with the first (local) step of q. The set S is not a persistent
set, but it is a source set. Intuitively, a set S of processes is a source set if for each execution E from
the initial state there is some process proc in S such that the first step in E that is dependent with
proc is taken by proc itself, i.e., proc is not preceded by any process that is dependent with proc . To
see that {p,q} is a source set, note that when E is r .r , then we can choose q as proc , noting that r .r
is not dependent with the first step of q. Any persistent set is also a source set, but, as shown by
this example, the converse is not true.
Our algorithm source-DPOR combines source sets with sleep sets, and will explore exactly four

interleavings, whereas any algorithm based on persistent sets will explore at least five (if the first
explored execution starts with p), some of which will be sleep set blocked if sleep sets are used. If
we extend the example to include n reading processes instead of just two, the number of sleep set
blocked explorations increases significantly (see Table 4 in Section 10).

Sleep Sets. To make this section self-contained, we here briefly review the concept of sleep sets.
Sleep sets [Godefroid 1996; Godefroid and Wolper 1991] use information about past explorations to
prevent redundant future explorations. For each prefix E of the execution that is currently being
explored, a sleep set is maintained. The sleep set contains a set of processes, whose exploration
after E would be redundant for the reason that an equivalent execution has already been explored
by the DPOR algorithm. The sleep set at each prefix E is manipulated as follows: (i) after exploring
the interleavings that extend E with some process p, the process p is added to the sleep set at E, and
(ii) when exploring executions that extend E.p, the sleep set at E.p is initially obtained as the sleep
set at E with all processes that are dependent with p removed. The effect is that the algorithm need
never explore a step of a process in the sleep set. We illustrate this on the program of Fig. 1. After
having explored executions starting with p, the process p is added to the sleep set at the empty
execution, following rule (i). When initiating the exploration of executions that start with q, the
process p is in the sleep set at q, according to rule (ii). Therefore, p should not be explored after
q, since executions that start with q.p are equivalent to executions that start with p.q, and such
executions have already been explored.

Wakeup Trees. Asmentioned, by utilizing source sets, source-DPORwill explore a minimal number
of executions for the program of Fig. 1. There are cases, however, where source-DPOR encounters
sleep set blocked explorations.
We illustrate this by the example in Fig. 2, a program with four processes, p,q, r , s . Two events

are dependent if they access the same shared variable, i.e., x,y or z. Variables m,n,l are local. Each
statement accessing a global variable has a unique label; e.g., process s has three such statements

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

Source Sets: A Foundation for Optimal Dynamic Partial Order Reduction 42:7

Initially: x = y = z = 0

p : q : r : s :
o := x; (1) y := 1; (2) m := y; (3) n := z; (5)

if m = 0 then l := y; (6)

z := 1; (4) if n = 1 then

if l = 0 then

x := 1; (7)

Fig. 2. Program with control flow.

Initial State

p : (1)

q : (2)

Other
traces

r : (3)

r : (4)

s : (5)

s : (6)

s : (7)

q : (2)

r : (3)

q : (2)

SSB
traces

r : (4)

s : (5)

s : (6)

s : (7)

p : (1)

q : (2)

q : (2)

SSB
traces

Fig. 3. Explored interleavings for the program of Fig. 2.

labeled (5), (6), and (7). Statements that operate on local variables are assumed to be part of
the previous labeled statement. For example, label (6) marks the read of the value of y, together
with the assignment to l, and the condition check on n. If the value of n is 1, the condition check
on l is also part of (6), which ends just before the assignment to x that has the label (7). Similar
assumptions are made for the other local statements.

Consider a DPOR algorithm that starts the exploration with p, explores the interleaving p.r .r .s .s .s
(marked in Fig. 3 with an arrow from top to bottom), and then detects the race between events
(1) and (7). It must then explore some interleaving in which the race is reversed, i.e., the event
(7) occurs before the event (1). Note that event (7) will occur only if it is preceded by the
sequence (3) - (4) - (5) - (6) and not preceded by a step of process q. Thus, an interleaving
that reverses this race must start with the sequence r .r .s .s . Such an interleaving is shown in Fig. 3
between the two chunks labeled “SSB traces” (Sleep Set Blocked traces).
Having detected the race in p.r .r .s .s .s , source-DPOR adds r to the source set at the initial state.

However, it does not “remember” that r must be followed by r .s .s to reverse the race. After exploring
r , it may therefore continue with q. However, after r .q any exploration is doomed to encounter
sleep set blocking, meaning that the exploration reaches a state in which all enabled processes
are in the sleep set. To see this, note that p is in the sleep set when exploring r , and will remain

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

42:8 Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas

there forever in any sequence that starts with r .q (as explained above, it is removed only after the
sequence r .r .s .s .s). This corresponds to the left chunk of “SSB traces” in Fig. 3.
Optimal-DPOR solves this problem by replacing the backtrack set with a structure called a

wakeup tree. This tree contains initial fragments of executions that are guaranteed not to encounter
sleep set blocking. In the example, the Optimal-DPOR algorithm will handle the race between (1)

and (7) by adding the sequence r .r .s .s .s to the wakeup tree. The point is that after r .r .s .s .s , the
process p has been removed from the sleep set, and so sleep set blocking is avoided.

Events Versus Transitions. Amajority of approaches to partial order reduction define dependencies
as a relation between syntactic statements in the program [Clarke et al. 1999; Flanagan andGodefroid
2005b; Godefroid 1996, 2005; Lauterburg et al. 2010; Tasharofi et al. 2012; Valmari 1991], often
referred to as transitions. The notion of transition is sometimes refined by including the local state
from which it is executed. There are also also approaches where dependencies are defined between
occurrences of transitions in a given execution [Lei and Carver 2006; Sen and Agha 2007], sometimes
referred to as events. In general, events allow finer distinctions when defining dependencies than
transitions. For instance, two send operations need not be dependent unless the order in which
the two messages are received is significant. This information may not be available if the send
operations are regarded as syntactic statements, even if the local states of the sending process is
considered. On the other hand, if the send operations are considered in the context of a particular
execution, then the definition of dependencies can be appropriately refined. Thus, a reduction
technique in which the definition of dependencies is based on events can achieve better reduction
than one based on transitions, for instance when applied to programs that employ message passing.

We illustrate that events can be more suitable than transitions on a small example.

p : q :
send(q, first); receive m1;

send(q, second); receive m2;

L := append(append(L, m1), m2);

Here, process p sends two messages to process q, and process q receives two messages and appends
them to the list L. Messages are received in FIFO order. For this example, we assume that receive
statements must return a message but are non-blocking; if a receive is ever attempted by a process
when its incoming message queue is empty, the process dies.

For this example, there are three possible outcomes of executing the program, characterized by
the number of messages received by q. Thus, we would want to define a definition of dependencies,
which gives rise to three different Mazurkiewicz traces: p.p.q.q, p.q.q.p and q.p.p. We note that
a transition-based definition, which regards any send statement as dependent with any receive

statement will give rise to four Mazurkiewicz traces. To reduce this number, we must define the
transmission of the second message by p to be independent of the reception of the first message by
q, thereby making the executions p.p.q.q and p.q.p.q equivalent. This is possible if the definition
of dependencies is based on events, since that allows to take the context of the execution into
account. In this particular example, this difference allows us to reduce the number of explored
transition sequences from four to three. In larger programs, where message queues may contain
several messages, the reduction in explored interleavings can be substantial.

3 FRAMEWORK
In this section, we introduce the technical background material. First, we present the general model
of concurrent systems for which the algorithms are formulated, thereafter the assumptions on the
happens-before relation, and finally the notions of independence and races.

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

Source Sets: A Foundation for Optimal Dynamic Partial Order Reduction 42:9

3.1 Abstract Computation Model
We consider a concurrent system composed of a finite set of processes (or threads). Each process
executes a deterministic program, whereby statements act on the state of the system, which is
made up of the local states of each process and the shared state of the system (state will refer to
the global state, unless explicitly specified otherwise). We do not restrict the system to a specific
mode of process interaction, allowing instead the use of shared variables, messages, etc. We assume
that the state space does not contain cycles, and that executions have bounded length. This means
that executions must terminate by themselves within a bounded number of steps. Our algorithms,
as presented in this article, are unsound if executions are simply truncated beyond some given
bound. Soundness, in the sense of covering all executions up to a given length, can be restored
at the expense of refining the control over execution scheduling and exploring some executions
beyond the imposed bound; the details of this are beyond the scope of this article.

Let Σ be the set of states of the system. The system has a unique initial state s0 ∈ Σ. We assume
that the program executed by a process p can be represented as a partial function executep : Σ 7→ Σ
which moves the system from one state to a subsequent state. Each such application of the function
executep represents an atomic execution step of process p, which may depend on and affect the
state. We let each execution step (or just step for short) represent the combined effect of some
global statement together with the following finite sequence of local statements (that only access
and affect the local state of the process), ending just before the next global statement. This avoids
consideration of interleavings of local statements of different processes in the analysis. Such an
optimization is common in tools (e.g., Verisoft [Godefroid 1997]).

An execution sequence E of a system is a finite sequence of execution steps of its processes that
is performed from the initial state s0. Since each execution step is deterministic, an execution
sequence E is uniquely characterized by the sequence of processes that perform steps in E. For
instance, p.p.q denotes the execution sequence where first p performs two steps, followed by a
step of q. The sequence of processes that perform steps in E also uniquely determine the state of
the system after E, which is denoted s[E]. The execution of a process is said to block in some state
s if the process cannot continue (i.e., executep (s) is undefined): for example, trying to receive a
message in a state where the message queue is empty. For a state s , let enabled(s) denote the set of
processes p that are enabled in s (i.e., for which executep (s) is defined). We say that E is maximal if
enabled(s[E]) = ∅, i.e., no process is enabled after E. We use . to denote concatenation of sequences
of processes. Thus, if p is not blocked after E, then E.p is an execution sequence. We usew,w ′, . . .
to range over arbitrary sequences of processes.

An event of E is a particular occurrence of a process in E. More precisely, an event is a pair ⟨p, i⟩,
representing the ith occurrence of process p in the execution sequence. We use e, e ′, . . . to range
over events, as well as:

• E ⊢ w to denote that E.w is an execution sequence.
• w \ p to denote the sequencew with its first occurrence of p removed.
• dom(E) to denote the set of events ⟨p, i⟩ which are in E, i.e., ⟨p, i⟩ ∈ dom(E) iff E contains
at least i steps of p.

• dom[E](w), where E.w is an execution sequence, to denote dom(E.w) \ dom(E), i.e., the
events in E.w which are inw .

• next[E](p) to denote dom[E](p) as a special case.
• ê to denote the process p of an event e = ⟨p, i⟩.
• op[E](e) to denote the operation performed by event e in execution sequence E.
• <E to denote the total order between events in E, i.e., e <E e ′ denotes that e occurs before
e ′ in E.

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

42:10 Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas

• E ′ ≤ E to denote that the sequence E ′ is a prefix of the sequence E.
To simplify the presentation, we first, in Sections 3 to 7, make the assumption that a process

does not disable another process, i.e., if p is enabled and another process q performs a step, then p
is still enabled. We formalize this as the following assumption, so that it can be referenced in the
subsequent exposition.

Assumption 3.1. If E ⊢ p and E ⊢ q with p , q, then E ⊢ p.q.
Assumption 3.1 is valid for concurrent programs that communicate via message passing. I.e., it

is valid for programs that follow the actor model of concurrency and Erlang programs in particular.
However, note that even in such programs a process can disable itself, e.g., after a step such that the
next statement is a receive statement. In Section 8 we thereafter show how our DPOR techniques
can be extended to the situation where this assumption is not made, and processes can disable each
other, e.g., by using locks or await statements.

3.2 Event Dependencies
A central concept in DPOR algorithms is that of a happens-before relation [Lamport 1978] between
events in an execution sequence (also called a causal relation [Sen and Agha 2007]). We denote
the happens-before relation in the execution sequence E by →E . Intuitively, for an execution
sequence E, and two events e and e ′ in dom(E), e→Ee

′ means that e “causally precedes” e ′ or that
the ordering between e and e ′ may influence the outcome of the execution. For instance, e can
be the transmission of a message that is received by e ′, or e can be a write operation to a shared
variable that is accessed by e ′, or e and e ′ can both write to the same shared variable.

Our algorithms assume a function (called a happens-before assignment), which assigns a “happens-
before” relation to any execution sequence. In order not to restrict to a specific computation model,
we take a general approach, where the happens-before assignment is only required to satisfy a set
of natural properties, which are collected in Definition 3.2. As long as it satisfies these properties,
its precision can vary. For instance, the happens-before assignment can let any transmission to a
certain message buffer be causally related with a reception from the same buffer. However, better
reduction can be attained if the assignment does not make the transmission of a message dependent
with the reception of a different message.

In practice, the happens-before assignment function is implemented by relating accesses to the
same variables, transmissions and receptions of the same messages, etc., typically using vector
clocks [Mattern 1989]. In Section 10 we describe such an assignment, suitable for Erlang programs.

Definition 3.2 (Properties of valid happens-before relations). A happens-before assignment, which
assigns a unique happens-before relation→E to any execution sequence E, is valid if it satisfies
the following properties for all execution sequences E.

(1) →E is an irreflexive partial order on dom(E), which is included in <E .
(2) The execution steps of each process are totally ordered, i.e., ⟨p, i⟩→E ⟨p, i+1⟩ whenever

⟨p, i+1⟩ ∈ dom(E),
(3) If E ′ ≤ E, then→E and→E′ are the same on dom(E ′).
(4) Any linearization E ′ of →E on dom(E) is an execution sequence which has exactly the

same “happens-before” relation →E′ as →E . This means that the relation →E induces a
set of equivalent execution sequences, all containing the same set of events, and with the
same “happens-before” relation. We use:
• E ≃ E ′ to denote that dom(E) = dom(E ′) and that E and E ′ are linearizations of the
same “happens-before” relation, and

• [E]≃ to denote the equivalence class of E.

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

Source Sets: A Foundation for Optimal Dynamic Partial Order Reduction 42:11

(5) If E ≃ E ′, then s[E] = s[E′].
(6) For any sequences E, E ′ andw , such that E.w is an execution sequence, we have E ≃ E ′ iff

E.w ≃ E ′.w .
(7) If p, q, and r are different processes, then if next[E](p)→E .p .rnext[E .p](r) and next[E](p)

↛E .p .q next[E .p](q), then next[E](p)→E .p .q .rnext[E .p .q](r).

The first six properties should be obvious for any reasonable happens-before relation; the only
non-obvious one would be the last one. Intuitively, Property (7) states that if, after some sequence
E, the next step of p happens before the next step of r , then the step of p still happens before
the step of r even when some step of another process, which is not dependent with p, is inserted
between p and r . This property holds for all computation models in which the happens-before
assignment is based on whether events access shared objects in potentially conflicting ways. As
an example, p and q can be reading a shared variable that is written by r . Another example is
when p sends a message that is received by r . If an intervening process q is independent with p,
it cannot affect this message, therefore r still receives the same message. It also holds for several
more refined happens-before assignments, which are based on actual values involved in accesses
to shared objects. An example is provided by the program in Fig. 9 (Section 8).
Properties (4) and (5) of Definition 3.2 together imply, as a special case, that if e and e ′ are two

consecutive events in E with e↛Ee
′, then they can be swapped and the state after the two events

remains the same.

3.3 Independence and Races
We now define independence between events of a computation. If E.p and E.w are both execution
sequences, then E ⊢p♦w denotes that E.p.w is an execution sequence such that next[E](p)↛E.p.we
for any e ∈ dom[E .p](w). In other words, E ⊢p♦w states that the next event of p would not “happen
before” any event inw in the execution sequence E.p.w . Intuitively, it means that p is independent
withw after E. In the special case whenw contains only one process q, then E ⊢p♦q denotes that the
next steps of p and q are independent after E. We use E ̸ ⊢p♦w to denote that E.p.w is an execution
sequence for which E ⊢p♦w does not hold.

For an execution sequence E and an event e ∈ dom(E), let:
• pre(E, e) denote the prefix of E up to, but not including, the event e ,
• notdep(e,E) denote the sub-sequence of E consisting of the events that occur after e but do
not “happen after” e (i.e., the events e ′ that occur after e such that e↛Ee ′).

A central concept in most DPOR algorithms is that of a race. Let e and e ′ be two events in dom(E),
where e <E e ′. We say that

• e is in a race with e ′, denoted e ⋖E e ′ if ê , ê ′ (i.e., these are events from different pro-
cesses) and e→Ee

′ and there is no event e ′′ ∈ dom(E), different from e ′ and e , such that
e→Ee

′′→Ee
′,

• e is in a reversible race with e ′, denoted e ≾E e ′, if e ⋖E e
′ and in any equivalent execution

sequence E ′ ≃ E where e occurs immediately before e ′, then ê ′ was not blocked before the
occurrence of e .

Intuitively, e ⋖E e ′ denotes that e and e ′ are co-enabled, i.e., there is an equivalent execution
sequence E ′ ≃ E in which e and e ′ are adjacent. Moreover, e ≾E e ′ denotes that e does not enable
e ′, so that the order of e and e ′ can be reversed.

Whenever a DPOR algorithm detects a race, then it will check whether the events in the race can
be executed in the reverse order. Since the events are related by the happens-before relation, this

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

42:12 Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas

p q q r r
E ′ w

E
q: r(x)

q: r(y) p: w(x) r : r(z)

r : r(x)

Fig. 4. A sample run of the program in Fig. 1 is shown to the left. This run is annotated by a happens-before
relation (the dotted arrows). To the right, the happens-before relation is shown as a partial order. Notice
that E ′ ⊢q♦r since q and r are not happens-before related in E ′.r .q. We also observe that I[E′](w) = {q}, as
q is the only process occurring inw and its first occurrence has no predecessor in the dotted relation inw .
Furthermore, WI[E′](w) = {q, r }, since r is not happens-before related to any event inw .

may lead to a different state: therefore the algorithm must try to explore a corresponding execution
sequence.

In Fig. 4, there are two pairs of events e, e ′ such that e⋖E e
′, namely ⟨p, 1⟩, ⟨q, 2⟩ and ⟨p, 1⟩, ⟨r , 2⟩.

It also holds for both these pairs that e ≾E e ′ since both q and r are enabled before ⟨p, 1⟩. In other
words, both the races in the program are reversible.

4 SOURCE SETS
In this section, we define the new concept of source sets. Intuitively, source sets are sets of processes
that perform “first steps” in the possible future execution sequences. A set of processes is a source
set if any possible future execution sequence contains a “first step” of some process in the source
set. We first define two related notions of possible “first steps” in a sequence.

Definition 4.1 (Initials and Weak Initials). For an execution sequence E.w , the set I[E](w) of
processes that are initials and the set WI[E](w) of processes that are weak initials are defined as
follows:

(1) p ∈ I[E](w) iff there is a sequencew ′ such that E.w ≃ E.p.w ′

(2) p ∈ WI[E](w) iff there are sequencesw ′ and v such that E.w .v ≃ E.p.w ′

The following lemma gives alternative characterizations of the sets I[E](w) andWI[E](w).

Lemma 4.2. For an execution sequence E.w and a process p, we have:
(1) p ∈ I[E](w) iff p ∈ w and there is no other event e ∈ dom[E](w) with e→E .wnext[E](p),
(2) p ∈ WI[E](w) iff either p ∈ I[E](w), or p ∈ enabled(s[E]) and E ⊢p♦w .

Intuitively, a process in I[E](w) or WI[E](w) has no “happens-before” predecessors in dom[E](w),
and is in I[E](w) if it actually occurs inw .

Proof. We prove each of the cases separately.
(1) (Forward direction) From E.w ≃ E.p.w ′, using Property (4) of Definition 3.2, we infer

dom[E](w) = dom[E](p.w ′), which implies p ∈ w . Furthermore, the fact that p can be moved
to the beginning ofw implies that p cannot have any predecessors in dom[E](w), i.e., there
is no other event e ∈ dom[E](w) with e→E .wnext[E](p).
(Reverse direction) Ifp ∈ w and there is no other event e ∈ dom[E](w)with e→E .wnext[E](p),
then we can linearize dom[E](w) in such a way that p occurs first, i.e., there is a w ′ with
E.w ≃ E.p.w ′.

(2) (Forward direction) From E.w .v ≃ E.p.w ′, using Property (4) of Definition 3.2, we infer
dom[E](w .v) = dom[E](p.w ′). If p ∈ w , then the events in v can be removed from w ′ to
obtain dom[E](w) = dom[E](p.w ′′) for somew ′′, implying p ∈ I[E](w). If p < w , then p ∈ v .

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

Source Sets: A Foundation for Optimal Dynamic Partial Order Reduction 42:13

Since p can be moved beforew ′, it cannot happen-after any event inw ; since p occurs the
afterw , it cannot happen-before any event inw , hence E ⊢p♦w . Since p can be performed
directly after E, we have p ∈ enabled(s[E]).
(Reverse direction) If p ∈ I[E](w), then p ∈ WI[E](w) follows directly (letting v be the
empty sequence). If p ∈ enabled(s[E]) and E ⊢ p♦w , then p is not related with w in the
happens-before relation, hence E.w .p ≃ E.p.w , implying p ∈ WI[E](w).

⊓⊔

Definition 4.3 (Source Sets). Let E be an execution sequence, and letW be a set of sequencesw ,
such that E ⊢ w for eachw ∈W . A set P of processes is a source set forW after E if for eachw ∈W
we haveWI[E](w) ∩ P , ∅.

The key property is that if P is a source set forW after E, then for each execution sequence of
form E.w with w ∈ W , there is a process p ∈ P and a sequence w ′ such that E.p.w ′ ≃ E.w .v for
some sequence v . Therefore, when an exploration algorithm intends to cover all suffixes inW after
E, the set of processes that are chosen for exploration from s[E] must be a source set forW after E.
We formulate this observation as a theorem.

Theorem 4.4 (Key Property of Source Sets). Let E be an execution sequence, letW be a set
of continuations of E, and letW ′ be a subset ofW such that for each w ∈ W there is a w ′ ∈ W ′

with E.w ′ ≃ E.w .v for some v . Then the set of first processes of sequences inW ′ is a source set forW
after E.

This theorem implies that a necessary condition for the correctness of any DPOR algorithm is
that the set of explored process steps is a source set. It it also a sufficient condition: the proofs
of correctness for our algorithms source-DPOR (Theorem 5.2) and optimal-DPOR (Theorem 7.4)
contain as key lemmas the property that the set of explored processes is a source set (Claim 5.4 and
Claim 7.5, respectively).

Before continuing, we first generalize the relationsp ∈ I[E](w) andp ∈ WI[E](w) to the case where
p is a sequence. These generalizations will be used in the proof of soundness of the source-DPOR
algorithm, and in the definition of wakeup trees.

Definition 4.5. Let E be an execution sequence and let v andw be sequences of processes.
• Let v ⊑[E] w denote that there is a sequence v ′ such that E.v .v ′ and E.w are execution
sequences with E.v .v ′ ≃ E.w . Intuitively, v ⊑[E] w if, after E, the sequence v is a possible
way to start an execution that is equivalent tow .

• Let v∼[E]w denote that there are sequences v ′ and w ′ such that E.v .v ′ and E.w .w ′ are
execution sequences with E.v .v ′ ≃ E.w .w ′. Intuitively, v∼[E]w if, after E, the sequence v is
a possible way to start an execution that is equivalent to an execution sequence of form
E.w .w ′.

It can be seen that Definition 4.5 generalizes Definition 4.1, since for a process p we have
p ∈ I[E](w) iff p ⊑[E] w , and p ∈ WI[E](w) iff p∼[E]w .

As examples, in Fig. 4, we have q.r ⊑[E′] q.q.r .r but q.q ̸⊑[] E
′r .r . We also have q.q∼[E′]r .r since

E ′.q.q.r .r ≃ E ′.r .r .q.q. Note that ∼[E] is not transitive. The relation v∼[E]w can be checked using
the properties specified in the following lemma.

Lemma 4.6. The relation v∼[E]w holds if either
(1) v = ⟨⟩, or
(2) v is of form p.v ′, and either

(a) p ∈ I[E](w) (“p is an initial ofw after E”) and v ′∼[E .p](w \ p), or

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

42:14 Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas

(b) E ⊢p♦w (“p is independent ofw after E”) and v ′∼[E .p]w .

Proof. We examine each case separately.
(1) If v = ⟨⟩, let v ′ = w andw ′ = ⟨⟩. Then E.v .v ′ ≃ E.v ′ ≃ E.w ≃ E.w .w ′, hence v∼[E]w .
(2) If v = p.v ′ then:

(a) If p ∈ I[E](w) and v ′∼[E .p](w \ p), then by p ∈ I[E](w) and Definition 4.1(1) we get
that there exists w ′ such that E.w ≃ E.p.w ′. In the proof of that Lemma (forward
direction), it is easy to see that such aw ′ is exactlyw \ p, therefore E.w ≃ E.p.(w \ p).
By v ′∼[E .p](w \ p) we get that there exist sequences v ′′ and w ′′ such that E.v .v ′′ ≃
E.p.v ′.v ′′ ≃ E.p.(w \ p).w ′′ ≃ E.w .w ′′, hence v∼[E]w .

(b) If E ⊢ p♦w and v ′∼[E .p]w , then from E ⊢ p♦w we have that E.p.w ≃ E.w .p. From
v ′∼[E .p]w we also have that there exist v ′′ and w ′ such that E.v .v ′′ ≃ E.p.v ′.v ′′ ≃
E.p.w .w ′ ≃ E.w .p.w ′, hence v∼[E]w .

⊓⊔

The following lemma states some useful properties.

Lemma 4.7. Let E be an execution sequence, and let v ,w , andw ′ be sequences. Then

(1) E.w ′ ≃ E.w implies that (i) v ⊑[E] w iff v ⊑[E] w
′, and (ii) w ⊑[E] v iff w ′ ⊑[E] v , and

(iii) v∼[E]w iff v∼[E]w
′;

(2) v ⊑[E] w andw∼[E]w
′ imply v∼[E]w

′;
(3) v ⊑[E] w

′ andw ⊑[E] w
′ imply v∼[E]w ;

(4) p ∈ WI[E](w) andw ′ ⊑[E] w imply p ∈ WI[E](w ′);
(5) p ∈ WI[E](w) and E ⊢p♦q and E ⊢q♦w imply p ∈ WI[E](q.w).

All the above properties follow easily from the definitions, so we omit their proofs.

5 SOURCE-DPOR
Having established the concept of source sets, Algorithm 1 presents the source-DPOR algorithm.
As mentioned in the introduction, this algorithm is derived from the classical persistent-set-based
DPOR algorithm of Flanagan and Godefroid [2005b] by replacing persistent sets by source sets.
The modification only consists in a small change to a single test in the algorithm. Recall that, as
mentioned at the end of Section 3.1, in this section we assume that processes cannot disable each
other; in Section 8 we show how the algorithm is extended to the case where process can disable
each other.

5.1 Algorithm
Source-DPOR uses the recursive procedure Explore(E, Sleep) to perform a depth-first search, where
E can be interpreted as the stack of the search, i.e., the past execution sequence explored so far
and Sleep is a sleep set, i.e., a set of processes that (provably) need not be explored from s[E]. For
each prefix E ′ ≤ E, the algorithm maintains a set backtrack(E ′) of processes that will eventually
be explored from E ′, allowing additions to any backtrack set of a state in the stack to be made by
recursive calls to Explore.

Explore(E, Sleep) initializes backtrack(E) to consist of an arbitrary enabled process which is not
in Sleep (line 3). Thereafter, for each process p in backtrack(E) which is not in Sleep, the algorithm
performs two phases: race detection (lines 5–9) and state exploration (lines 10–12).

In the race detection phase, the algorithm first finds the events e ∈ dom(E) that are in a reversible
race with the next step of p (line 5). For each such event e ∈ dom(E), the algorithm must explore

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

Source Sets: A Foundation for Optimal Dynamic Partial Order Reduction 42:15

ALGORITHM 1: Source-DPOR algorithm.
// In all algorithms, we use “:=” notation for data shared among recursive calls and “ let” for local variables.
Initial call: Explore(⟨⟩, ∅)

1 Explore(E, Sleep)
2 if ∃r ∈ (enabled(s[E]) \ Sleep) then // If not at a maximal or “sleep set blocked” execution...
3 backtrack(E) := {r }; // ... initialize backtrackwith arbitrary r
4 while ∃p ∈ (backtrack(E) \ Sleep) do // Pick an unexplored p
5 foreach e ∈ dom(E) such that(e ≾E .p next[E](p)) do // e and next[E](p) race
6 let E ′ = pre(E, e);
7 let v = notdep(e,E).p; // Find events independent with e
8 if I[E′](v) ∩ backtrack(E ′) = ∅ then // Ensure an initial exists in backtrack or...
9 add some q′ ∈ I[E′](v) to backtrack(E ′); // ... add an initial

10 let Sleep′ = {q ∈ Sleep | E ⊢p♦q}; // Compute next sleep set
11 Explore(E.p, Sleep′); // Recursively call Explore
12 add p to Sleep; // Mark p as explored

execution sequences in which the race is reversed. Such sequences are obtained by leaving un-
changed that part of E, which follows E ′ and depends neither on e nor on next[E](p), and thereafter
performing the event next[E](p) instead of e . The unchanged part is obtained as notdep(e,E). Note
that some events in notdep(e,E) may happen-before next[E](p), and it is then necessary to perform
them before next[E](p) can be executed. To this, we add p in order to ensure that next[E](p) is exe-
cuted instead of e . Let v be notdep(e,E).p. By construction, any execution sequence that starts with
E ′.v is guaranteed to be inequivalent to any execution sequence that starts with E. To ensure that
an execution sequence of form E ′.v will be explored, the algorithm checks (at line 8) whether some
process in I[E′](v) is already in backtrack(E ′). If not, a process in I[E′](v) is added to backtrack(E ′).
This ensures that a sequence equivalent to E ′.v has been or will be explored.

The exploration (phase) is started recursively from E.p, using an appropriately initialized sleep set.
According to rule (ii) in the explanation of sleep sets in Section 2, the sleep set for the exploration of
E.p should be initialized to be the set of processes currently in the sleep set of E that are independent
with p after E (i.e., Sleep′ = {q ∈ Sleep | E ⊢q♦p}).

On Source Sets and Persistent Sets. The mechanism by which source-DPOR produces source sets
rather than persistent sets is the test at line 8. In DPOR algorithms based on persistent sets, such
as those of Flanagan and Godefroid [2005b], Lauterburg et al. [2010], Tasharofi et al. [2012], Sen
and Agha [2006], and Saarikivi et al. [2012], this test must be stronger, and at least guarantee that
backtrack(E ′) contains a process q such that q performs some event in v which “happens-before”
next[E](p) in E.p. Thus, if the test at line 8 and the addition at line 9 are strengthened into

if ∄e ′ ∈ dom[E′](v).
[
e ′→E .pnext[E](p) ∧ ê ′ ∈ (I[E′](v) ∩ backtrack(E ′))

]
then

add ê ′ for some e ′ ∈ dom[E′](v) with
[
e ′→E .pnext[E](p) ∧ ê ′ ∈ I[E′](v)

]
to backtrack(E ′)

then the algorithm ensures that backtrack(E ′)will be a persistent set when Explore(E, Sleep) returns.
These lines guarantee that the first event inv which is dependent with some process in backtrack(E ′)
is performed by some process in backtrack(E ′), thus making backtrack(E ′) a persistent set. In
contrast, our test at line 8 does not require the added process to perform an event which “happens-
before” next[E](p). Consider, for instance, that v is just the sequence q.p, where q is independent

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

42:16 Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas

with p after E ′. Then, since the event of q does not “happen-before” the event of p, there is an
execution sequence E ′.p.q in which p is dependent with the process ê in backtrack(E ′) but need
not be in backtrack(E ′). On the other hand, since q ∈ I[E′](p.q), the set backtrack(E ′) (together with
the initial sleep set at E ′) is still a source set for the possible continuations after E ′.

5.2 Correctness
In this section, we prove that Algorithm 1 is correct in the sense that for each execution sequence E, it
explores an execution sequence in [E.v]≃ for somev . In particular, if E is maximal, then Algorithm 1
explores an execution sequence in [E]≃. We formalize this statement in Theorem 5.2. In Fig. 5 we
give an overview of the structure of its proof.

Theorem 5.2
Lemma 5.3

Claim 5.4
Claim 5.5
IH-condition 5.6

IH-condition 5.7

Fig. 5. Structure of correctness proof for Algorithm 1.

We first prove some auxiliary properties of initials and weak initials (Lemma 5.1). We then state
Lemma 5.3 (a statement about each call to Explore, from which Theorem 5.2 can be derived) and
prove it by induction on the order in which states (i.e., execution sequences) are backtracked by
the algorithm. A key idea, stated as Claim 5.4, is that when Explore(E, Sleep) returns, the set Sleep
(the final sleep set) will be a source set forW after E, whereW is the set of suffixes w such that
E.w is an execution sequence. To prove Claim 5.4 by contradiction, we assume that there is some
w ∈W which does not have a weak initial in the final sleep set. Then there is a sequence of form
E.q.wR , which (as proven in Claim 5.5) does not have any weak initial in the final sleep set. Now,
by the induction hypothesis (which is applicable by IH-condition 5.6) the algorithm will actually
explore a sequence equivalent to E.q.wR , in which it will detect a particular race. However, the
algorithm guarantees (lines 8 and 9) that the backtrack set at E contains a process which contradicts
the initial assumption. Having shown that the final sleep set is a source set forW after E, we can
prove Lemma 5.3 by induction (using IH-condition 5.7), thereby also establishing the converse
of Theorem 4.4.

We begin by establishing some properties that will be used in the proof:

Lemma 5.1. The following properties hold:
(1) If E ⊢ w , E ⊢ w ′ and E.w ≃ E.w ′, then

(a) I[E](w) = I[E](w ′)
(b) WI[E](w) = WI[E](w ′)

(2) If E ⊢ w .p then:
(a) I[E](w) ⊆ I[E](w .p)
(b) WI[E](w .p) ⊆ WI[E](w)

(3) E ⊢q♦w → I[E .q](w) = I[E](w)

Proof. We prove each of the cases, in order:
1(a). If p ∈ I[E](w) then by Definition 4.1(1) there exists w ′′ such that E.p.w ′′ ≃ E.w . Since

E.w ≃ E.w ′, we then have E.p.w ′′ ≃ E.w ′ which by the same definition entails p ∈ I[E](w ′).

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

Source Sets: A Foundation for Optimal Dynamic Partial Order Reduction 42:17

1(b). If p ∈ WI[E](w) then by Definition 4.1(2) there existsw ′′ and v such that E.p.w ′′ ≃ E.w .v .
Since E.w ≃ E.w ′, by Property (6) of Definition 3.2 we also have E.w .v ≃ E.w ′.v and
transitively E.p.w ′′ ≃ E.w ′.v which by Definition 4.1(2) entails p ∈ WI[E](w ′).

2(a). Trivial, from Property (3) of Definition 3.2 since E.w is a prefix of E.w .p therefore any event
not having others happening before it inw maintains this status.

2(b). If p ′ ∈ w , then p ′ ∈ WI[E](w .p) implies p ′ ∈ I[E](w), which implies p ′ ∈ WI[E](w). If
p ′ < w , then: if p ′ = p, p ∈ WI[E](w .p) implies E ⊢p♦w and hence p ∈ WI[E](w), otherwise
p ′ ∈ WI[E](w .p) implies E ⊢p ′♦w .p which also implies E ⊢p ′♦w and therefore p ∈ WI[E](w).

3. From Property (4) of Definition 3.2 and the definition of E ⊢q♦w it follows immediately
that:

E ⊢q♦w → E.q.w ≃ E.w .q (1)

Also, from Definition 4.1(1):
p ∈ I[E .q](w) ⇔ E.q.w ≃ E.q.p.w ′ (for somew ′) (2)
p ∈ I[E](w) ⇔ E.w ≃ E.p.w ′′ (for somew ′′) (3)

We will assume that p is in one set and show that p is also in the other:
(i) (Forward direction) Assume p ∈ I[E .q](w). From (2), the events in dom[E .q](p.w ′) are

the same as in dom[E .q](w) and they have the same (non-)dependency with next[E](q)
because E ⊢q♦w .
Therefore:

E ⊢q♦(p.w ′) → E.q.p.w ′ ≃ E.p.w ′.q similar to (1) (4)

Then:
p ∈ I[E .q](w) → E.q.w ≃ E.q.p.w ′ by (2)

→ E.w .q ≃ E.p.w ′.q by (1) and (4)
→ E.w ≃ E.p.w ′ by Property (6) of Def. 3.2
→ p ∈ I[E](w) by (3)

(ii) (Reverse direction) Assume p ∈ I[E](w). From E ⊢ q♦w it follows that E.w .q is an
execution sequence, therefore:
p ∈ I[E](w) → E.w ≃ E.p.w ′′ by (3)

→ E.w .q ≃ E.p.w ′′.q by Property (6) of Def. 3.2 (5)

The events in dom[E .q](p.w ′′) are the same as dom[E .q](w) and they have the same
(non-)dependency with next[E](q) because E ⊢q♦w . Therefore:

E ⊢q♦(p.w ′′) → E.q.p.w ′′ ≃ E.p.w ′′.q similar to (1) (6)

Continuing from (5):
(5) = E.w .q ≃ E.p.w ′′.q

→ E.q.w ≃ E.q.p.w ′′ by (1) and (6)
→ p ∈ I[E .q](w) by (2)

This concludes the proof of all cases of the lemma. ⊓⊔

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

42:18 Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas

Theorem 5.2 (Correctness of Source-DPOR). For all execution sequences E, Algorithm 1 ex-
plores some execution sequence E ′ which is in [E.v]≃ for some v . In particular, for all maximal exe-
cution sequences E, Algorithm 1 explores some execution sequence E ′ which is in [E]≃.

The proof is given at the end of this section, after establishing a series of intermediate lemmas.
We begin by introducing some notation. Let:

• init_sleep(E) be the value of Sleep when calling Explore(E, Sleep),
• final_sleep(E) be the value of Sleep when Explore(E, Sleep) returns,
• done(E) be final_sleep(E) \ init_sleep(E), i.e., the set of processes that are explored from s[E]
(added in Sleep by line 12),

• to_be_explored(E) be the set {w | E ⊢ w ∧ (I[E](w) ∩ init_sleep(E) = ∅)} of possible
continuations w of E such that I[E](w) ∩ init_sleep(E) = ∅; intuitively, this is the set of
sequences that should be explored by the call Explore(E, Sleep),

• e ≾E p denote that p is not blocked after E and that e ≾E .p next[E](p).
We are now ready to state the lemma that will eventually be used to prove correctness.

Lemma 5.3. Whenever a call to Explore(E, Sleep) returns during Algorithm 1, then for all sequences
w ∈ to_be_explored(E), the algorithm has explored some execution sequence E.w ′which is in [E.w .v]≃
for some v .

Proof. The proof is by induction on the order in which states (i.e., execution sequences) are
backtracked by the algorithm. The first time Explore returns, it has just explored a maximal sequence,
so the base case holds trivially. Consider a sequence E. As inductive hypothesis, we assume that
the statement in the lemma holds for all execution sequences E.p with p ∈ done(E). Whenever we
invoke the induction hypothesis, we need to establish a condition of formw ′ ∈ to_be_explored(E.p)
for some process p and sequencew ′. We will refer to this as the IH-condition, and try to separate
its establishment from the rest of the flow in the proof. We structure the proof of the lemma as a
sequence of claims.

Claim 5.4. done(E) is a source set for to_be_explored(E) after E.

By the definition of source sets (Definition 4.3), this claim states that for eachw ∈ to_be_explored(E),
there is some p ∈ done(E) such that p ∈ WI[E](w). Since, by the definition of to_be_explored(E),
the set of sequences w with E ⊢ w is the union of to_be_explored(E) and the set {w | E ⊢
w ∧ init_sleep(E) , ∅}, it implies that the set final_sleep(E) is a source set for {w | E ⊢ w}.

Proof of Claim 5.4. By contradiction. Assume a w ∈ to_be_explored(E), such that for all p ∈
done(E) we have p < WI[E](w). We will prove that such a sequence cannot exist.
If done(E) is empty, no process was explored from that state: this can only happen if the check

on line 2 has failed (otherwise process p on that line will later be added by line 12) which contradicts
that to_be_explored(E) is non-empty. Therefore, done(E) is not empty.
For each process p ∈ done(E), letwp be the longest prefix ofw such that E ⊢p♦wp , and let ep be

the first event in dom[E](w) which is not inwp . We have:

p , êp (otherwise from E ⊢p♦wp we derive p ∈ WI[E](w)) (7)

Let q be such thatwq is a longest prefix among the prefixeswp for p ∈ done(E). If there are several
processes p such thatwp is the same longest prefix, then let q be the process among these which is
explored first from s[E]. Finally, letwR bewq .êq (Fig. 6).

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

Source Sets: A Foundation for Optimal Dynamic Partial Order Reduction 42:19

ep

eq

w
wp

E wq

wR

Fig. 6. Illustrating E,w,wp , ep ,wq , eq andwR .

Given these definitions, all the following are valid execution sequences:
E ⊢ w → E ⊢ wq .êq

→ E.wq ⊢ êq (8)

as well as the following:
E ⊢q♦wq → E.wq ⊢ q

→ E.wq ⊢ q.êq by (7), (8) and Assumption 3.1
→ E ⊢ q.wq .êq by E ⊢q♦wq

→ E ⊢ q.wR by the definition ofwR (9)

We also note that
p < WI[E](wR) for all p ∈ done(E) by the construction ofwR (10)

As the next step in the proof of Claim 5.4, we establish the following claim:

Claim 5.5. For all p ∈ done(E) with p , q we have p < WI[E](q.wR).

Proof of Claim 5.5. We distinguish among the following cases:
1. If ep , eq , thenwp is a strict prefix ofwq . Therefore:

ep ∈ wq → p < WI[E](wq) by E ̸ ⊢p♦wq

→ p < WI[E](wq .q) by 5.1.2b
→ p < WI[E](q.wq) by E.q.wq ≃ E.wq .q, 5.1.1b
→ p < WI[E](q.wR) by 5.1.2b

2a. If ep = eq and E ̸ ⊢p♦q, then p < WI[E](q.wR) follows directly.
2b. If ep = eq , E ⊢p♦q, and E ̸ ⊢p♦q.wq , then p < WI[E](q.wR) follows directly.
2c. If ep = eq , E ⊢p♦q, and E ⊢p♦q.wq , then:

E ⊢p♦q.wq → E ⊢p♦wq .q by E ⊢q♦wq

→ E.wq ⊢p♦q (11)
ep = eq → E.wq ̸ ⊢p♦êq

→ E.wq ̸ ⊢p♦q.êq by (11) and Property (7) of Def. 3.2
→ E ̸ ⊢p♦wq .q.êq

→ E ̸ ⊢p♦q.wq .êq by E ⊢q♦wq

→ p < WI[E](q.wR)

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

42:20 Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas

This concludes the proof of Claim 5.5. ⊓⊔

We will next invoke the inductive hypothesis for E.q and wR . Let us first establish the IH-
condition:

IH-condition 5.6. wR ∈ to_be_explored(E.q).

Proof of IH-condition 5.6. ThatE.q ⊢ wR was established in (9).Wemust prove that I[E .q](wR)∩
init_sleep(E.q) = ∅. By the handling of sleep sets, init_sleep(E.q) may extend init_sleep(E) by some
of the processes in done(E). From the assumptions forw we have that for all p ∈ done(E):

p < WI[E](w) → p < I[E](w) by Lemma 4.2(1)
→ p < I[E](wq) by 5.1.2a
→ p < I[E .q](wq) by E ⊢q♦wq , 5.1.3 (12)

Any other process in init_sleep(E.q) was also in init_sleep(E) (passed along by line 10). Again, from
the assumptions forw we have that for all p ∈ init_sleep(E):

I[E](w) ∩ init_sleep(E) = ∅ → p < I[E](w)
→ p < I[E .q](wq) (same reasoning) (13)

Since in (12) and (13) we considered I[E .q](wq) the only process that can be in I[E .q](wR) ∩
init_sleep(E.q) is êq . We have two cases.

• If there is no event e inwq such that e→E .wReq , then by the construction of eq , we have
E ̸ ⊢q♦êq , implying êq < init_sleep(E.q) (as it is filtered by line 10).

• Otherwise, let e be the last event in wq such that e→E .wReq . Let w ′
q be the prefix of wq

that precedes e , and let w ′′
q be the suffix of wq that follows e , i.e., wq = w ′

q .̂e .w
′′
q . By

construction, we have E.w ′
q ̸ ⊢ ê♦êq and E.w ′

q ⊢ ê♦q. By Property (7) of Definition 3.2, we
infer E.w ′

q ̸ ⊢ ê♦(q.êq), which implies e→E .wq .q .êqeq , which implies e→E .q .wq .êqeq . Hence
e→E .q .wReq , and so êq < I[E .q](wR).

This concludes the establishment of IH-condition 5.6. ⊓⊔

Using the inductive hypothesis for E.q, the algorithm explores some sequence of the form E.q.w ′

such that:
E.q.w ′ ≃ E.q.wR .v

′ for some v ′ (14)
Note that in w ′, the event eq exists, but need not be the last occurring of the events ep for

p ∈ done(E), since such independent events may have been reordered fromwR .v
′ tow ′.

Let w ′
q be the prefix of w ′ up to, but not including eq . By the construction of wq , we have

next[E](q) ≾E .q .wq eq . From (14), it also follows that next[E](q) ≾E .q .w ′
q eq (this is the same

race as the race next[E](q) ≾E .q .wq eq , i.e., between next[E](q) and eq over the sequence wq).
Since the sequence E.q.w ′ is one actually explored by the algorithm, line 5 will detect the race
next[E](q) ≾E .q .w ′

q eq . At that point,
• p in the algorithm will correspond to êq ,
• E ′ in the algorithm will correspond to E, and
• e in the algorithm will correspond to next[E](q).

The algorithm will extract (lines 6 and 7) the sequence v = notdep(next[E](q),E.q.w ′
q).êq from

E.q.w ′
q .êq by removing events that have next[E](q) happening-before them and identify its initials

I[E](v). Below let us use
∗→ to denote multiple steps. For any such q′ ∈ I[E](v) it follows that:

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

Source Sets: A Foundation for Optimal Dynamic Partial Order Reduction 42:21

q′ ∈ I[E](v) → q′ ∈ I[E](q.w ′
q .êq) by Lemma 4.2(1) and definition of notdep

∗→ q′ ∈ I[E](q.w ′) by Lemma 5.1.2a (15)
→ q′ ∈ I[E](q.wR .v

′) by (14), Lemma 5.1.1a
→ q′ ∈ WI[E](q.wR) by Lemma 4.2(2)

The algorithm then guarantees (in lines 8 and 9) that there is one such q′ ∈ I[E](v) which is added
to backtrack(E). Additionally, by (15) we have that no other event happens-before q′ in E.q.w ′.
Therefore q′ < init_sleep(E), otherwise it would have stayed in the sleep set (transferred by line 10)
and could not have been chosen for execution.
Together, q′ ∈ backtrack(E) and q′ < init_sleep(E) imply that q′ ∈ done(E) but this contradicts

Claim 5.5. Such a sequencew can therefore not exist and this concludes the proof of Claim 5.4. ⊓⊔

Moving on with the proof of Lemma 5.3. By Claim 5.4, for any E.w , we have p ∈ WI[E](w) for
some p ∈ done(E). Let q be the process among these which is explored first from s[E]. We intend to
apply the inductive hypothesis for E.q andw \ q:

IH-condition 5.7. (w \ q) ∈ to_be_explored(E.q).

Proof of IH-condition 5.7. We must establish two properties:(i) that E.q ⊢ w \ q and (ii) that
I[E .q](w \q) ∩ init_sleep(E.q) = ∅. We infer E.q ⊢ w \q from E ⊢ w and q ∈ WI[E](w). For the second
property, I[E .q](w \ q) may extend I[E](w) only by processes q′ ∈ w such that next[E](q)→E .w ⟨q′, j⟩,
where ⟨q′, j⟩ is the first event of q′ inw . However, any such process q′ cannot be in init_sleep(E.q),
since in this case E ̸ ⊢q♦q′ so q′ is removed from the sleep set when exploring E.q. Given also that
init_sleep(E.q) \ init_sleep(E) does not contain any process in I[E](w) (recall that q was the first
process in I[E](w) to be explored), we infer IH-condition 5.7. ⊓⊔

The conclusion from the inductive hypothesis is that the algorithm explores some sequence
E.q.ŵ which is in [E.q.(w \ q).v]≃ for some v . We have two cases:

• q ∈ w . From q ∈ WI[E](w) we infer E.q.(w \ q).v ≃ E.w .v , which establishes the lemma.
• q < w , i.e., (w \ q) = w . From E ⊢q♦w , we infer E.q.ŵ ≃ E.q.w .v ≃ E.w .q.v .

This concludes the proof of Lemma 5.3. ⊓⊔

Using Lemma 5.3 we can finally conclude the proof of the main theorem:

Proof of Theorem 5.2. Since Algorithm 1 is initially called with Explore(⟨⟩, ∅), Lemma 5.3
implies correctness in the sense that for all execution sequences E the algorithm explores some
execution sequence E ′ which is in [E.v]≃ for some v . In particular, if E is maximal, then E ′ ≃ E. ⊓⊔

6 WAKEUP TREES
As we described earlier, source-DPOR may still lead to sleep-set blocked explorations. We therefore
present an algorithm, called optimal-DPOR, which is provably optimal in that it always explores
exactly one interleaving per Mazurkiewicz trace, and never encounters sleep-set blocking. Optimal-
DPOR is obtained by combining source sets with a novel mechanism, called wakeup trees, which
control the initial steps of future explorations.

Wakeup trees can be motivated by looking at lines 6–9 of Algorithm 1. At these lines, it is found
that some execution sequence starting with E ′.v should be performed in order to reverse a detected
race. However, at line 9, only a single process from the sequence v is entered into backtrack(E ′),
thus “forgetting” information about how to reverse this race. Since the new exploration after E ′.q

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

42:22 Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas

does not “remember” this sequence v , it may explore a completely different sequence, which could
potentially lead to sleep set blocking. To prevent such a situation, we replace the backtrack set by a
so-called wakeup tree. The wakeup tree contains initial fragments of the sequences that are to be
explored after E ′. Each fragment guarantees that no sleep set blocking will be encountered during
the exploration.

6.1 Formal Definition
Let us define an ordered tree as a pair ⟨B,≺⟩, where B (the set of nodes) is a finite prefix-closed set
of sequences of processes, with the empty sequence ⟨⟩ being the root. The children of a nodew ,
of form w .p for some set of processes p, are ordered by ≺. In ⟨B,≺⟩, such an ordering between
children has been extended to the total order ≺ on B by letting ≺ be the induced post-order relation
between the nodes in B. This means that if the childrenw .p1 andw .p2 are ordered asw .p1 ≺ w .p2,
thenw .p1 ≺ w .p2 ≺ w in the induced post-order. An example of the ordering of sequences is given
in Fig. 7.

⟨⟩

p

p.q p.r

p.r .r

r

r .r

r .r .q

Fig. 7. A wakeup tree. The order of exploration ≺ is p.q, followed by p.r .r , p.r , and so on until we finish at ⟨⟩.

Definition 6.1 (Wakeup Tree). Let E be an execution sequence, and P be a set of processes. A
wakeup tree after ⟨E, P⟩ is an ordered tree ⟨B,≺⟩, such that the following properties hold

(1) WI[E](w) ∩ P = ∅ wheneverw is a leaf of B;
(2) whenever u .p and u .w are nodes in B with u .p ≺ u .w , and u .w is a leaf, then p < WI[E .u](w).

Intuitively, a wakeup tree after ⟨E, P⟩ is intended to consist of initial fragments of sequences
that should be explored after E to avoid sleep set blocking, when P is the current sleep set at E. To
see this, note that if q ∈ P , then (by the way sleep sets are handled) q cannot be in I[E](w) for any
sequencew that is explored after E. If, however, E ⊢q♦w , then q is still in the sleep set at E.w and
may never be removed. To prevent this, we therefore require q < WI[E](w), which is the same as
Property 1, i.e.,WI[E](w) ∩ P = ∅. Property 2 implies that when a process p is added to the sleep set
at E.u, after exploring E.u .p, then by the same reasoning as above, it will have been removed from
the sleep set when we reach E.u .w .

The empty wakeup tree is the tree ⟨{⟨⟩}, ∅⟩, which consists only of the root ⟨⟩. We state a useful
property of wakeup trees.

Lemma 6.2. If ⟨B,≺⟩ is a wakeup tree after ⟨E, P⟩ and w,w ′ ∈ B and w is a leaf which satisfies
w ′∼[E]w , thenw ⪯ w ′.

The lemma states that any leafw is the smallest (w.r.t. ≺) node in the tree which is consistent
withw after E.

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

Source Sets: A Foundation for Optimal Dynamic Partial Order Reduction 42:23

Proof. We prove the lemma by contradiction. Assumew ′ ≺ w . Then by the definition of ordered
trees there are u,p,v,v ′ such thatw ′ = u .p.v ′ andw = u .v such that u .p ≺ u .v . Since u .v is a leaf,
we have p < WI[E .u](v) by Property 2 of Definition 6.1. Hence p ̸∼[E .u]v , which implies u .p ̸∼[E]u .v ,
which implies u .p.v ′ ̸∼[E]u .v , i.e.,w ′ ̸∼[E]w . ⊓⊔

For a wakeup tree ⟨B,≺⟩ and a process p ∈ B, define subtree(⟨B,≺⟩,p) to denote the subtree
of ⟨B,≺⟩ rooted at p, i.e., subtree(⟨B,≺⟩,p) = ⟨B′,≺′⟩ where B′ = {w | p.w ∈ B} and ≺′ is the
restriction of ≺ to B′.

6.2 Inserting Sequences in a Wakeup Tree
Let ⟨B,≺⟩ be a wakeup tree after ⟨E, P⟩. For any sequencew such that E.w is an execution sequence
with WI[E](w) ∩ P = ∅, we need an operation insert[E](w, ⟨B,≺⟩), that satisfies the following
properties:

(1) insert[E](w, ⟨B,≺⟩) is also a wakeup tree after ⟨E, P⟩,
(2) any leaf of ⟨B,≺⟩ remains a leaf of insert[E](w, ⟨B,≺⟩), and
(3) insert[E](w, ⟨B,≺⟩) contains a leaf u with u∼[E]w .

A simple implementation of insert[E](w, ⟨B,≺⟩) is the following: Let v be the smallest (w.r.t. to ≺)
sequence in B such that v∼[E]w . If v is a leaf, the result of insert[E](w, ⟨B,≺⟩) can be taken as ⟨B,≺⟩
(leaving the tree unmodified). Otherwise, letw ′ be a shortest sequence such thatw ⊑[E] v .w

′, and
add v .w ′ as a new leaf, which is ordered after all already existing nodes in B of form v .w ′′.
As an illustration, using the program of Fig. 1, assume that a wakeup tree ⟨B,≺⟩ after ⟨⟨⟩, ∅⟩

contains p as the only leaf. Then the operation insert[⟨⟩](q.q, ⟨B,≺⟩) adds q.q as a new leaf with
p ≺ q.q. If we thereafter perform insert[⟨⟩](r .r , ⟨B,≺⟩), then the wakeup tree remains the same,
since q.q∼[⟨⟩]r .r , and q.q is already a leaf.

7 OPTIMAL-DPOR
In this section, we present a DPOR algorithm that achieves optimal reduction.

7.1 Algorithm
The optimal-DPOR algorithm, shown as Algorithm 2, performs a depth-first search using the
recursive procedure Explore(E, Sleep,WuT), where E and Sleep are as in Algorithm 1, andWuT is
a wakeup tree after ⟨E, Sleep⟩, containing extensions of E that are guaranteed to be explored (in
order) by Explore(E, Sleep,WuT). IfWuT is empty, then Explore(E, Sleep,WuT) is free to explore any
extension of E.

Like Algorithm 1, the algorithm runs in two phases: race detection (lines 2–7) and state exploration
(lines 8–21), but it is slightly differently organized. Instead of analyzing races at every invocation
of Explore, races are analyzed in the entire execution sequence only when a maximal execution
sequence has been generated. The reason for this is that the test at line 6 is precise only when the
used sequence v , which is defined at line 5, includes all events in the entire execution that do not
“happen after” e , also those that occur after e ′. Thereforev can be defined only when E is a maximal
execution sequence.
In the race detection phase, Algorithm 2 must be able to access the current sleep set for each

prefix E ′ of the currently explored execution sequence E. For each such prefix E ′, the algorithm
therefore maintains a set of processes sleep(E ′), which is the current sleep set at E ′. In a similar way,
for each prefix E ′ of E, the algorithm maintains wut(E ′), which is the current wakeup tree at E ′.

Let us now explain the race detection phase, which is entered whenever the exploration reaches
the end of a complete sequence (i.e., enabled(s[E]) = ∅). In this phase, the algorithm investigates all

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

42:24 Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas

ALGORITHM 2: Optimal-DPOR algorithm.
Initial call: Explore(⟨⟩, ∅, ⟨{⟨⟩}, ∅⟩)

1 Explore(E, Sleep,WuT)
2 if enabled(s[E]) = ∅ then // Race detection only at maximal execution sequences
3 foreach e, e ′ ∈ dom(E) such that (e ≾E e ′) do // For each racing pair e, e′

4 let E ′ = pre(E, e); // Goto state before e

5 let v = notdep(e,E).ê ′; // Find events independent with e
6 if sleep(E ′) ∩WI[E′](v) = ∅ then // Has an equivalent already been explored?
7 wut(E ′) := insert[E′](v,wut(E ′)); // If not, insert into the wakeup tree

8 else // If not at a maximal execution sequence, explore...
9 if WuT , ⟨{⟨⟩}, ∅⟩ then

10 wut(E) := WuT; // ... either using an existing wakeup tree

11 else
12 choose p ∈ enabled(s[E]); // ... or by selecting an arbitrary p ...

13 wut(E) := ⟨{⟨⟩,p}, {(p, ⟨⟩)}⟩; // ... and making a wakeup tree from it

14 sleep(E) := Sleep;
15 while ∃p ∈ wut(E) do // While the wakeup tree is not empty...
16 let p = min≺{p ∈ wut(E)}; // ... pick next branch, ...
17 let Sleep′ = {q ∈ sleep(E) | E ⊢p♦q}; // ... compute next sleep set...
18 letWuT′ = subtree(wut(E),p); // ... and wakeup tree (a subtree of the current),...
19 Explore(E.p, Sleep′,WuT′); // ... and do a recursive call to Explore
20 remove all sequences of form p.w from wut(E); // When done, cleanup...
21 add p to sleep(E); // ... and mark p as explored

races that can be reversed in the just explored sequence E. Such a race consists of two events e
and e ′ in E, such that e ≾E e ′. Let E ′ = pre(E, e) and let v = notdep(e,E).ê ′, i.e., the sub-sequence
of E consisting of the events that occur after e but do not “happen after” e , followed by ê ′ (this
notation is introduced at lines 4 and 5). The reversible race e ≾E e ′ indicates that there is another
execution sequence, which performs v after E ′, and in which the race is reversed, i.e., the event e ′
happens before the event e . Since E ′.v is incompatible with the currently explored computation,
the algorithm must now make sure that it will be explored if it was not explored previously. If some
p ∈ sleep(E ′) is in WI[E′](v), then some execution equivalent to one starting with E ′.v will have
been explored previously. If not, we perform the operation insert[E′](v,wut(E ′)) to make sure that
some execution equivalent to one starting with E ′.v will be explored in the future.
In the exploration phase, which is entered if exploration has not reached the end of a maximal

execution sequence, first the wakeup tree wut(E) is initialized toWuT. IfWuT is empty, then (as
we will state in Lemma 7.1) the sleep set is empty, and an arbitrary enabled process is entered
into wut(E). The sleep set sleep(E) is initialized to the sleep set that is passed as argument in this
call to Explore. Thereafter, each sequence in wut(E) is subject to exploration. We find the first (i.e.,
minimal) single-process branch p in wut(E) and call Explore recursively for the sequence E.p. In
this call, the associated sleep set Sleep′ is obtained from sleep(E) in the same way as in Algorithm 1.
The associated wakeup tree WuT′ is obtained as the corresponding subtree of wut(E). Thereafter,
Explore is called recursively for the sequence E.p with the modified sleep set Sleep′ and wakeup

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

Source Sets: A Foundation for Optimal Dynamic Partial Order Reduction 42:25

treeWuT′. After Explore(E.p, Sleep′,WuT′) has returned, the sleep set sleep(E) is extended with p,
and all sequences beginning with p are removed from wut(E).

7.2 Correctness
Let us now prove the correctness of the optimal-DPOR algorithm. Throughout, we assume a
particular completed execution of optimal-DPOR. This execution consists of a number of terminated
calls to Explore(E, Sleep,WuT) for some values of the parameters E, Sleep, andWuT. Let E denote
the set of execution sequences E that have been explored in some call Explore(E, ·, ·). Define the
ordering ∝ on E by letting E ∝ E ′ if Explore(E, ·, ·) returned before Explore(E ′, ·, ·). Intuitively, if
one were to draw an ordered tree that shows how the exploration has proceeded, then E would be
the set of nodes in the tree, and ∝ would be the post-order between nodes in that tree.

For an arbitrary execution sequence E ∈ E let:
• final_sleep(E) denote the value of sleep(E) at the point when Explore(E, Sleep,WuT) returns.
• done(E) denote final_sleep(E) \ Sleep, i.e., the set of processes that are explored from s[E].

We begin by establishing some useful invariants.

Lemma 7.1. Whenever Algorithm 2 is inside a call Explore(E, Sleep,WuT), then the following two
invariants hold:

(1) wut(E) is a wakeup tree after ⟨E, sleep(E)⟩,
(2) if WuT is empty, then Sleep is empty.

Proof. We establish these two invariants jointly, by induction over the steps of the algorithm.
The properties hold at the beginning of the initial call, since sleep(E) and wut(E) are both empty.
We verify that each property is preserved by the steps of the algorithm.

(1) We need to consider the following cases.
• Whenever wut(E) is updated at line 7, it follows by Property 1 of the operation
insert[E](v,wut(E)) that wut(E) remains a wakeup tree after ⟨E, sleep(E)⟩.

• Consider a new call to Explore(E.p, Sleep′,WuT′) at line 19, which occurs inside a
call Explore(E, Sleep,WuT), and where Sleep′ and WuT′ are obtained from the current
values of sleep(E) and wut(E) by Sleep′ = {q ∈ sleep(E) | E ⊢ p♦q} and WuT′ =
subtree(wut(E),p), at lines 17 and 18. Since the parameters Sleep′ andWuT′ will be used
to initialize sleep(E.p) (at line 14) and wut(E.p) (at line 10), we must check thatWuT′

is a wakeup tree after ⟨E.p, Sleep′⟩. By the inductive hypothesis, wut(E) is a wakeup
tree after ⟨E, sleep(E)⟩. We establish thatWuT′ is a wakeup tree after ⟨E.p, Sleep′⟩ by
checking the two properties of Definition 6.1. Let WuT′ = ⟨B′,≺′⟩ and let wut(E) =
⟨B,≺⟩.
(a) Letw be a leaf of B′; thenp.w is a leaf of B. Let q ∈ Sleep′. By the update at line 17,

we have q ∈ sleep(E) and E ⊢p♦q. By the inductive hypothesis q < WI[E](p.w),
which using E ⊢ p♦q implies q < WI[E .p](w). Hence WI[E .p](w) ∩ Sleep′ = ∅
wheneverw is a leaf of B′.

(b) Let u .q and u .w be nodes in B′ with u .q ≺′ u .w , and u .w is a leaf. Then p.u .q
and p.u .w are nodes in B with p.u .q ≺ p.u .w , and p.u .w a leaf. By the inductive
hypothesis, it follows that q < WI[E .p .u](w), which is precisely what we must
establish for the inductive step.

If wut(E.p) is initialized at line 13 instead of at line 10, then this initialization is
performed in a call of form Explore(E.p, Sleep′,WuT′)whereWuT′ is the empty wakeup
tree. By Invariant 2 of the inductive hypothesis, Sleep′ is empty. Since ⟨{⟨⟩,p}, {(p, ⟨⟩)}⟩
is trivially a wakeup tree after ⟨E.p, ∅⟩, the property follows.

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

42:26 Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas

• Consider the update to sleep(E) and wut(E) at lines 20 and 21. We must prove that they
preserve the two properties of Definition 6.1.
(a) Since the update removes nodes from wut(E), and p is added to sleep(E), it

suffices to check that p < WI[E](w) wheneverw is a leaf of wut(E) that remains
after the operation, i.e.,w is not of form p.w ′. Before the operation, it was the
case that p and w were nodes of wut(E) with p ≺ w and w a leaf. From the
inductive hypothesis, Property 2 of Definition 6.1 implies that p < WI[E](w),
which completes the proof for this case.

(b) Since wut(E) is modified by removing a branch from the root, this property is
preserved.

(2) Consider a new call to Explore(E.p, Sleep′,WuT′) at line 19. If WuT′ is empty, then p must
have been a leaf in wut(E) just before the call. By Property 1 of the inductive hypothesis,
wut(E)was then a wakeup tree after ⟨E, sleep(E)⟩, therefore (by Property 1 of Definition 6.1),
we have E ̸ ⊢p♦q for all q ∈ sleep(E), which by construction of Sleep′ at line 17 implies that
Sleep′ is empty.

⊓⊔

Lemma 7.2. If E.p ∝ E.w then p < I[E](w).

Proof. We use a proof by contradiction. Assume that E.p ∝ E.w but p ∈ I[E](w). The property
p ∈ I[E](w) implies that w is of form w ′.p.w ′′ with E ⊢ p♦w ′. The property E.p ∝ E.w implies
that the sequence E.w is explored after the call to Explore(E.p, ·, ·) has returned. After the call to
Explore(E.p, ·, ·) has returned, we have that p ∈ sleep(E), by the insertion at line 21. By the way
sleep sets are updated at line 17, and the assumption E ⊢p♦w ′, we conclude that p remains in the
sleep set at the calls Explore(E.w ′′′, ·, ·) whenever w ′′′ is a prefix of w ′. Thus p ∈ sleep(E.w ′) just
before the call Explore(E.w ′.p, ·, ·) is performed. By Invariant 1 of Lemma 7.1, we then have that
wut(E.w ′) is a wakeup tree after ⟨E.w ′, sleep(E.w ′)⟩. To perform the call Explore(E.w ′.p, ·, ·), it must
be the case that p is a node in wut(E.w ′). But this contradicts Property (1) of Definition 6.1, which
says that p < WI[E .w ′](p.v) where v is chosen so that p.v is a leaf of wut(E.w ′). Thus, the lemma is
proven. ⊓⊔

The following lemma captures the relationship between wakeup trees and ⟨E,∝⟩.

Lemma 7.3. Let ⟨E,∝⟩ be the tree of explored execution sequences. Consider some point in the
execution, and the wakeup tree wut(E) at that point, for some E ∈ E.

(1) Ifw ∈ wut(E) for somew , then E.w ∈ E.
(2) Ifw ≺ w ′ forw,w ′ ∈ wut(E) then E.w ∝ E.w ′

Proof. The properties follow by noting how the exploration from any E ∈ E is controlled by
the wakeup tree wut(E) at lines 15–21. ⊓⊔

We can now prove that Algorithm 2 is correct in the sense that for each maximal execution
sequence E, it explores an execution sequence in [E]≃. This is formalized in Theorem 7.4. Similarly
to Lemma 5.3, Theorem 7.4 is proven by induction on the order in which states (i.e., execution
sequences) are backtracked by the algorithm. The inductive step is proven by contradition, assuming
that somemaximal sequence E.w is unexplored after the call for E returns. The proof of this inductive
step is structured as a sequence of claims, structured in the way shown in Fig. 8. First it is shown
that the assumption implies Claim 7.5, which is analogous to Claim 5.4 in the proof of Lemma 5.3,
and essentially states thatw is a counterexample to the statement that final_sleep(E) is a source set
for the set of sequencesw with E ⊢ w . Thereafter, the sequence of Claims 7.6–7.9 establish that the

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

Source Sets: A Foundation for Optimal Dynamic Partial Order Reduction 42:27

algorithm must have explored some sequence which exposes a race, which by Claim 7.10 causes the
algorithm to include a leaf with properties that contradict the initial assumption in the inductive
step, thereby concluding the proof of the theorem.

Theorem 7.4
Claim 7.5
Claim 7.9

Claim 7.8
Claim 7.7

Claim 7.6
Claim 7.10

Fig. 8. Structure of correctness proof for Algorithm 2.

Theorem 7.4 (Correctness of Optimal-DPOR). Whenever a call to Explore(E, Sleep,WuT) re-
turns during Algorithm 2, then for all maximal execution sequences E.w , the algorithm has explored
some execution sequence E ′ which is in [E.w]≃.

Since the initial call to the algorithm uses the arguments Explore(⟨⟩, ∅, ⟨{⟨⟩}, ∅⟩), Theorem 7.4
implies that for all maximal execution sequences E the algorithm explores some execution sequence
E ′ which is in [E]≃. Since any execution sequence can be extended to a maximal one, the theorem
also implies the analogue of Theorem 5.2, namely that for all execution sequences E, Algorithm 2
explores some execution sequence E ′ which is in [E.v]≃ for some v .

Proof. By induction on the set of execution sequences E that are explored during the considered
execution, using the ordering ∝ (i.e., the order in which the corresponding calls to Explore returned).

Base Case: This case corresponds to the first sequence E for which the call Explore(E, ·, ·) returns.
By the algorithm, E is already maximal, so the theorem trivially holds.

Inductive Step: Let us assume that there exist values E, Sleep andWuT, such that when the call to
Explore(E, Sleep,WuT) returns, there is a maximal sequence E.w such that the algorithm has not
explored any execution sequence E ′ in [E.w]≃. We will show that this leads to a contradiction.

For such w to exist, E cannot be maximal, so final_sleep(E) contains at least one process. For
p ∈ final_sleep(E), define:

• E ′
p , such that E ′

p ≤ E, E ′
p .p ∈ E, and E ′

p .p is the last execution sequence of this form that
precedes E (w.r.t. ∝). If p ∈ done(E) then E ′

p = E, but if p ∈ Sleep then E ′
p is a strict prefix

of E.
• w ′

p , as E = E ′
p .w

′
p . It follows that E ′

p ⊢p♦w ′
p .

Inductive Hypothesis: The theorem holds for all execution sequences E ′ with E ′ ∝ E.

Claim 7.5. WI[E](w) ∩ final_sleep(E) = ∅.

Using the terminology of source sets, this claim states thatw is a counterexample to the statement
that final_sleep(E) is a source set for the set of sequencesw with E ⊢ w .

Proof. By contradiction. Assume that there is a p ∈ WI[E](w) with p ∈ final_sleep(E). Sincew
is maximal, p ∈ WI[E](w) implies p ∈ I[E](w), therefore from Definition 4.1(1) there is a w ′′ such
that E.w ≃ E.p.w ′′ ≃ E ′

p .w
′
p .p.w

′′ ≃ E ′
p .p.w

′
p .w

′′. By the inductive hypothesis applied to E ′
p .p, the

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

42:28 Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas

algorithm has explored some execution sequence in [E ′
p .p.w

′
p .w

′′]≃ = [E.w]≃, which contradicts
the main assumption aboutw . ⊓⊔

For p ∈ final_sleep(E), also define:
• wp , as the longest prefix ofw such that E ⊢p♦wp ,
• ep , as the first event in dom[E](w)which is not inwp . Such an event ep must exist, otherwise
wp = w , which implies E ⊢p♦w , which implies p ∈ WI[E](w), which contradicts Claim 7.5.

Finally, define:
• q ∈ final_sleep(E), such thatwq is a longest prefix amongwp . If there are several processes
p ∈ final_sleep(E) such that wp is the same longest prefix, then pick q such that E ′

q .q is
minimal (w.r.t. ∝).

• wR , aswq .êq .
• Sleep′ as the initial sleep set argument in the exploration of E ′

q .q, i.e., it started by calling
Explore(E ′

q .q, Sleep
′, ·).

Claim 7.6. E ′
q ⊢ q.w ′

q .wR .

Proof. Since E ′
q ⊢ q (actually explored) and E ′

q ⊢q♦(w ′
q .wq), it follows that E ′

q ⊢ w ′
q .wq .q. Given

also that E ′
q ⊢ w ′

q .wq .eq and q does not disable eq (since q and êq are different), we conclude that
E ′
q ⊢ w ′

q .wq .q.eq and hence E ′
q ⊢ q.w ′

q .wq .eq which can be written as E ′
q ⊢ q.w ′

q .wR . ⊓⊔

Claim 7.7. WI[E′
q .q](w ′

q .wR) ∩ Sleep′ = ∅.

Proof. We will establish the stronger property WI[E′
q .q](w ′

q .wq) ∩ Sleep′ = ∅. Claim 7.6 has
shown that the execution sequence is valid. The proof is then by contradiction: Assume that some
process p is inWI[E′

q .q](w ′
q .wq) ∩ Sleep′.

By the construction of Sleep′ at line 17, the process p must be in sleep(E ′
q) just before the

call to Explore(E ′
q .q, Sleep

′, ·) and satisfy E ′
q ⊢ p♦q. From p ∈ WI[E′

q .q](w ′
q .wq), and E ′

q ⊢ p♦q, and
Property 4.7(5), it follows that p ∈ WI[E′

q](q.w ′
q .wq), which, using E ′

q .q.w
′
q .wq ≃ E ′

q .w
′
q .wq .q (which

follows from E ′
q ⊢ q♦(w ′

q .wq)), implies p ∈ WI[E′
q](w ′

q .wq .q), which by Property 4.7(4) implies
p ∈ WI[E′

q](w ′
q .wq).

Since, again by Property 4.7(4),p ∈ WI[E′
q](w ′

q .wq) also impliesp ∈ WI[E′
q](w ′

q), during exploration
of E ′

q .w
′
q no event inw ′

q removesp from the sleep set. Thus,p < w ′
q andp will end up in sleep(E ′

q .w
′
q)

and from there in final_sleep(E ′
q .w

′
q), which means p ∈ final_sleep(E). It hence cannot hold that

p ∈ I[E](wq), since this by Property 4.2(1) implies p ∈ I[E](w), hence p ∈ WI[E](w), violating
Claim 7.5. Since there can be no event inwq happening-before p (otherwise the same event would
prohibit p ∈ WI[E′

q](w ′
q .wq)) the only way for p < I[E](wq) is by p < wq .

Therefore p < w ′
q .wq which by p ∈ WI[E′

q](w ′
q .wq) entails E ′

q ⊢ p♦w ′
q .wq . By choice of q, we

then have necessarily that ep = eq (otherwisewp would be longer thanwq). But since among the
processes p with ep = eq we chose q to be the first one for which a call of the form Explore(E ′

q .p, ·, ·)
was performed, we have that p < sleep(E ′

q) just before the call to Explore(E ′
q .q, Sleep

′, ·), whence
p < Sleep′. Thus we have a contradiction. ⊓⊔

Claim 7.8. Let z ′ be any sequence such that E ′
q .q.w

′
q .wR .z

′ is maximal (such a z ′ can always be
found, since E ′

q .q.w
′
q .wR is an execution sequence). Then, the algorithm explores some sequence E ′

q .q.z
in [E ′

q .q.w
′
q .wR .z

′]≃.

Proof. From Claim 7.7, it follows WI[E′
q .q](w ′

q .wR .z
′) ∩ Sleep′ = ∅. Therefore, no execution

sequence in [E ′
q .q.w

′
q .wR .z

′]≃ was explored before the call to Explore(E ′
q .q, Sleep

′, ·), otherwise,

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

Source Sets: A Foundation for Optimal Dynamic Partial Order Reduction 42:29

there would be a call Explore(E ′′.p, ·, ·) with E ′′ a prefix of E ′
q and p ∈ Sleep′, and defining w ′′

by E ′′.w ′′ = E ′
q , we would have E ′′ ⊢ p♦w ′′ and p ∈ WI[E′

q .q](w ′
q .wR .z

′), thus contradicting
WI[E′

q .q](w ′
q .wR .z

′) ∩ Sleep′ = ∅. By the inductive hypothesis for E ′
q .q applied to w ′

q .wR .z
′, the

algorithm then explores some sequence E ′
q .q.z in [E ′

q .q.w
′
q .wR .z

′]≃. ⊓⊔

By the construction ofwR , we have next[E′
q](q) ≾E′

q .q .w ′
q .wR .z′ eq . From E ′

q .q.z ≃ E ′
q .q.w

′
q .wR .z

′,
it follows that the same race between next[E](q) and eq will also occur in E ′

q .q.z, i.e., we have
next[E′

q](q) ≾E′
q .q .z eq . Since the sequence E ′

q .q.z is actually explored by the algorithm, it will
encounter the race next[E′

q](q) ≾E′
q .q .z eq . When handling it,

• E in the algorithm will correspond to E ′
q .q.z in this proof,

• e in the algorithm will correspond to next[E′
q](q) in this proof, and

• e ′ in the algorithm will correspond to eq in this proof,
• v = (notdep(next[E′

q](q),E ′
q .q.z).êq) will be the sequence v at line 5 in Algorithm 2.

Claim 7.9. w ′
q .wR ⊑[E′

q] v .

Proof. Let
• x be notdep(next[E′

q](q),E ′
q .q.z)

• x ′ be notdep(next[E′
q](q),E ′

q .q.w
′
q .wR .z

′). Note thatw ′
q .wq is a prefix of x ′.

From E ′
q .q.z ≃ E ′

q .q.w
′
q .wR .z

′ (Claim 7.8) and the definitions of x and x ′, it follows that E ′
q .x ≃

E ′
q .x

′, and hence that E ′
q .x .êq ≃ E ′

q .x
′.êq . Let x ′′ be obtained from x ′ by adding êq just after the

prefixw ′
q .wq (i.e., in the same place that it has inw ′

q .wR .z
′). Since eq “happens after” next[E′

q](q) in
E ′
q .q.w

′
q .wR .z

′, it follows that no events in x ′ “happen after” eq in E ′
q .q.w

′
q .wR .z

′. Hence E ′
q .x

′′ ≃
E ′
q .x

′.êq . Sincew ′
q .wR is a prefix of x ′′ we havew ′

q .wR ⊑[E′
q] x

′′, which by E ′
q .x

′′ ≃ E ′
q .x

′.êq implies
w ′
q .wR ⊑[E′

q] x
′.êq , which by E ′

q .x .êq ≃ E ′
q .x

′.êq impliesw ′
q .wR ⊑[E′

q] v . ⊓⊔

Claim 7.10. sleep(E ′
q) ∩WI[E′

q](w ′
q .wR) = ∅.

Proof. Assume that some process p is inWI[E′
q](w ′

q .wR). Then:
(1) If p ∈ w ′

q , then it has no event happening before it, which implies that it cannot have been
in sleep(E ′

q) since then it could not have been taken out of the sleep set. Thus p < sleep(E ′
q).

(2) Therefore p < w ′
q . By p ∈ WI[E′

q](w ′
q .wR) we have that E ′

q ⊢ p♦w ′
q , which assuming p ∈

sleep(E ′
q), means that p will still be in the sleep set afterw ′

q and therefore p ∈ final_sleep(E).
Then:
(a) If p ∈ wR , then p ∈ I[E](wR) from which we get p ∈ I[E](w) therefore p ∈ WI[E](w).

Since p ∈ final_sleep(E) this contradicts Claim 7.5.
(b) Therefore p < wR must hold. From p ∈ WI[E′

q](w ′
q .wR) and p < w ′

q .wR we have that
E ′
q ⊢ p♦w ′

q .wR , which implies E ′
q .w

′
q ⊢ p♦wR , which is equivalent to E ⊢ p♦wR . But

then wR = wq .êq is a prefix of wp , implying that wp is strictly longer than wq . This
contradicts the fact that q was chosen as the process in final_sleep(E) with the longest
prefixwq satisfying E ⊢q♦wq .

Therefore, there can be no such p ∈ WI[E′
q](w ′

q .wR) and Claim 7.10 is proven. ⊓⊔

From Claim 7.9, Claim 7.10, and Property 4.7(4) we get sleep(E ′
q) ∩WI[E′

q](v) = ∅. Thus, the test
at line 6 will succeed, and after performing line 7, the wakeup tree wut(E ′

q)will (by the specification
of insert) contain a leaf y such that y∼[E′

q]v . Since at this point q ∈ wut(E ′
q) and q < WI[E′

q](v) we
have, by definition of insert, that E ′

q ̸ ⊢q♦y. By Property 7.3(1) we then have E ′
q .y ∈ E.

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

42:30 Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas

From Claim 7.9 and y∼[E′
q]v , it follows by Property 4.7(2) that y∼[E′

q]w
′
q .wR . Furthermore, from

E ′
q ⊢ q♦w ′

q (which follows from E ′
q ⊢ q♦w ′

q .wq) and E ′
q ̸ ⊢ q♦y, it follows that y is not a prefix

of w ′
q . Let u be the longest common prefix of y and w ′

q .wR . We claim that w ′
q is a strict prefix

of u. Otherwise, there are different processes p,p ′ and a sequence v ′′ such that u .p ′.v ′′ = w ′
q

and u .p is a prefix of y. From y∼[E′
q]w

′
q .wR and Property 4.7(2), we infer y∼[E′

q]u .p
′. If u .p ′ ∈

wut(E ′
q) when y is inserted, we infer by Lemma 6.2 and Property 7.3(2) that E ′

q .y ∝ E ′
q .u .p

′. If
u .p ′ < wut(E ′

q) when y is inserted, we also infer E ′
q .y ∝ E ′

q .u .p
′, since then y will be explored

before u .p ′. Thus E ′
q .y ∝ E ′

q .u .p
′, which implies E ′

q .u .p ∝ E ′
q .u .p

′.v ′′, which by handling of sleep
sets implies p < I[E′

q .u](p ′.v ′′). By y∼[E′
q]w

′
q , implying u .p∼[E′

q]u .p
′.v ′′, we have p∼[E′

q .u]p
′.v ′′,

which is the same as p ∈ WI[E′
q .u](p ′.v ′′). By p < I[E′

q .u](p ′.v ′′) this implies E ′
q .u ⊢ p♦(p ′.v ′′).

This implies that p ∈ sleep(E ′
q .w

′
q), i.e., p ∈ sleep(E). Hence by the construction of wR , we have

p < WI[E′
q .u .p′ .v ′′](wR), which together with E ′

q .u ⊢p♦(p ′.v ′′) implies p < WI[E′
q .u](p ′.v ′′.wR), which

implies u .p ̸∼[E′
q]u .p

′.v ′′.wR , which implies y ̸∼[E′
q]w

′
q .wR , which contradicts the construction of y.

Thus,w ′
q is a strict prefix of u. Since E ′

q .y, and hence E ′
q .u, is explored by the algorithm, we have

E ′
q .u ∝ E ′

q .w
′
q . Moreover, since u is a prefix ofw ′

q .wR , we infer that E ′
q .u is a prefix of E ′

q .w
′
q .w . This

means that there is a sequencew ′′ such that E ′
q .u .w

′′ ≃ E.w . It follows by the inductive hypothesis
applied to E ′

q .u that the algorithm has explored some maximal sequence in [E ′
q .u .w

′′]≃ and hence
in [E.w]≃. This contradicts the assumption at the beginning of the inductive step. This concludes
the proof of the inductive step, and Theorem 7.4 is proven. ⊓⊔

7.3 Optimality
In this section, we prove that optimal-DPOR is optimal in the sense that it never explores two
different but equivalent execution sequences and never encounters sleep set blocking. The following
theorem, which is essentially the same as Theorem 3.2 of Godefroid et al. [1995], establishes that
sleep sets alone are sufficient to prevent exploration of two equivalentmaximal execution sequences.

Theorem 7.11. Optimal-DPOR never explores two maximal execution sequences which are equiv-
alent.

Proof. Assume that E1 and E2 are two equivalent maximal execution sequences that are explored
by the algorithm. Then they are both in E. Assume w.l.o.g. that E1 ∝ E2. Let E be their longest
common prefix, and let E1 = E.p.v1 and E2 = E.v2. By Lemma 7.2 we have p < I[E](v2), which
contradicts E1 ≃ E2 and the maximality of E1 and E2. ⊓⊔

We will now prove that Algorithm 2 is optimal in the sense that it never encounters sleep set
blocking. Let us first define this precisely.

Definition 7.12 (Sleep Set Blocking). A call to Explore(E, Sleep,WuT) is sleep set blocked during
the execution of Algorithm 2 if enabled(s[E]) , ∅ and enabled(s[E]) ⊆ Sleep.

Now let us state and prove the corresponding optimality theorem.

Theorem 7.13 (Optimality of Optimal-DPOR). During any execution of Algorithm 2, no call to
Explore(E, Sleep,WuT) is ever sleep set blocked.

Proof. Consider a call Explore(E, Sleep,WuT) during the exploration. Then any sequence in
WuT is enabled after E. By Lemma 7.1, WuT is a wakeup tree after ⟨E, Sleep⟩. Thus, if Sleep , ∅,
thenWuT contains a sequencew such that Sleep∩WI[E](w) = ∅. Letting p be the first process inw ,
this implies p < Sleep, implying that p is enabled and thus enabled(s[E]) ⊈ Sleep. ⊓⊔

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

Source Sets: A Foundation for Optimal Dynamic Partial Order Reduction 42:31

8 EXTENDING SOURCE-DPOR AND OPTIMAL-DPOR TO SUPPORT BLOCKING
In this section, we consider how to extend the techniques of the previous sections for the general
situation in which processes can disable each other. In other words, we will no longer make use
of Assumption 3.1. Processes can disable each other via shared synchronization objects, such as
locks, condition variables, etc. It is also possible for processes to disable each other via less visible
mechanisms; one such is to use await statements, by means of which any update to a shared
variable can disable an await statement that depends on this shared variable. When extending our
techniques to the case in which processes can disable each other, it turns out that the general case
of await statements requires a more sophisticated modification than the case of locks. We will
therefore first consider how to extend Algorithms 1 and 2 to handle locks, and thereafter consider
the general case.

8.1 Handling Locks
Let us extend Algorithms 1 and 2 to the case that disabling between processes happens only via
locks. We assume a set of locks that are disjoint from ordinary memory locations and only used in
lock operations. Each lock l can take values 0 or 1 (initial value) and supports the operations lock(l)
and unlock(l), where lock(l) decrements l from 1 to 0 if l is 1 and blocks if l is 0, and where
unlock(l) assigns 1 to l (and never blocks). The only operation that can disable another process is
lock(l), which disables any other operation of form lock(l). We assume that the happens-before
relation relates a lock(l) operation with any other operation of form lock(l) or unlock(l) on the
same lock, that the lock(l) operation is independent of other operations, and that two unlock(l)
operations by different threads are independent. Note that we do not assume that programs use
locks in a “well-structured” way or that the program is data-race free.

8.1.1 Extending Source-DPOR to Handle Locks. To handle locks, the basic modification to Algo-
rithm 1 is to extend the concept of races. An important part of Algorithm 1 (at line 5) is to detect a
race between two events e and next[E](p). Let us denote next[E](p) by e ′. In the absence of locks,
whenever e is in a race with e ′, and e is performed before e ′, then e ′ must appear sometime later
in the execution since it cannot be disabled by e . This implies that the race detection mechanism
of line 5 in Algorithm 1 is sufficient for detecting any race. However, in the presence of locks, we
must detect races also in the case where e ′ has been disabled by e . The needed extension is to
consider the case where e ′ performs a lock() operation, regardless of whether ê ′ is blocked or
not, and to investigate alternative executions in which e ′ is performed before the most recently
performed lock() operation. Such an extension should work when ê ′ is blocked, since it is nec-
essary to explore the case where e ′ occurs before the most recently performed lock() operation,
when it is not blocked. Additionally, it should also work when ê ′ is not blocked. The reason is that
Algorithm 1 will only find the “race” between the enabled lock event e ′ and the previous unlock()
operation: obviously these two events cannot be reversed. Instead it is necessary to consider the
race between e ′ and the most recently performed lock() operation; these events can be performed
in reverse order.
Our extension of Algorithm 1 to programs with locks is shown in Algorithm 3. The extension

consists in adding an extra case to the race detection phase, found at lines 2–8. This extra case
considers all processes p that are about to perform a lock() operation on some lock l , regardless of
whether they are blocked or not. For each such process, we find the preceding lock(l) operation
in E, since that operation is in a race with the next step of process p, according to our extended
definition of “race”. Note that the next step of process p, which is a lock(l) operation, can be either
enabled or disabled. Thereafter, the race detection proceeds analogously as in the non-blocking

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

42:32 Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas

ALGORITHM 3: Source-DPOR algorithm considering locks.
Initial call: Explore(⟨⟩, ∅)

1 Explore(E, Sleep)
2 foreach lock l do
3 foreach p whose next operation after E is lock(l) do
4 let e be the last event in E with op[E](e) = lock(l);
5 let E ′ = pre(E, e);
6 let v = notdep(e,E).p;
7 if I[E′](v) ∩ backtrack(E ′) = ∅ then
8 add some q′ ∈ I[E′](v) to backtrack(E ′);

9 if ∃r ∈ (enabled(s[E]) \ Sleep) then
10 backtrack(E) := {r };
11 while ∃p ∈ (backtrack(E) \ Sleep) do
12 foreach e ∈ dom(E) such that(e ≾E .p next[E](p)) do
13 let E ′ = pre(E, e);
14 let v = notdep(e,E).p;
15 if I[E′](v) ∩ backtrack(E ′) = ∅ then
16 add some q′ ∈ I[E′](v) to backtrack(E ′);

17 let Sleep′ = {q ∈ Sleep | E ⊢p♦q};
18 Explore(E.p, Sleep′);
19 add p to Sleep;

case: at line 6, the sequence v is constructed as a sequence of events that can follow E ′ in an
execution where p takes the lock before ê . At line 7, it is tested whether the backtrack set at E ′

already contains a process that makes such an extension of E ′ possible, otherwise such a process is
added at line 8.

8.1.2 Correctness of Algorithm 3. Let us next consider how to extend the proof of correctness
for Algorithm 1 to become a proof of correctness for Algorithm 3. Here we present the needed
modifications to the proof of Theorem 5.2. We thus consider how to extend the proof of Lemma 5.3.

The proof remains the same as in Section 5.2 up to Property (9), stated in the proof of Claim 5.4.
This property, i.e., E ⊢ q.wR , is no longer true if there is a lock l such that next[E](q) and eq perform
the operation lock(l), since êq is now disabled after E.q.wq . We therefore here explain how the
proof should be continued for this case; all other cases can be handled as in Section 5.2.
We first infer, from E ⊢ q♦wq , that wq does not contain any operation on the lock l . We then

replace Claim 5.5 by the following stronger one.

For all p ∈ done(E) with p , q we have p < WI[E](q.wq).
This property is actually shown in Cases 1 and 2a in the proof for Claim 5.5. The other cases, i.e.,
Cases 2b and 2c, are not applicable when next[E](q) and eq both perform the operation lock(l),
since these cases assume ep = eq and E ⊢p♦q, which is not possible when eq performs the operation
lock(l). This follows by noting that since the next events of p and q conflict with eq , they must
both be lock or unlock operations on l . Since next[E](q) performs the operation lock(l), we infer
E ̸ ⊢p♦q.

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

Source Sets: A Foundation for Optimal Dynamic Partial Order Reduction 42:33

We next establish a slight modification of IH-condition 5.6, namely thatwq ∈ to_be_explored(E.q).
The proof of this is contained in the proof of IH-condition 5.6: we first note in formula (12) that
p < I[E .q](wq) for any p ∈ done(E), then in formula (13) that p < I[E .q](wq) for any p ∈ init_sleep(E),
concluding that I[E .q](wq) ∩ init_sleep(E.q) = ∅.
We next claim that the algorithm will actually explore an execution sequence of form E.q.w ′

which is in [E.q.wq .v
′′]≃ for some v ′′ (i.e., such that wq ⊑[E .q] w

′), such that if w ′ contain some
lock(l) operation(s), then eq is the first of these. To prove this claim, note that after E.q.wq , process
êq is prepared to perform a lock(l) operation, and will continue to be prepared to do so all the
time until it actually performs such a lock(l) operation (note that immediately after E.q.wq , the
lock l is still taken). We split the proof into two cases:

(1) If to_be_explored(E.q) contains a sequence of formwq .z in which z contains an unlock(l)
operation, then to_be_explored(E.q) also contains such a sequence of formwq .z in which
event eq immediately follows the first of these unlock(l) operations, since process êq is
continuously prepared to perform lock(l) operation after E.q.wq . The inductive hypothesis
for E.q guarantees that the algorithm explores E.q.w ′ for somew ′ with z ⊑[E .q] w

′. Since
the operations lock(l) are dependent with each other, eq is the first event inw ′ to perform
a lock(l) operation.

(2) If to_be_explored(E.q) contains no sequence of formwq .z in which z contains an unlock(l)
operation, then the inductive hypothesis for E.q guarantees that the algorithm explores
E.q.w ′ for somew ′ withwq ⊑[E .q] w

′. Sincew ′ must be in to_be_explored(E.q), we conclude
thatw ′ contains no unlock(l), and hence no lock(l) operation.

Having proven this claim, let u be the shortest prefix of w ′ such that wq ⊑[E .q] u. Note that
after wq , the event eq (with operation lock(l)) is the next to be performed by êq , although the
lock l may still be taken immediately after u. Since, according to the just proven claim, u contains
no lock(l) operation, then next[E](q) is the last event in E.q.u that performs a lock(l) operation,
and so the race detection at lines 2–8 of Algorithm 3 will make sure that done(E) contains some
q′ with q′ ∈ I[E](v), where v = v ′.êq for v ′ = notdep(next[E](q),E.q.u). In this case, we derive a
contradiction in a similar way as in the proof of Claim 5.4. By the construction of v ′ we have
v ′ ⊑[E .q] w

′. From wq ⊑[E .q] w
′ and v ′ ⊑[E .q] w

′, and Property 4.7(3), we infer wq∼[E .q]v
′. This

implies, using E ⊢ q♦wq and E ⊢ q♦v ′, that wq∼[E]v
′ (this can be established in a similar way as

Lemma 5.1.3). Now q′ ∈ I[E](v) means that either (i) q′ ∈ I[E](v ′), or that (ii) q′ = êq and E ⊢q′♦v ′.
Case (i) implies (by the construction of v ′) that next[E](q′) does not perform any operation on the
lock l , and (using wq∼[E]v

′) that q′ ∈ WI[E](wq). Since eq performs the operation lock(l), this
implies q′ ∈ WI[E](wR), which contradicts Property (10). In Case (ii), fromwq ⊑[E .q] u and E ⊢q♦wq ,
the construction of v ′ implies wq ⊑[E .q] v

′. Also considering E ⊢q♦v ′ we infer wq ⊑[E] v
′. Since

q′ ∈ done(E), the construction ofwR implies that E ̸ ⊢q′♦wq , which together withwq ⊑[E] v
′ implies

E ̸ ⊢q′♦v ′, contradicting the assumption E ⊢q′♦v ′ for case (ii).
This concludes the proof of Claim 5.4. The rest of the proof proceeds as in the proof of Theorem 5.2.

⊓⊔

8.1.3 Extending Optimal-DPOR to Handle Locks. Let us next present our extension of Algorithm 2
to programs with locks, resulting in Algorithm 4. Similarly as in Algorithm 3, the algorithm extends
the lock detection phase to consider races between lock() operations, one of which is potentially
disabled. The extension for locks is handled by lines 8–14. These lines handle the case when event
e ′ in a race e ≾E e ′ is actually blocked for the reason that both e and e ′ are lock(l) operations on
the same lock l . In this case, e ′ may not be present in the execution sequence E at a position where
it is blocked. For this case, we construct the sequence v as in line 6 of Algorithm 3. First, at line 10,

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

42:34 Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas

ALGORITHM 4: Optimal-DPOR algorithm considering locks.
Initial call: Explore(⟨⟩, ∅, ⟨{⟨⟩}, ∅⟩)

1 Explore(E, Sleep,WuT)
2 if enabled(s[E]) = ∅ then
3 foreach e, e ′ ∈ dom(E) such that (e ≾E e ′) do
4 let E ′ = pre(E, e);
5 let v = (notdep(e,E).ê ′);
6 if sleep(E ′) ∩WI[E′](v) = ∅ then
7 wut(E ′) := insert[E′](v,wut(E ′));

8 foreach e ∈ dom(E) such that op[E](e) = lock(l) do
9 let E ′ = pre(E, e);

10 letw = notdep(e,E);
11 foreach p such that op[E′ .w .p](next[E′ .w](p)) = lock(l) do
12 let v = w .p;
13 if sleep(E ′) ∩WI[E′](v) = ∅ then
14 wut(E ′) := insert[E′](v,wut(E ′));

15 else
16 if WuT , ⟨{⟨⟩}, ∅⟩ then
17 wut(E) := WuT;

18 else
19 choose p ∈ enabled(s[E]);
20 wut(E) := ⟨{p}, ∅⟩;
21 sleep(E) := Sleep;
22 while ∃p ∈ wut(E) do
23 let p = min≺{p ∈ wut(E)};
24 let Sleep′ = {q ∈ sleep(E) | E ⊢p♦q};
25 letWuT′ = subtree(wut(E),p);
26 Explore(E.p, Sleep′,WuT′);
27 add p to sleep(E);
28 remove all sequences of form p.w from wut(E);

the events that happen-after e are removed from E, resulting in the suffixw . We then construct v
by adding a process p that is prepared to perform a lock(l) operation. Since by construction w
does not contain any operations on the lock l , and since the lock could be taken after E by ê , it is
ensured that the lock can be taken after E ′.w by any process that is ready to do so. Thereafter, we
perform the same test as in Algorithm 2 to decide whether the wakeup tree at E ′ must be extended
in order to explore some sequence that is equivalent to E ′.v .
Let us next consider how to extend the soundness proof of Algorithm 2 to cover Algorithm 4.

The overall structure of the proof remains the same; below we indicate where and how the proof
needs to be extended.
The first extension is needed when we get to Claim 7.6, and the event performed by q is of

form lock(l). In this case, also eq must perform lock(l) (by another process). But it is obvious
that now E ′

q ⊢ q.w ′
q .wR does not hold, since both next[E′

q](q) and eq take the lock. We therefore

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

Source Sets: A Foundation for Optimal Dynamic Partial Order Reduction 42:35

replace Claim 7.6 by E ′
q ⊢ q.w ′

q .wq . For similar reasons, Claim 7.7 must be replaced by the stronger
WI[E′

q .q](w ′
q .wq) ∩ Sleep′ = ∅, which is actually also proven in the text of the proof of Claim 7.7.

Continuing along these lines, the text of Claim 7.8 should be changed into:
Let z ′ be any sequence such that E ′

q .q.w
′
q .wq .z

′ is maximal. (Such a z ′ can always
be found, since E ′

q .q.w
′
q .wq is an execution sequence.) Then, the algorithm explores

some sequence E ′
q .q.z in [E ′

q .q.w
′
q .wq .z

′]≃.
After the proof of Claim 7.8, the algorithm will handle the new kind of race (lines 8–14) between
lock(l) operations, with v = w .p. At the end, we end up with the same Claim 7.9 as in the proof,
i.e., w ′

q .wR ⊑[E′
q] v , where the last process in wR is actually êq . Here, it is important to observe

that eq , being of form lock(l), is actually independent with all events in w except possibly the
ones already inw ′

q .wq . Thereafter, the proof goes on just as in the non-blocking case.

8.2 Allowing Arbitrary Blocking in the Execution Model
Let us next consider how to extend algorithms Source-DPOR and Optimal-DPOR to a general execu-
tion model, where disabling between processes can happen via any operations, in a computational
model which need only satisfy the requirements of Definition 3.2. If disabling between processes
happens only via clearly identified synchronization mechanisms, such as locks, Algorithms 3 and 4
with obvious modifications are sufficient. However, if disabling can occur in less obvious ways,
the modification is less straightforward. The reason is that in the general case, races may be more
difficult to detect. We illustrate this by a small example.

Initially: x = y = 0

p : q : r : s :
x +:= 1; x +:= 1; x +:= 3; await (x = 3)

then y := 1;

Fig. 9. Example motivating line 11 of Algorithm 6.

Consider the program in Fig. 9. All four statements are atomic. In this example, we define the
following happens-before relation on the events in an execution sequence: let the statement of s be
related with any other statement, and let the statements of processes p, q, and r all be unrelated
if the statement of s does not occur somewhere between them. The statements of processes p, q,
and r are all related if the statement of s occurs between them. Such a happens-before relation is
somewhat non-standard; another natural choice of happens-before relation would be to let it relate
all pairs of statements, since they all touch the variable x. However, our choice is also consistent
with the requirements on a happens-before relation in Definition 3.2, since the order in which the
atomic statements of p, q, and r are performed does not matter when they occur consecutively.
With this happens-before assignment, the program has only two Mazurkiewicz traces: one in which
only p, q, and r occur (whereafter s is blocked), and one consisting of r .s .p.q and r .s .q.p.
To illustrate the difficulty of detecting races, suppose that we first explore the sequence p.q.r ,

after which s is blocked. In some way, we must now define a “race”. There is a race between p and
s , but such a race is visible only in explorations that start with r .p. More generally, this example
shows that in the performed execution sequence (in this case p.q.r), one may have to extract a
subsequence (in this case r) in order to make the race visible. The subsequence r should clearly be
consistent with p.q.r in the sense that r ⊑[⟨⟩] p.q.r .

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

42:36 Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas

ALGORITHM 5: Source-DPOR algorithm for general blocking.
Initial call: Explore(⟨⟩, ∅)

1 Explore(E, Sleep)
2 foreach p that is blocked in s[E] do
3 foreach e ∈ dom(E) do
4 let E ′ = pre(E, e);
5 letw = notdep(e,E);
6 foreach subsequence u ofw such that u ⊑[E′] w do
7 if ê disables p after E.u then
8 let v = u .p;
9 if I[E′](v) ∩ backtrack(E ′) = ∅ then

10 add some q′ ∈ I[E′](v) to backtrack(E ′);

11 if ∃p ∈ (enabled(s[E]) \ Sleep) then
12 backtrack(E) := {p};
13 while ∃p ∈ (backtrack(E) \ Sleep) do
14 foreach e ∈ dom(E) such that(e ≾E .p next[E](p)) do
15 let E ′ = pre(E, e);
16 let v = notdep(e,E).p;
17 if I[E′](v) ∩ backtrack(E ′) = ∅ then
18 add some q′ ∈ I[E′](v) to backtrack(E ′);

19 let Sleep′ = {q ∈ Sleep | E ⊢p♦q};
20 Explore(E.p, Sleep′);
21 add p to Sleep;

Let us from this example extract a general pattern for how to extend the race detection phase
of our algorithms. In this race detection, we should try to find a sequence that plays the role of
v , as defined on line 6 in Algorithm 3 and on line 12 of Algorithm 4. In Algorithms 3 and 4, we
could take v to be the sequence of all statements that do not happen-after p, i.e., q.r .s , since any
happens-before closed subset of v will enable s . However, in the present case, it may happen that
only a specific subsequence of v can enable s . In this case, the subsequence is r , implying that we
should take v as r .s . Continuing with the example in Fig. 9, we see that there are several possible
choices for the sequence v , but of all these only r will lead to a state where s can be disabled by
another process. It is, of course, possible to develop optimization schemes that would disregard
many of these choices, but we here refrain from doing this, in order to keep the structure of the
algorithm simple.
Let us now incorporate these insights into general extensions of Algorithms 3 and 4. The

generalization of Algorithm 3 is shown in Algorithm 5. The extended race detection phase is shown
at lines 2–10. Whenever a process p is blocked, we try to detect whether some other process ê
disables p. As described above, we may have to move ê past some subsequence u in order to make
the disabling visible. As in Algorithm 3, the algorithm first extracts the sequencew that does not
happen-after e . Thereafter, it considers all possible subsequences u ofw that are consistent w.r.t.
the happens-before relation. Whenever ê disables some process p after u, then the sequence u .p is
used as v in the race detection phase. The rest of the race detection proceeds as before.

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

Source Sets: A Foundation for Optimal Dynamic Partial Order Reduction 42:37

ALGORITHM 6: Optimal-DPOR algorithm for general blocking.
Initial call: Explore(⟨⟩, ∅, ⟨{⟨⟩}, ∅⟩)

1 Explore(E, Sleep,WuT)
2 if enabled(s[E]) = ∅ then
3 foreach e, e ′ ∈ dom(E) such that (e ≾E e ′) do
4 let E ′ = pre(E, e);
5 let v = (notdep(e,E).ê ′);
6 if sleep(E ′) ∩WI[E′](v) = ∅ then
7 wut(E ′) := insert[E′](v,wut(E ′));

8 foreach e ∈ dom(E) do
9 let E ′ = pre(E, e);

10 letw = notdep(e,E);
11 foreach subsequence u ofw such that u ⊑[E′] w do
12 foreach p such that ê disables p after E ′.u do
13 let v = u .p;
14 if sleep(E ′) ∩WI[E′](v) = ∅ then
15 wut(E ′) := insert[E′](v,wut(E ′));

16 else
17 if WuT , ⟨{⟨⟩}, ∅⟩ then
18 wut(E) := WuT;

19 else
20 choose p ∈ enabled(s[E]);
21 wut(E) := ⟨{p}, ∅⟩;
22 sleep(E) := Sleep;
23 while ∃p ∈ wut(E) do
24 let p = min≺{p ∈ wut(E)};
25 let Sleep′ = {q ∈ sleep(E) | E ⊢p♦q};
26 letWuT′ = subtree(wut(E),p);
27 Explore(E.p, Sleep′,WuT′);
28 add p to sleep(E);
29 remove all sequences of form p.w from wut(E);

The proof of soundness for Algorithm 5 can be obtained by a small modification of the proof
for Algorithm 1. As for Algorithm 3, we must replace wR by wq in Claim 5.4, Claim 5.5, and in
related properties, just as in the proof for Algorithm 3. We define w ′

q precisely as in the proof
for Algorithm 3, and note thatw ′

q ⊑[E .q] w
′. Letw ′′

q be the reordering of the events inw ′
q as they

occur inw ′. Then we can take u asw ′′
q at line 6 of the algorithm. By construction q disables êq after

E.w ′′
q , and the rest of the proof proceeds as in the proof for Algorithm 3.

The extension of Algorithm 4 is shown in Algorithm 6. The corresponding extension of the race
detection phase is now at lines 8–15.
Let us consider how to extend the soundness proof of Algorithm 2 to cover Algorithm 6. As

for the locking case, the structure of the proof remains the same. The main modifications are the
following:

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

42:38 Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas

Initially q1, r1, s1 and all pi are spawned. Also, xi = yi = zi = 0, for all i .
pi : qi : ri : si :
if xi = 1 && i < n then yi := 1; m := yi; n := zi;

spawn qi+1; if m = 0 then l := yi;

spawn ri+1; zi := 1; if n = 1 then

spawn si+1; if l = 0 then

xi := 1;

Fig. 10. The program of Fig. 2 extended with more processes and global variables.

• Claim 7.6 is replaced by E ′
q ⊢ q.w ′

q .wq ;
• Claim 7.7 is replaced byWI[E′

q .q](w ′
q .wq) ∩ Sleep′ = ∅;

• in Claim 7.8,wR is replaced bywq .
In the text between Claim 7.8 and Claim 7.9, the text about race detection should be replaced by the
observation that by choosing u as the subsequence ofw withw ′

q .wq ≃ E ′
qu, then the test at line 12

will succeed. The rest of the proof proceeds as for Algorithm 2.

9 COMPARISON AND TRADE-OFFS BETWEEN SOURCE-DPOR AND
OPTIMAL-DPOR

In this section, we compare source-DPOR and optimal-DPOR on synthetic programs that highlight
interesting performance differences, based on the number of explored interleavings, as well as in
time and memory consumption. More specifically, we present:

(1) A program that shows that the use of wakeup trees allows optimal-DPOR to avoid ex-
ploration of an exponential number of sleep set blocked traces. In contrast, non-optimal
DPOR algorithms in general, and source-DPOR in particular, are forced to explore these
traces, and therefore can require arbitrarily more time than optimal-DPOR. As we describe,
this does not happen only under the worst scheduling scenario, but also even when the
scheduling algorithm that is employed is a “reasonable” one.

(2) A simpler program, which we also use as a benchmark in the next section, that also shows
that a wakeup sequence is necessary for the optimal algorithm to avoid sleep set blocking.

(3) A program that shows that wakeup trees may make the optimal algorithm require expo-
nentially more space than source-DPOR.

The first program, shown in Fig. 10, is an extended version of the example presented earlier
in Fig. 2. It has been extended in the following way:n determines howmany groups of four processes
(which correspond to p,q, r and s from Fig. 2) are used. Each of the qi , ri and si processes operate
on the respective xi , yi and zi variables. The code of the pi processes reads xi and only spawns
qi+1, ri+1 and si+1 if the write on xi by si has been completed. This pair of read-write operations is
in a race. The other processes also have racing read-write pairs on variables yi and zi .

When starting an interleaving to reverse the race of the top sn process with the top pn process,
the only way for pn to be removed from the sleep set is for each “lower” group to be scheduled
exactly as shown in Fig. 3, as this is the only way for sn to execute its write to xn . If a “wrong step”
is taken at any point, sn will not do the write and the respective trace will be sleep set blocked.

For n = 1 there exist four interleavings where the read on x1 by p1 happens before the respective
write by s1 and one more where it appears afterwards, just as shown in Fig. 3. However with just
the first step (which must be taken by r1) specified, it can be the case for source-DPOR to schedule

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

Source Sets: A Foundation for Optimal Dynamic Partial Order Reduction 42:39

Table 1. Traces explored by source- and optimal-DPOR for the program in Fig. 10.

Traces Explored Time

n source optimal Sleep Set Blocked source optimal

1 8 5 3 0.03s 0.02s
2 20 9 11 0.08s 0.04s
3 41 13 28 0.20s 0.07s
4 78 17 61 0.41s 0.10s
5 145 21 124 0.81s 0.17s
6 268 25 243 1.56s 0.20s
7 373 29 344 2.38s 0.26s
8 674 33 641 4.70s 0.34s
9 1222 37 1185 8.79s 0.44s

q1 before s1 has read y1, thus altering s1’s behaviour and leading to sleep set blocking. As there are
four ways to schedule qn , rn and sn processes, only one of which reveals the write on xn , pn will
remain in the sleep set and the other three schedules will encounter sleep set blocking.
For higher values of n, when the race of xi in the i-th group is reversed successfully, four new

interleavings are possible by the i+1-th group. The number of Mazurkiewicz traces for this program
is 4n + 1: four traces for the ‘top’ group, plus a fifth that splits in four when it spawns the next
group of processes and so on until the final group which does not split and has just a single extra
interleaving.

Wrong schedulings within the i-th group are still sleep set blocked. Additionally, to reverse the
pair operating on xi+1, all the lower groups must be scheduled correctly, but this is only possible in
exactly one interleaving, whereas all deviations lead to sleep set blocked interleavings. As a result,
the tree of the “previous” level (where pi+1 was not in a sleep set) is duplicated as sleep set blocked
explorations, leading to the exponential growth of traces that encounter sleep set blocking shown
in Table 1. This program shows therefore an exponential difference between non-optimal DPOR
algorithms (and source-DPOR) and optimal-DPOR. As seen in Table 1, this difference does not just
affect the number of traces that the two algorithms explore, but also the time performance of the
two algorithms. Thus, optimal-DPOR can perform exponentially better in time than non-optimal
DPOR algorithms.

Shared variables: int array[0..N] := {0,0,...,0};

Process 0: for (int i := N; array[i] != 0; i--);

Process j (j ∈ 1..N): array[j] := array[j-1] + 1;

Fig. 11. Pseudocode of the lastzero(N) example; measurements for it can be found in Section 11.

The second program is lastzero(N), whose pseudocode is shown in Fig. 11. Its N+1 processes
operate on an array of N+1 elements which are all initially zero. In this program, process 0 searches
the array for the highest index that has a zero value, while the other N processes read one of the
array values and write that value increased by one in the next index. The final state of the program
is uniquely defined by the values of i and array[1..N].

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

42:40 Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas

Here, again, process 0 has control flow that depends on the values in the array, which are all
exposed to racing operations. This is generally a typical case where source-DPOR may encounter
sleep set blocking, which optimal-DPOR can avoid. If some of the processes with higher indices
have not completed their execution, processes with lower indices that are in a sleep set, because of
a race with process 0’s access, will never be removed, as process 0 will “stop” at a high index and
not access the lower indices. Again, an accurate wakeup sequence is necessary to avoid sleep set
blocking in this program. We present measurements for the lastzero(N) program in Section 11.

Shared variables: int barrier := N + 1, counter1, counter2;

Process 0: inc counter1;

Process j (j ∈ 1..N): inc counter2;

wait(barrier);

Process N + 1: wait(barrier);

inc counter1;

Fig. 12. Pseudocode of the wakeup_stress(N) example.

The third and final program is wakeup_stress(N), whose pseudocode is shown in Fig. 12. Here
each of N processes increments counter2 atomically, and two more processes, 0 and N+1, increment
counter1, with process N + 1 waiting for all N processes to finish before doing its operation. Under
the assumption that the inc operations are dependent (and wait operations are not), this program
has 2∗(N!)Mazurkiewicz traces, differing in the order in which the N processes increment counter2
and processes 0 and N + 1 increment counter1.
Whenever an attempt is made to reverse a race, any chosen process will eventually execute an

appropriate inc operation, removing any other process from the sleep set, so source-DPOR will
never encounter sleep set blocking.

On the other hand, all such inc operations are also racing with each other, therefore introducing
new branches in a wakeup tree. Particularly for the race between processes 0 and N + 1, each
of the N! schedules of the N processes (that must all finish to enable process N + 1) differs in the
happens-before order of the inc counter2 operations. As a result, the wakeup tree at the point
where the first inc counter1 operation is originally executed will eventually have N! branches.

In Table 2 we show the total memory usage of Concuerror (the stateless model checking tool
which, as we describe in the next section, is our implementation vehicle) when exploring the inter-
leavings of wakeup_stress(N). It is evident that the base memory usage of the tool is approximately
22 MB, but as the number of interleavings increases the memory used by wakeup trees, which are
present only in optimal-DPOR, starts being noticeable and follows an exponential trend. The timing
measurements, however, show that the overhead of maintaining the wakeup trees is negligible, even
in this case, and the optimal algorithm has time performance which is very similar to source-DPOR.
In general, the purpose of wakeup trees is to “guide the first steps” of future explorations with

enough information to ensure that the only traces explored are Mazurkiewicz traces which are
distinct from both all previous explored traces and from each other. As a result, an exponential
blowup in the size of wakeup trees can only be the result of still needing to explore exponentially
many Mazurkiewicz traces, which in turn means that the exponential worst case kicks in only
when the DPOR algorithm needs to do exponential work anyway.

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

Source Sets: A Foundation for Optimal Dynamic Partial Order Reduction 42:41

Table 2. Nodes in largest backtrack set / wakeup tree, memory and time usage of the source- and optimal-
DPOR algorithms (as implemented in Concuerror) for the program in Fig. 12.

source optimal

n Traces Explored Nodes Memory Time Nodes Memory Time

1 2 2 22MB 0.01s 7 22MB 0.01s
2 4 3 22MB 0.02s 21 22MB 0.02s
3 12 4 22MB 0.05s 79 22MB 0.06s
4 48 5 22MB 0.24s 374 23MB 0.24s
5 240 6 22MB 1.21s 2159 27MB 1.23s
6 1440 7 22MB 8.74s 14698 42MB 8.96s
7 10080 8 22MB 1m02s 115091 114MB 1m07s
8 80640 9 22MB 9m30s 1018094 801MB 9m48s
9 725760 10 22MB 89m14s 9916765 8364MB 99m2s

10 IMPLEMENTATION
In this section, we describe our implementation in the context of Concuerror, a stateless model
checking tool for Erlang. Erlang is an industrially relevant programming language based on the
actor model of concurrency [Armstrong 2010]. In Erlang, actors are realized by language-level
processes implemented by the runtime system instead of being directly mapped to operating
system threads. Each Erlang process has its own private memory area (stack, heap and mailbox) and
communicates with other processes via message passing. A call to the spawn function creates a new
process p and returns a process identifier (PID) that can be used to send messages to p. Messages are
sent asynchronously using the ! operation (or send function). Messages get placed in the mailbox
of the receiving process in the order they arrive. A process can then consume messages using
selective pattern matching in receive expressions, which are blocking operations when a process
mailbox does not contain any matching message. Optionally, a receive may contain an after

clause which specifies a timeout value (either an integer or the special value infinity) and a value
to be returned if the timeout time (in ms) is exhausted.
Erlang processes do not share any memory by default. Still, the Erlang implementation comes

with a key-value store mechanism, called Erlang Term Storage (ETS), that allows processes to create
memory areas where terms shared between processes can be inserted, looked up, and updated.
Such areas are the ETS tables that are explicitly declared public. The runtime system automatically
serializes accesses to these tables when this is necessary and also comes with mechanisms that
guarantee atomicity of some operations (e.g., a bulk insert). Each ETS table is owned by the
process that created it and its memory is reclaimed by the runtime system when this process exits
if no other process has inherited this table.
Erlang has all the ingredients needed for concurrency via message passing and most of the

ingredients (e.g., reads and writes to shared data, etc.) needed for concurrent programming using
shared memory. Unsurprisingly, Erlang programs are prone to “the usual” errors associated with
concurrent execution, although the majority of them revolves around message passing and misuse
of built-in primitives implemented in C.
Figure 13 shows the program of Fig. 1 written in Erlang, generalized to N instead of just two

readers. On line 5, a public ETS table named tab is created and is shared between N+1 processes: N
readers and one writer. The writer inserts a key-value pair, using k as a key. Each of the N readers

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

42:42 Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas

1 -module(readers).

2 -export([readers/1]).

3

4 readers(N) ->

5 ets:new(tab, [public, named_table]),

6 Writer = fun() -> ets:insert(tab, {k, 42}) end,

7 Reader = fun(I) -> ets:lookup(tab, I), ets:lookup(tab, k) end,

8 spawn(Writer),

9 [spawn(fun() -> Reader(I) end) || I <- lists:seq(1, N)],

10 receive after infinity -> deadlock end.

Fig. 13. Writer-readers program in Erlang.

spawned on line 9 tries to read two entries from this table: some entry with a different key in each
process (an integer in the range 1..N) and the entry keyed by k. The receive expression on line 10
forces the process executing the readers code to get stuck at this point, ensuring that the process
owning the table stays alive, which in turn preserves the ETS table.
As mentioned, our implementation vehicle is Concuerror [Christakis et al. 2013], a stateless

model checking tool for finding concurrency errors in Erlang programs or verifying their absence.
The tool is publicly available at:

http://parapluu.github.io/Concuerror/
Given a program and a test to run, Concuerror uses a stateless search algorithm to systematically
explore the execution of the test under conceptually all process interleavings. To achieve this,
the tool employs a source-to-source transformation that inserts instrumentation at preemption
points (i.e., points where a context switch is allowed to occur) in the code under execution. This
instrumentation allows Concuerror to take control of the scheduler when the program is run,
without having to modify the Erlang VM in any way. In the current VM, a context switch may occur
at any function call. Concuerror inserts preemption points only at process actions that interact
with (i.e., inspect or update) shared state. Concuerror supports the complete Erlang language and
can instrument programs of any size, including any libraries they use.
For benchmarking purposes, we extended a previous version of Concuerror1 with three DPOR

algorithms: (i) the ‘classic’ DPOR algorithm with the sleep set extension as presented by Flanagan
and Godefroid [2005a], (ii) source-DPOR, and (iii) optimal-DPOR. To implement these we had to
encode rules for dependencies between operations that constitute preemption points. These rules
are shared between all DPOR variants. For lookups and inserts to ETS tables (i.e., reads and writes
to shared data) the rules are standard (two operations conflict if they act on the same key and at
least one is an insert). For sending and receiving operations the “happens before” relation (→E) is
the following:

• Two sends are ordered by→E if they send to the same process, even if the messages are
the same. (Note that if we would not order two sends that send the same message, then
when we reorder them, the corresponding receive will not “happen after” the same send
statement.)

• A send “happens before” the receive statement that receives the message it sent. A race
exists between these statements only if the receive has an after clause.

1The current (in 2016–2017) version of Concuerror supports the optimal-DPOR algorithm by default and the source-DPOR
algorithm as an option. The ‘classic’ algorithm is no longer available as an option.

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

http://parapluu.github.io/Concuerror/

Source Sets: A Foundation for Optimal Dynamic Partial Order Reduction 42:43

• A receive which executes its after clause “happens before” a subsequent send which
sends a message that it can consume.

There are also other race-prone primitives in Erlang, but it is beyond the scope of this article to
describe how they interact.
Concuerror uses a vector clock [Mattern 1989] for each process at each state, to calculate the

happens before relation for any two events. The calculation of the vector clocks uses the ideas
presented in the original DPOR paper [Flanagan and Godefroid 2005b]. The only special case is for
the association of a send with a receive, where we instrument the message itself with the vector
clock of the sending process.

11 EXPERIMENTS
We report experimental results that compare the performance of the three DPOR algorithms that,
for convenience, we will refer to as ‘classic’ (for the algorithm of Flanagan and Godefroid [2005a]),
‘source’ and ‘optimal’. We ran all benchmarks on a desktop with an i7-3770 CPU (3.40 GHz), 16GB
of RAM running Debian Linux 3.2.0-4-amd64. The machine has four physical cores, but presently
Concuerror uses only one of them. In all benchmarks, Concuerror was started with the option
-p inf (use “infinity” as preemption bound), which instructs the tool to explore traces without
limiting the number of preemptions in each explored trace, i.e., to verify these programs.2

Performance on two “standard” benchmarks. First, we report performance on the two bench-
marks from the DPOR paper [Flanagan and Godefroid 2005b]: filesystem and indexer. These are
benchmarks that have been used in the literature to evaluate another DPOR variant (DPOR-CR
of Saarikivi et al. [2012]) and a technique based on unfoldings by Kähkönen et al. [2012]. As both
programs use locks, we had to emulate a locking mechanism using Erlang. To make this translation
we used particular language features for these two benchmarks.
filesystem This benchmark uses two lock-handling primitives, called acquire and release. The

assumptions made for these primitives are that an acquire and a release operation on the
same lock are never co-enabled and should therefore not tried to be interleaved in a different
way than they occur. Thus, acquires are the only operations that can be swapped, if possible,
to get a different interleaving.

We implemented the lock objects in Erlang as separate processes. To acquire the lock, a
process sends a message with its identifier to the “lock process” and waits for a reply. Upon
receiving the message, the lock process uses the identifier to reply and then waits for a release
message. Other acquire messages are left in the lock’s mailbox. Upon receiving the release
message the lock process loops back to the start, retrieving the next acquire message and
notifying the next process. This behavior can be implemented in Erlang using two selective
receives.

indexer This benchmark uses a CAS primitive instruction to check whether a specific entry in
a matrix is zero and set it to a new value. The “Erlang way” to do this, is to try to execute an
insert_new operation on an ETS table: if another entry with the same key exists the operation
returns false; otherwise the operation returns true and the table now contains the new entry.
Two insert_new operations on the same key are always dependent.

Both benchmarks are parametric on the number of threads they use. For filesystem we used 14, 16,
18 and 19 threads. For indexer we used 12 and 15 threads.

2The version of Concuerror that we used to obtain the experimental results of this section is available at: https://github.
com/aronisstav/Concuerror/releases/tag/JACM_submission.

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

https://github.com/aronisstav/Concuerror/releases/tag/JACM_submission
https://github.com/aronisstav/Concuerror/releases/tag/JACM_submission

42:44 Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas

Table 3. Performance of DPOR algorithms on two benchmarks.

Traces Explored Time

Benchmark classic source optimal classic source optimal

filesystem(14) 4 2 2 0.54s 0.36s 0.35s
filesystem(16) 64 8 8 8.13s 1.82s 1.78s
filesystem(18) 1024 32 32 2m11s 8.52s 8.86s
filesystem(19) 4096 64 64 8m33s 18.62s 19.57s

indexer(12) 78 8 8 0.74s 0.11s 0.10s
indexer(15) 341832 4096 4096 56m20s 50.24s 52.35s

Table 3 shows the number of traces that the three algorithms explore as well as the time it
takes to explore them. It is clear that our algorithms, which in these benchmarks explore the same
(optimal) number of interleavings, beat ‘classic’ DPOR with sleep sets, by a margin that becomes
wider as the number of threads increases. As a sanity check, Kähkönen et al. [2012] report that their
unfolding-based method is also able to explore only 8 paths for indexer(12), while their prototype
implementation of DPOR extended with sleep sets and support for commutativity of reads and
writes explores between 51 and 138 paths (with 85 as median value). The numbers we report (78
for ‘classic’ DPOR and 8 for our algorithms) are very similar.

Performance on two synthetic benchmarks. Next, we compare the algorithms on two synthetic
benchmarks that expose differences between them. The first is the readers program of Fig. 13. The
results, for 2, 8 and 13 readers are shown in Table 4. For ‘classic’ DPOR the number of explored traces
isO(3N) here, while source- and optimal-DPOR only explore 2N traces. Both numbers are exponential
in N but, as can be seen in the table, for e.g., N = 13 both source-DPOR and optimal-DPOR finish in
about one and a half minute, while the DPOR algorithm with the sleep set extension [Flanagan
and Godefroid 2005a] explores two orders of magnitude more (mostly sleep set blocked) traces and
needs almost one and a half hours to complete.

Table 4. Performance of DPOR algorithms on more benchmarks.

Traces Explored Time

Benchmark classic source optimal classic source optimal

readers(2) 5 4 4 0.02s 0.02s 0.02s
readers(8) 3281 256 256 13.98s 1.31s 1.29s
readers(13) 797162 8192 8192 86m 7s 1m26s 1m26s

lastzero(5) 241 79 64 1.08s 0.38s 0.32s
lastzero(10) 53198 7204 3328 4m47s 45.21s 27.61s
lastzero(15) 9378091 302587 147456 1539m11s 55m 4s 30m13s

The second benchmark is the lastzero(N) program presented earlier in Fig. 11. As can be seen
in Table 4, source-DPOR explores about twice as many traces as optimal-DPOR and, naturally, even
if it uses a cheaper test, takes almost twice as much time to complete.

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

Source Sets: A Foundation for Optimal Dynamic Partial Order Reduction 42:45

Table 5. Performance of DPOR algorithms on four real programs.

Traces Explored Time

Benchmark classic source optimal classic source optimal

dialyzer 12436 3600 3600 14m46s 5m17s 5m46s
gproc 14080 8328 8104 3m 3s 1m45s 1m57s
poolboy 6018 3120 2680 3m 2s 1m28s 1m20s
rushhour 793375 536118 528984 145m19s 101m55s 105m41s

Table 6. Memory requirements (in MB) for selected benchmarks.

filesystem(19) indexer(15) gproc rushhour

classic 92.98 245.32 557.31 24.01
source 66.07 165.23 480.96 24.01
optimal 76.17 174.60 481.07 31.07

Performance on real programs. Finally, we evaluate the algorithms on four Erlang applications.
The programs are:
dialyzer A parallel static code analyzer [Aronis and Sagonas 2012] included in the Erlang/OTP

distribution.
gproc An extended process dictionary (https://github.com/uwiger/gproc).
poolboy A worker pool factory (https://github.com/devinus/poolboy).
rushhour A program that uses processes and ETS tables to solve the Rush Hour puzzle in parallel.
The last program, rushhour, is complex but self-contained (917 lines of code). The first three
programs, besides their code, call many modules from the Erlang libraries, which Concuerror also
instruments. The total number of lines of instrumented code for testing the first three programs is
44 596, 9 446 and 79 732, respectively.

Table 5 shows the results. Here, the performance differences are not as profound as in synthetic
benchmarks. Still, some general conclusions can be drawn:

• Both source-DPOR and optimal-DPOR explore less traces than ‘classic’ (from 50% up to 3.5
times fewer) and require less time to do so (they run from 42% up to 2.65 times faster).

• Even in real programs, the number of sleep set blocked explorations is significant.
• Regarding the number of traces explored, source-DPOR is quite close to optimal, but

manages to completely avoid sleep set blocked executions in only one program (in dialyzer).
• Source-DPOR is faster overall, but only slightly so compared to optimal-DPOR even though
it uses a cheaper test. In fact, its maximal performance difference percentage-wise from
optimal-DPOR is a bit less than 10% (in dialyzer again).

Although, we do not include a full set of memory consumption measurements, we mention
that all algorithms have very similar, and quite low, memory needs. Table 6 shows numbers for
gproc, the real program which requires most memory, and for all benchmarks where the difference
between source and optimal is more than one MB. From these numbers, it can also be deduced
that the size of the wakeup tree is small. In fact, the average size of the wakeup trees for these
programs is less than three nodes (it ranges from 2.14 to 2.38 nodes). In our experience, this holds
more generally: in all practical applications we have tried, the space requirements of the optimal

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

https://github.com/uwiger/gproc
https://github.com/devinus/poolboy

42:46 Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas

algorithm are very moderate and the exponential worst-case memory requirements do not seem to
manifest themselves in practice. Further evidence for this provides the fact that, so far at least, we
have not received any issue from a user reporting extensive memory consumption when running
Concuerror.

12 RELATEDWORK
In early approaches to stateless model checking, it was observed that reduction was needed to
combat the explosion in number of explored interleavings. Consequently, since then, several
reduction methods have been proposed including partial order reduction and bounding techniques
such as bounding the depth [Godefroid 1997], the number of context switches and the number
of preemptive context switches [Musuvathi and Qadeer 2007], or the number of delays that an
otherwise deterministic scheduler is allowed [Emmi et al. 2011]. Since early persistent set techniques
[Clarke et al. 1999; Godefroid 1996; Valmari 1991] relied on static analysis, sleep set techniques were
also used to dynamically prevent explorations from processes that would be provably redundant.
However, it was observed that, although sleep sets are sufficient to prevent the complete exploration
of different but equivalent interleavings [Godefroid et al. 1995], additional techniques were needed
to reduce sleep set blocked exploration.

The dynamic partial order reduction algorithm of Flanagan and Godefroid [2005b] showed how
to construct persistent sets on-the-fly “by need”, leading to better reduction. Similar techniques have
been combined with dynamic symbolic execution, which is also known as concolic testing, where
new test runs are initiated in response to detected races by flipping these races using postponed
sets [Sen and Agha 2007]. Since then, several variants, improvements, and adaptations of DPOR for
stateless model checking [Lauterburg et al. 2010; Tasharofi et al. 2012] and concolic testing [Saarikivi
et al. 2012; Sen and Agha 2006] have appeared, all based on persistent sets. Our source-DPOR and
optimal-DPOR algorithms can be applied to all these contexts to provide increased or optimal
reduction in the number of explored interleavings.

A related area is reachability testing, in which test executions of concurrent programs are steered
by the test harness. Lei and Carver [2006] present a technique for exploring all Mazurkiewicz
traces in a setting with a restricted set of primitives (message passing using FIFO channels and
monitors) for process interaction. The scheduling of new test executions explicitly pairs message
transmissions with receptions, and could potentially require significant memory, compared to
the more light-weight approach of stateless model checking. The technique of Lei and Carver
guarantees to avoid re-exploration of different but equivalent maximal executions (corresponding
to Theorem 7.11), but reports blocked executions. Moreover, their technique requires a non-trivial
amount of memory for storing interleavings that are yet to be explored.

Kahlon et al. [2009] present a normal form for executions of concurrent programs and prove that
two different normal-form executions are not in the same Mazurkiewicz trace. This normal form
can be exploited by SAT- or SMT-based bounded model checkers, but it can not be used by stateless
model checkers that enumerate the execution sequences by state-space exploration. Kähkönen
et al. [2012], and very recently Rodríguez et al. [2015], use unfoldings [McMillan and Probst 1995],
which can also obtain optimal reduction in number of interleavings. However, unfolding-based
techniques have significantly larger cost per test execution than DPOR-like techniques, and the
technique of Kähkönen et al. [2012] also needs an additional post-processing step for checking
non-local properties such as races and deadlocks. A technique for using transition-based partial
order reduction for message-passing programs, without moving to an event-based formulation is to
refine the concept of dependency between transitions to that of conditional dependency [Godefroid
1996; Godefroid and Pirottin 1993; Katz and Peled 1992].

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

Source Sets: A Foundation for Optimal Dynamic Partial Order Reduction 42:47

Another line of work that can be used to test multi-threaded programs that take inputs from
unbounded domains are approaches based on generalized symbolic execution, starting with the
work of Khurshid et al. [2003], which took advantage of the partial order and symmetry reduction
capabilities of the model checker component of the Java PathFinder tool. Broadly speaking, most
early approaches based on symbolic execution do not achieve the reduction in explored traces that
DPOR techniques can offer and do not define any notion of optimality.

Recently, Huang [2015] characterized a generalization (i.e., weaker form) of Mazurkiewicz traces
based on a new criterion: the maximal causal model for a concurrent computation from a given
execution trace, a notion defined by Serbanuta et al. [2012]. Maximal causality characterizes the
largest possible set of equivalent interleavings in each (weaker form of) Mazurkiewicz trace by
taking semantic information into consideration, namely the values of reads and writes. When
applied in stateless model checking, maximal causality enables exploration of the entire state
space of a concurrent program with respect to a given input with a provably minimal number of
executions. The corresponding algorithm, called Maximal Causality Reduction (MCR), relies on
an offline constraint analyzer to formulate constraints that are then solved using an SMT solver.
Its implementation, which is not publicly available, was compared against an implementation of
the original DPOR algorithm with iterative context bounding [Musuvathi and Qadeer 2007] and
was found to outperform it in most cases. In view of this result, it would be interesting to compare
MCR, both theoretically and experimentally, with a better DPOR algorithm, such as optimal-DPOR,
at some point.

13 CONCLUDING REMARKS
We have presented a new theoretical foundation for partial order reduction, based on source sets, and
two new algorithms for dynamic partial order reduction, called source-DPOR and optimal-DPOR.
The latter algorithm, which combines source sets with a novel mechanism called wakeup trees
to achieve optimality, is the first DPOR algorithm to be provably optimal in the sense that it is
guaranteed both to completely explore the minimal number of executions and avoid even initiating
executions that lead to sleep set blocking. As shown in the experimental evaluation, the extra
overhead of maintaining wakeup trees is very moderate in practice (never more than 10% in our
experiments), which is a good trade-off for having an optimality guarantee and the possibility
to run arbitrarily (exponentially) faster than other DPOR algorithms. However, as also shown in
this article, wakeup trees can be exponential in size in situations where an exponential number of
executions needs to be explored by the optimal algorithm. In such situations, the source-DPOR
algorithm, which maintains less information than the optimal algorithm, could be used as a fallback
in a tool that implements both algorithms. Another reason to prefer the source-DPOR algorithm is
its implementation simplicity; indeed, one only needs to substitute persistent sets with source sets
in an implementation of the original DPOR algorithm of Flanagan and Godefroid [2005b] to obtain
an implementation of source-DPOR.
Due to its implementation simplicity, we have chosen the source-DPOR algorithm to be the

core algorithm used in Nidhugg, a stateless model checking tool for C/pthreads programs under
sequential consistency and also under relaxed memory models, and achieved performance that
outperforms state-of-the-art tools of similar capabilities [Abdulla et al. 2015]. Recently, we have
applied Nidhugg to systematically test various flavors of the Read-Copy-Update (RCU) synchro-
nization mechanism of the Linux kernel. We have been able to reproduce, within seconds, various
safety and liveness bugs that have been reported for Tree RCU’s implementation, and have verified
the Grace-Period guarantee, the basic guarantee that RCU offers, on non-preemptible builds of
several Linux kernel versions. The source-DPOR algorithm has been instrumental in verifying this

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

42:48 Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas

property in reasonable time. For more information refer to a recent paper by Kokologiannakis and
Sagonas [2017].
We intend to further explore the ideas behind source sets and wakeup trees, not only for

verification but also for new ways of testing concurrent programs.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for comments and suggestions that
have improved the presentation and simplified some of the proofs, and the area editor, Rajeev Alur,
for his swift handling of our article. Thanks also to Magnus Lång for his careful reading of this
article before its final submission to the publisher.

REFERENCES
Parosh Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt Jonsson, Carl Leonardsson, and Konstantinos Sagonas. 2015.

Stateless Model Checking for TSO and PSO. In Tools and Algorithms for the Construction and Analysis of Systems - 21st
International Conference, TACAS 2015. Proceedings (LNCS), Christel Baier and Cesare Tinelli (Eds.), Vol. 9035. Springer,
Berlin Heidelberg, 353–367. https://doi.org/10.1007/978-3-662-46681-0_28

Joe Armstrong. 2010. Erlang. Commun. ACM 53, 9 (Sept. 2010), 68–75. https://doi.org/10.1145/1810891.1810910
Stavros Aronis and Konstantinos Sagonas. 2012. On Using Erlang for Parallelization — Experience from Parallelizing

Dialyzer. In Trends in Functional Programming, 13th International Symposium (LNCS), Hans-Wolfgang Loidl and Ricardo
Peña (Eds.), Vol. 7829. Springer, Berlin Heidelberg, 295–310. https://doi.org/10.1007/978-3-642-40447-4_19

Maria Christakis, Alkis Gotovos, and Konstantinos Sagonas. 2013. Systematic Testing for Detecting Concurrency Errors
in Erlang Programs. In Sixth IEEE International Conference on Software Testing, Verification and Validation (ICST 2013).
IEEE Computer Society, Los Alamitos, CA, USA, 154–163. https://doi.org/10.1109/ICST.2013.50

Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. 1983. Automatic Verification of Finite-State Concurrent Systems
Using Temporal Logics Specification: A Practical Approach. In Conference Record of the Tenth Annual ACM Symposium
on Principles of Programming Languages. ACM Press, 117–126. https://doi.org/10.1145/567067.567080

Edmund M. Clarke, Orna Grumberg, Marius Minea, and Doron Peled. 1999. State Space Reduction Using Partial Order
Techniques. International Journal on Software Tools for Technology Transfer 2, 3 (Nov. 1999), 279–287. https://doi.org/10.
1007/s100090050035

Brian Demsky and Patrick Lam. 2015. SATCheck: SAT-directed Stateless Model Checking for SC and TSO. In Proceedings of
the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2015). ACM, New York, NY, USA, 20–36. https://doi.org/10.1145/2814270.2814297

Michael Emmi, Shaz Qadeer, and Zvonimir Rakamarić. 2011. Delay-bounded Scheduling. In Proceedings of the 38th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’11). ACM, New York, NY, USA, 411–422.
https://doi.org/10.1145/1926385.1926432

Cormac Flanagan and Patrice Godefroid. 2005a. Addendum to Dynamic partial-order reduction for model checking software.
(2005). Available at http://research.microsoft.com/en-us/um/people/pg/.

Cormac Flanagan and Patrice Godefroid. 2005b. Dynamic partial-order reduction for model checking software. In Proceedings
of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’05). ACM, New York, NY,
USA, 110–121. https://doi.org/10.1145/1040305.1040315

Patrice Godefroid. 1996. Partial-Order Methods for the Verification of Concurrent Systems: An Approach to the State-Explosion
Problem. Ph.D. Dissertation. University of Liège. https://doi.org/10.1007/3-540-60761-7 Also, volume 1032 of LNCS,
Springer.

Patrice Godefroid. 1997. Model Checking for Programming Languages using VeriSoft. In Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’97). ACM, New York, NY, USA, 174–186.
https://doi.org/10.1145/263699.263717

Patrice Godefroid. 2005. Software Model Checking: The VeriSoft Approach. Formal Methods in System Design 26, 2 (March
2005), 77–101. https://doi.org/10.1007/s10703-005-1489-x

Patrice Godefroid, Gerard J. Holzmann, and Didier Pirottin. 1995. State-Space Caching Revisited. Formal Methods in System
Design 7, 3 (Nov. 1995), 227–241. https://doi.org/10.1007/BF01384077

Patrice Godefroid and Didier Pirottin. 1993. Refining Dependencies Improves Partial-Order Verification Methods. In
Computer Aided Verification (LNCS), Costas Courcoubetis (Ed.), Vol. 697. Springer, London, UK, 438–449. https://doi.org/
10.1007/3-540-56922-7_36

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1145/1810891.1810910
https://doi.org/10.1007/978-3-642-40447-4_19
https://doi.org/10.1109/ICST.2013.50
https://doi.org/10.1145/567067.567080
https://doi.org/10.1007/s100090050035
https://doi.org/10.1007/s100090050035
https://doi.org/10.1145/2814270.2814297
https://doi.org/10.1145/1926385.1926432
http://research.microsoft.com/en-us/um/people/pg/
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1145/263699.263717
https://doi.org/10.1007/s10703-005-1489-x
https://doi.org/10.1007/BF01384077
https://doi.org/10.1007/3-540-56922-7_36
https://doi.org/10.1007/3-540-56922-7_36

Source Sets: A Foundation for Optimal Dynamic Partial Order Reduction 42:49

Patrice Godefroid and Pierre Wolper. 1991. Using Partial Orders for the Efficient Verification of Deadlock Freedom and
Safety Properties. In Computer Aided Verification (LNCS), Kim G. Larsen and Arne Skou (Eds.), Vol. 575. Springer-Verlag,
London, UK, 332–342. https://doi.org/10.1007/3-540-55179-4_32

Jeff Huang. 2015. Stateless Model Checking Concurrent Programs with Maximal Causality Reduction. In Proceedings of
the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2015). ACM, New York,
NY, USA, 165–174. https://doi.org/10.1145/2737924.2737975

Kari Kähkönen, Olli Saarikivi, and Keijo Heljanko. 2012. Using Unfoldings in Automated Testing of Multithreaded Programs.
In Proceedings of the 27th IEEE/ACM International Conference on Automated Software Engineering (ASE 2012). ACM, New
York, NY, USA, 150–159. https://doi.org/10.1145/2351676.2351698

Vineet Kahlon, Chao Wang, and Aarti Gupta. 2009. Monotonic Partial Order Reduction: An Optimal Symbolic Partial
Order Reduction Technique. In Computer Aided Verification (LNCS), Ahmed Bouajjani and Oded Maler (Eds.), Vol. 5643.
Springer, Berlin Heidelberg, 398–413. https://doi.org/10.1007/978-3-642-02658-4_31

Harmen Kastenberg and Arend Rensink. 2008. Dynamic Partial Order Reduction Using Probe Sets. In Concurrency The-
ory (LNCS), Franck van Breugel and Marsha Chechnik (Eds.), Vol. 5201. Springer, 233–247. https://doi.org/10.1007/
978-3-540-85361-9_21

Shmuel Katz and Doron Peled. 1992. Defining Conditional Independence Using Collapses. Theoretical Computer Science
101, 2 (July 1992), 337–359. https://doi.org/10.1016/0304-3975(92)90054-J

Sarfraz Khurshid, Corina S. Păsăreanu, and Willem Visser. 2003. Generalized Symbolic Execution for Model Checking
and Testing. In Proceedings of the 9th International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (LNCS), Hubert Garavel and John Hatcliff (Eds.), Vol. 2619. Springer, Berlin, Heidelberg, 553–568. https:
//doi.org/10.1007/3-540-36577-X_40

Michalis Kokologiannakis and Konstantinos Sagonas. 2017. Stateless Model Checking of the Linux Kernel’s Hierarchical
Read-Copy-Update (Tree RCU). In Proceedings of the 24th International SPIN Symposium on Model Checking of Software
(SPIN 2017). ACM, New York, NY, USA.

Leslie Lamport. 1978. Time, Clocks and the Ordering of Events in a Distributed System. Comm. of the ACM 21, 7 (July 1978),
558–565. https://doi.org/10.1145/359545.359563

Steven Lauterburg, Rajesh K. Karmani, Darko Marinov, and Gul Agha. 2010. Evaluating Ordering Heuristics for Dynamic
Partial-Order Reduction Techniques. In Fundamental Approaches to Software Engineering, 13th International Conference,
FASE 2010 (LNCS), David S. Rosenblum and Gabriele Taentzer (Eds.), Vol. 6013. Springer, Berlin Heidelberg, 308–322.
https://doi.org/10.1007/978-3-642-12029-9_22

Yu Lei and Richard H. Carver. 2006. Reachability Testing of Concurrent Programs. IEEE Trans. Softw. Eng. 32, 6 (June 2006),
382–403. https://doi.org/10.1109/TSE.2006.56

Friedemann Mattern. 1989. Virtual Time and Global States of Distributed Systems. In Proceedings of the Workshop on Parallel
and Distributed Algorithms, M. Cosnard et al. (Ed.). North-Holland / Elsevier, 215–226.

Antoni Mazurkiewicz. 1987. Trace Theory. In Petri Nets: Applications and Relationships to Other Models of Concurrency
(LNCS), W. Brauer, W. Reisig, and G. Rozenberg (Eds.), Vol. 255. Springer, Berlin Heidelberg, 279–324. https://doi.org/10.
1007/3-540-17906-2_30

Kenneth L. McMillan and David K. Probst. 1995. A Technique of a State Space Search Based on Unfolding. Formal Methods
in System Design 6, 1 (Jan. 1995), 45–65. https://doi.org/10.1007/BF01384314

Madanlal Musuvathi and Shaz Qadeer. 2007. Iterative context bounding for systematic testing of multithreaded programs.
In Proceedings of the 28th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’07).
ACM, New York, NY, USA, 446–455. https://doi.org/10.1145/1250734.1250785

Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerald Basler, Piramanayagam Arumuga Nainar, and Iulian Neamtiu.
2008. Finding and Reproducing Heisenbugs in Concurrent Programs. In Proceedings of the 8th USENIX Symposium
on Operating Systems Design and Implementation (OSDI ’08). USENIX Association, Berkeley, CA, USA, 267–280. http:
//dl.acm.org/citation.cfm?id=1855741.1855760

Doron Peled. 1993. All from one, one for all, on model-checking using representatives. In Computer Aided Verification (LNCS),
Costas Courcoubetis (Ed.), Vol. 697. Springer-Verlag, London, UK, 409–423. https://doi.org/10.1007/3-540-56922-7_34

Jean-Pierre Queille and Joseph Sifakis. 1982. Specification and Verification of Concurrent Systems in CESAR. In International
Symposium on Programming (LNCS), Mariangiola Dezani-Ciancaglini and Ugo Montanari (Eds.), Vol. 137. Springer Verlag,
Berlin Heidelberg, 337–351. https://doi.org/10.1007/3-540-11494-7_22

César Rodríguez, Marcelo Sousa, Subodh Sharma, and Daniel Kroening. 2015. Unfolding-based Partial Order Reduction. In
26th International Conference on Concurrency Theory, CONCUR 2015 (LIPIcs), Vol. 42. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 456–469. https://doi.org/10.4230/LIPIcs.CONCUR.2015.456

Stuart Russell and Peter Norvig. 2009. Artificial Intelligence: A Modern Approach (3rd ed.). Pearson Education Limited, Essex,
U.K.

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

https://doi.org/10.1007/3-540-55179-4_32
https://doi.org/10.1145/2737924.2737975
https://doi.org/10.1145/2351676.2351698
https://doi.org/10.1007/978-3-642-02658-4_31
https://doi.org/10.1007/978-3-540-85361-9_21
https://doi.org/10.1007/978-3-540-85361-9_21
https://doi.org/10.1016/0304-3975(92)90054-J
https://doi.org/10.1007/3-540-36577-X_40
https://doi.org/10.1007/3-540-36577-X_40
https://doi.org/10.1145/359545.359563
https://doi.org/10.1007/978-3-642-12029-9_22
https://doi.org/10.1109/TSE.2006.56
https://doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1007/BF01384314
https://doi.org/10.1145/1250734.1250785
http://dl.acm.org/citation.cfm?id=1855741.1855760
http://dl.acm.org/citation.cfm?id=1855741.1855760
https://doi.org/10.1007/3-540-56922-7_34
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.4230/LIPIcs.CONCUR.2015.456

42:50 Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas

Olli Saarikivi, Kari Kähkönen, and Keijo Heljanko. 2012. Improving Dynamic Partial Order Reductions for Concolic Testing.
In Application of Concurrency to System Design (ACSD), 12th International Conference on. IEEE, Los Alamitos, CA, USA,
132–141. https://doi.org/10.1109/ACSD.2012.18

Koushik Sen and Gul Agha. 2006. Automated Systematic Testing of Open Distributed Programs. In Fundamental Approaches
to Software Engineering, 9th International Conference, FASE 2006 (LNCS), Luciano Baresi and Reiko Heckel (Eds.), Vol. 3922.
Springer, Berlin Heidelberg, 339–356. https://doi.org/10.1007/11693017_25

Koushik Sen and Gul Agha. 2007. A Race-Detection and Flipping Algorithm for Automated Testing of Multi-threaded
Programs. In Haifa Verification Conference (LNCS), Eyal Bin, Avi Ziv, and Shmuel Ur (Eds.), Vol. 4383. Springer, Berlin
Heidelberg, 166–182. https://doi.org/10.1007/978-3-540-70889-6_13

Traian-Florin Serbanuta, Feng Chen, and Grigore Rosu. 2012. Maximal Causal Models for Sequentially Consistent Systems.
In Runtime Verification, Third International Conference, RV 2012, Revised Selected Papers (LNCS), Shaz Qadeer and Serdar
Tasiran (Eds.), Vol. 7687. Springer, Berlin Heidelberg, 136–150. https://doi.org/10.1007/978-3-642-35632-2_16

Samira Tasharofi, Rajesh K. Karmani, Steven Lauterburg, Axel Legay, Darko Marinov, and Gul Agha. 2012. TransDPOR: A
Novel Dynamic Partial-Order Reduction Technique for Testing Actor Programs. In Formal Techniques for Distributed
Systems (LNCS), Holger Giese and Grigore Rosu (Eds.), Vol. 7273. Springer, Berlin Heidelberg, 219–234. https://doi.org/
10.1007/978-3-642-30793-5_14

Antti Valmari. 1991. Stubborn Sets for Reduced State Space Generation. In Advances in Petri Nets 1990 (LNCS), Grzegorz
Rozenberg (Ed.), Vol. 483. Springer-Verlag, London, UK, 491–515. https://doi.org/10.1007/3-540-53863-1_36

Received April 2016; revised March 2017; accepted April 2017

Journal of the ACM, Vol. ?, No. ?, Article 42. Publication date: April 2017.

https://doi.org/10.1109/ACSD.2012.18
https://doi.org/10.1007/11693017_25
https://doi.org/10.1007/978-3-540-70889-6_13
https://doi.org/10.1007/978-3-642-35632-2_16
https://doi.org/10.1007/978-3-642-30793-5_14
https://doi.org/10.1007/978-3-642-30793-5_14
https://doi.org/10.1007/3-540-53863-1_36

	Abstract
	1 Introduction
	2 Basic Ideas
	3 Framework
	3.1 Abstract Computation Model
	3.2 Event Dependencies
	3.3 Independence and Races

	4 Source Sets
	5 Source-DPOR
	5.1 Algorithm
	5.2 Correctness

	6 Wakeup Trees
	6.1 Formal Definition
	6.2 Inserting Sequences in a Wakeup Tree

	7 Optimal-DPOR
	7.1 Algorithm
	7.2 Correctness
	7.3 Optimality

	8 Extending Source-DPOR and Optimal-DPOR to Support Blocking
	8.1 Handling Locks
	8.2 Allowing Arbitrary Blocking in the Execution Model

	9 Comparison and Trade-offs between Source-DPOR and Optimal-DPOR
	10 Implementation
	11 Experiments
	12 Related Work
	13 Concluding Remarks
	Acknowledgments
	References

