
A Modeling Framework for Reuse Distance-based
Estimation of Cache Performance

Xiaoyue Pan Bengt Jonsson
Department of Information Technology

Uppsala University
{xiaoyue.pan, bengt.jonsson}@it.uu.se

Abstract—We develop an analytical modeling framework for
efficient prediction of cache miss ratios based on reuse distance
distributions. The only input needed for our predictions is the
reuse distance distribution of a program execution: previous work
has shown that they can be obtained with very small overhead
by sampling from native executions. This should be contrasted
with previous approaches that base predictions on stack distance
distributions, whose collection need significantly larger overhead
or additional hardware support. The predictions are based on
a uniform modeling framework which can be specialized for a
variety of cache replacement policies, including Random, LRU,
PLRU, and MRU (aka. bit-PLRU), and for arbitrary values of
cache size and cache associativity. We evaluate our modeling
framework with the SPEC CPU 2006 benchmark suite over a set
of cache configurations with varying cache size, associativity and
replacement policy. The introduced inaccuracies were generally
below 1% for the model of the policy, and additionally around
2% when set-local reuse distances must be estimated from
global reuse distance distributions. The inaccuracy introduced
by sampling is significantly smaller.

I. INTRODUCTION

Processor caches are critical components of the memory
hierarchy that exploit locality to keep frequently-accessed data
on chip. Caches can significantly improve performance and
reduce energy usage, but this benefit is highly dependent on
both the application and the cache characteristics, including
cache size and replacement policy. In today’s power and energy
constrained computer systems, it is important to understand
how an application is affected by cache characteristics, e.g., for
performing decisions on resource allocation and scheduling,
for program transformation and optimization, for performance
debugging, etc. This calls for efficient techniques to predict
cache performance of applications with a range of cache
configurations that differ from current settings.

The prediction methods can be divided into two cat-
egories: simulation and analytical models. While simula-
tion [18] [11] [19] [7] [14] [15] guarantees prediction accuracy,
the time it takes to simulate a wide range of configurations
may be prohibitively slow, especially for applications with a
large number of memory accesses. Analytic models in general
has the advantage of efficient calculation (sometimes at the
cost of accuracy). Moreover, they provide insights into how
the cache performance changes with application characteristics
and the cache configurations. In this paper, we focus on
analytic models.

Existing analytic models for predicting an application’s

cache performance have two problems: either they can only
predict a very limited set of cache configurations (e.g., [8]
only handles fully associative LRU cache), or they require
the stack distance distribution as the input [18]. Collecting
the stack distance distribution requires memory traces, which
incurs a 10-1000X slow-down (using tools like PIN [16] and
Valgrind [17]), which is unacceptably expensive for many uses
in scheduling, optimization, performance tuning, etc.

An efficient alternative is to base cache performance pre-
dictions on reuse distance distributions. The reuse distance of
a memory access is just the number of accesses made since
the previous access to the same cache line [3]: this should
be contrasted with the stack distance, which is the number
of distinct cache lines accessed since that previous access.
Reuse distance distributions are easy to obtain with small
overhead on natively running applications without collecting
memory traces. Berg and Hagersten [4] showed how they
can be collected using hardware counters and watchpoint
mechanisms and how sampling can reduce the overhead to
only 40% without significant loss in accuracy. The watchpoint
mechanism monitors when a sampled cache line is reused; the
reuse distance is then recorded and the watchpoint is removed.
Reuse distance distributions have been used to predict miss
ratios for fully-associative caches of varying size with random
and LRU replacement policies with good accuracy [3], [8].

Challenge Reuse distance distributions are a very suitable
basis for estimating various cache performance metrics, since
they can be collected with small overhead on natively running
applications. So far, they have been used only for predicting
miss ratios for fully-associative caches under random and
LRU replacement policies. No techniques have been presented
using reuse distance distributions to predict cache performance
for replacement policies found in modern processors, such
as PLRU and bit-PLRU, nor for taking set associativity into
account. Furthermore, the techniques that have been presented
for predicting random and for LRU caches are specific to their
respective replacement policy [3], [8], and it is not easy to see
how they could be re-targeted for other replacement policies. It
would be desirable to have a general framework for cache per-
formance prediction from reuse distance distributions, which
can be instantiated for different cache configurations, such as
various replacement policies and associativities.

Contribution In this paper, we propose a general modeling
framework for predicting cache miss ratios for applications in
a cache with different configurations. It overcomes the two



problems with existing methods: 1) expensive-to-collect input
and 2) only handling a limited set of cache configurations. Our
modeling framework only uses the reuse distance distributions
as input; and it can estimate the miss ratio in caches with
a wide range of configurations, i.e., cache size, cache asso-
ciativity and replacement policy. Furthermore, it would not
be difficult to instantiate our framework for other conceivable
replacement policies. To demonstrate how to use the modeling
framework, we show how it can be instantiated for Random,
LRU, PLRU, and bit-PLRU replacement policies, and also for
taking set-associativity into account by first estimating the set
reuse distance distribution from the reuse distance distribution,
then predicting the cache miss ratio for each set.

The basic idea of our framework is to model the evolution
of the cache between two consecutive accesses to the same
cache line. The model has the form of a Markov chain,
which can be tailored for each specific cache configuration,
such as a combination of replacement policy, cache size, and
associativity. The transition probabilities between the states
in the Markov chain will in general depend on the reuse
distribution of the application. By standard analysis of the
Markov chain, we compute the probabilities that the second
access results in a miss or hit, respectively, from which a
prediction of miss ratio is immediately obtained.

We evaluate our prediction framework by using it to predict
miss ratios of a set of benchmarks for caches sized 4kB
to 64kB and associativities 2-16 with LRU, PLRU and bit-
PLRU replacement policies. For a set-associativitive cache, the
framework requires the set reuse distance distribution, which
can be obtained either during the reuse distance distribution
collection with an extra overhead, or estimated from reuse
distance distribution with a model we propose. The estimated
miss ratio given the actual set reuse distance distribution for
all benchmarks and all cache configurations has an average
absolute error below 1%. Estimating the set reuse distance
adds another 2% error.

In summary, we present for the first time a general
framework for predicting an application’s cache performance
with various cache configurations. The specific contributions
include

• The modeling framework fulfills two requirements: 1) it
can be used to estimate the miss ratio in caches with
different sizes, associativities and replacement policies
and 2) its input can be collected with a low overhead
while no existing cache models satisfy both requirements.
• Due to the framework’s unified setting, it can be instan-

tiated to other replacement policies. In contrast, existing
approaches for estimating miss ratios apply a conceptually
different approach for each replacement policy [3], [8],
[18], making it unclear how to re-target the method for a
new replacement policy.
• We present the first technique for predicting miss ratios

for the widely used bit-PLRU replacement policy.
• Our techniques for predicting miss ratios for Random

and LRU from reuse distance distributions improve in
accuracy over the existing techniques of StatCache [3]
and StatStack [8].
• We also propose a model for estimating set reuse distance

distributions from reuse distance distributions, which
is slightly more accurate than the model of Hill and
Smith [13], which has been used in previous such es-
timations [18].

The models can be used to guide optimization; for example,
if our models predict that a smaller cache with fewer ways
suffices to keep a low miss ratio, it may be beneficial to switch
off part of the cache (if possible) to save energy. By combining
our models with other existing techniques, they can also be
used to predict miss ratios on multicore systems with shared
caches. For example, using a technique to obtain the combined
reuse distance distribution of co-scheduled applications, given
their individual reuse distance distributions, we can predict
miss ratios in shared caches. This has been done for fully
associative LRUs in StatCC [10]. Our models can be directly
plugged into StatCC to take other realistic caches into account.

The rest of the paper is organized as follows. Section II in-
troduces the assumptions, terms and notations used throughout
the paper. Section III presents the general modeling framework
for predicting cache miss ratios. Section IV discusses how to
convert the reuse distance distribution to the set reuse distance
distribution for set-associative caches. Section V instantiates
the general modeling framework to the LRU, PLRU and
bit-PLRU caches. Section VI shows how we evaluated our
models and the results. Section VII discusses related work and
Section VIII concludes the paper.

II. PRELIMINARIES

In this section, we introduce the assumptions, terms, and
notations throughout this paper. We use C to denote the overall
cache size and A to denote the associativity. In this paper, we
will consider the policies Random, LRU, tree-PLRU, and bit-
PLRU.

Measures of Temporal Locality We introduce metrics
of temporal locality in the trace (i.e., sequence of memory
accesses) that is generated by a program execution. A trace
can be represented as a mapping from an increasing sequence
of nonnegative integers (representing positions in the trace) to
accesses. We represent each access as a pair 〈a,m〉, where a
is an address of a cache line, and m is its repetition number.
The first access to an address a is represented as (a, 0), the
next as (a, 1), etc.

Consider a memory access 〈a,m〉. Let 〈a,m〉 be an access
in a trace T , with m > 0. The reuse interval of 〈a,m〉 in
T , denoted RI T 〈a,m〉, is the sequence of memory accesses
between the access 〈a,m− 1〉 and 〈a,m〉. The reuse distance
of 〈a,m〉, denoted rdT (〈a,m〉) is the number of memory
accesses in RI T 〈a,m〉. If m = 0, then rdT (〈a,m〉) is defined
as ∞.

Note on terminology: Many other works base cache per-
formance predictions on stack distances. The stack distance
of 〈a,m〉, denoted sdT (〈a,m〉) is the number of unique
memory accesses in RI T 〈a,m〉. For instance, in the trace
T = b a b b c d b a, where a, b, c and d are the accessed
cache lines, we have rdT ((a, 1)) = 5 and sdT ((a, 1)) = 3.
Some authors use slightly different terminology. For instance,
Sen and Wood [18] use the term unique reuse distance for



stack distance, and absolute reuse distance for reuse distance.
Some works, including [21], use the term reuse distance to
denote stack distance.

Based on the reuse distances in a trace, we define the
reuse distance distribution (rdd for short) of T as a function
rddT from natural numbers to probabilities, such that rddT (k)
is the fraction of all accesses with reuse distance k. We
will sometimes think of this as the probability that the reuse
distance is k. We will mostly drop the subscript T (i.e., write
rdd(k) for rddT (k)) when it is clear which trace is considered.

We introduce the notation rdd(≥ k) for
∞∑
i=k

rdd(i), i.e., the

fraction of accesses whose reuse distance is at least k, and
write rdd(>k) for rdd(≥(k+1)).

It will be convenient to define the marginal reuse distance
distribution (mrdd for short) of a trace as the function mrdd
from natural numbers to probabilities, defined by mrdd(k) =
rdd(k)

rdd(≥k)
. That is, mrdd(k) is the probability that the reuse

distance is k, provided that it is at least k. If sequences of
accesses in a reuse interval are considered from the beginning,
then if k accesses have been considered without encountering
a reuse, then mrdd(k) is the probability that the next access is
the reuse. We can conversely get rdd from mrdd by rdd(k) =
mrdd(k)

∏k−1
i=0 (1−mrdd(i)).

Per-Set Measures of Temporal Locality Since replacement
decisions are made on a per-set basis, it is important to
develop measures of temporal locality that are local to sets.
Assume a cache with S sets. We can then repeat the definitions
concerning accesses from Section II, but this time specific to
the set to which a is mapped.

The set reuse distance of 〈a,m〉, denoted rds(〈a,m〉) is
the number of memory accesses in RI 〈a,m〉 that are mapped
to the same set as a.

The set reuse distance distribution (set-rdd for short) is the
function rdds for which rdds(k) is the fraction of all accesses
with set reuse distance k. Notations rdds(≥k) and rdds(>k)
are as expected.

III. MODELING REPLACEMENT POLICIES: GENERAL
FRAMEWORK

In this section, we introduce our general framework for
predicting miss ratios for caches under different combinations
of replacement policy, size, and associativity, given only the
rdd. In Section V, we instantiate this framework for the
policies under consideration: LRU, tree-PLRU, and bit-PLRU.
In Section IV, we show how rdds can be used to estimate set-
rdds, from which we can predict miss ratios for set-associative
caches by applying our model for the relevant replacement
policy to the set-rdd.

The overall idea of our general framework is to consider
a randomly chosen memory access 〈a,m〉 (with m > 0),
and estimate the probability that it is a miss. This is done
by modeling the evolution of cache during the reuse interval
RI 〈a,m〉 (i.e., the sequence of memory accesses between the
previous access 〈a,m − 1〉 to a and 〈a,m〉), and how this
evolution results in a hit or miss for 〈a,m〉.

Our model has the form of a Markov chain, whose states
represent properties of the current cache contents that influence
whether the access 〈a,m〉 will be a hit or a miss. Typically, one
state will represent that a has been evicted; the case when a is
still in the cache may require several states in order to properly
reflect a specific replacement policy. The Markov chain must
also have the two states hit and miss, which are entered when
〈a,m〉 occurs. The Markov chain is completed, by assigning
an initial probability distribution over its states to model the
situation immediately after the previous access 〈a,m−1〉, and
transition probabilities to model how this distribution evolves
with each access in the reuse interval.

Given the Markov chain, we analyze how the probability
distribution over its states evolves during the reuse interval.
After the reusing access 〈a,m〉, this distribution is nonzero
only for hit and miss, from which we obtain the miss ratio.

Let us explain more precisely how our Markov model is
constructed for a specific replacement policy. Let 〈a,m〉 be
the considered access. For i ≥ 0, let ti denote the position in
the trace, resulting after i accesses after the previous access
〈a,m−1〉 to a. For instance, in a trace T = b a b b c d b a e . . .,
if 〈a, 1〉 (i.e., the second access to a) is the considered access,
then t0 is the position after the first access to a, the position t3
is after the access to c, and t7 is the position after the access
to e. The Markov chain now consists of

• a set Σ of states, which must contain the two states hit
and miss.

• an initial probability distribution, denoted P (0), which for
each state s ∈ Σ defines the probability P (0)(s) of being
in state s at t0,

• transition probabilities, denoted p(i)
s,s′ , which for each i =

0, 1, . . . and each pair of states s, s′ ∈ Σ, defines the
conditional probability of being in s′ at ti+1, given that
the Markov chain is in s at ti.

Note that the transition probabilities p(i)
s,s′ depend not only on

the states s and s′, but also on the index i of the position ti.
As a typical case, if the state s represents a situation where
the reusing access 〈a,m〉 has not yet occurred and a is still
present in the cache, then p(i)

s,hit can be taken as the probability
that the reusing access occurs, which is mrdd(i) as explained
in Section II.

Given a Markov chain that models the evolution of the
cache as above, we can now for i = 0, 1, 2, . . . calculate the
probability distribution, denoted P (i), over its states at position
ti. For i = 0, this distribution is given by the initial probability
distribution P (0). For i = 1, 2, . . ., we calculate the probability
P (i)(s) of being in s at ti using the formula

P (i)(s) =
∑
s′∈Σ

P (i−1)(s′) · p(i−1)
s′,s

i.e., P (i)(s) is obtained by summing the probabilities of being
in some state s′ at position ti−1 and then moving to s at ti,
over all states s′ of the Markov chain. If the Markov chain is
properly designed, then P (i)(s) will approach 0 as i increases,
except for the cases s = hit and s = miss. We can therefore
get our estimate of the miss ratio as lim

i→∞
P (i)(miss), which



we sometimes denote P (∞)(miss). In practice, we will truncate
the calculation when i is so large that P (i)(miss) + P (i)(hit)
is close to 1.

For some of the replacement policies, our Markov chain
model will have transition probabilities that depend on the
sought miss ratio. We then introduce an unknown x to repre-
sent the sought miss ratio, and let some transition probabilities
p

(i)
s,s′ depend on x, so that P (∞)(miss) in general depends on
x. The sought miss ratio will then be defined by an implicit
equation of form x = P (∞)(miss), which we can solve by
standard methods (e.g., fixpoint iteration).

For an A-way set-associative cache, we can estimate miss
ratios using the same model, but making it local to an arbitrary
set. This is done by replacing the cache size C by the size of
a set A, and using the set-rdd instead of the rdd.

presentstart hit

evicted miss

1− x/C −mrdd(i)

mrdd(i)

x/C

1

1

mrdd(i)

1−mrdd(i)

Fig. 1: Markov chain model for random replacement policy

Example (Random replacement policy) Let us illustrate
how to construct the Markov chain for the random replacement
policy for a fully associative cache of size C.

• Σ contains 4 states: present, evicted, hit, and miss, where
present represents that a has not yet been evicted.
• Initial probabilities are P (0)

present = 1 and P
(0)
s = 0 for

all other states s, since a is present in the cache at the
beginning of the reuse interval.
• For i = 0, 1, . . ., the transition probabilities are shown in

Figure 1. Both hit and miss are sink states, which cannot
be exited. They are entered whenever 〈a,m〉 occurs, for
which the probability at ti is mrdd(i). For the transitions
from present we have
◦ p(i)

present,hit = mrdd(i), since this happens when
〈a,m〉 occurs,

◦ p(i)

present,evicted = x/C, since a is evicted precisely
if there is a miss (which happens with probability x)
which evicts a (which happens with probability 1/C
by the random replacement policy).

◦ p(i)

present,present = 1 − x/C − mrdd(i), since this is
the only remaining transition from present.

Given the above Markov chain model of the cache, let
us now calculate the probabilities P (i)(s) for increasing

values of i. To simplify the calculations, we here merge the
states evicted and miss into the state doomed, since obvi-
ously we have lim

i→∞
P (i)(miss) = lim

i→∞
P (i)(doomed). From

p
(i)

present,present = 1− x/C −mrdd(i) we derive

P (i)(present) =

i∏
j=0

(1− x/C −mrdd(j))

which implies

P (∞)(doomed) =

∞∑
i=0

x/C · i−1∏
j=0

(1− x/C −mrdd(j))

 .
In total, this means that we can obtain the miss ratio x as the
solution to the equation

x =

∞∑
i=0

x/C · i−1∏
j=0

(1− x/C −mrdd(j))


which can be solved by standard methods (e.g., fixedpoint
iteration).

The original StatCache approach [3] also derives an im-
plicit equation for the miss ratio, which is slightly different
from ours.

IV. TAKING ASSOCIATIVITY INTO ACCOUNT

In set-associative caches, the estimation of miss probability
for a randomly chosen access 〈a,m〉 should consider only
those accesses in the trace that map to the same set as a.
This means that miss ratios can be predicted by applying
the appropriate replacement policy model from Section V to
the set-rdd (instead of the rdd). It is not clear how the low-
overhead technique for collecting rdds described in [4] can
also obtain set-rdds without additional overhead. For such
scenarios, we must therefore first estimate the set-rdd, using
the rdd, before applying the model for the actual replacement
policy.

For the analogous problem of estimating set stack distance
distributions from stack distance distributions, Hill and Smith
proposed a simple model based on the assumption that each
cache line is mapped randomly to a set, and that the map-
pings of two different cache lines are independent [13]. They
observed that this model usually overestimates the set stack
distance distribution (and hence also the miss ratio), since
actual set mappings are designed to cause fewer collisions than
the model. In our preliminary investigations, we have found
that the probability of collisions depend significantly on the
used set mapping. We will therefore propose a model which
improves in accuracy over that of [13] by taking characteristics
of the mapping function into account.

Assume an arbitrary reuse interval RI 〈a,m〉, and let k
be its reuse distance. In order to estimate the set-rdd, we
need to estimate the number of accesses in RI 〈a,m〉 that are
mapped to the same set as a. For this estimation, we need
the probability that the mapping function f maps an arbitrary
access in RI 〈a,m〉 to the same set as a. Denote this probability
by αA,S

f to emphasize that it depends also on A and S. Under



the independence assumption, αA,S
f will be 1

S [13], but for
most actually used mappings, αA,S

f is lower than 1
S , and also

depends on f . We therefore propose to profile the mapping
function f on a set of addresses to find out an approximate
value for αA,S

f . We profile a sequence of accesses to a set of
consecutive addresses (not target benchmarks) and apply f to
each of the address. During the application of f , we record
the number of addresses mapped to each of the S sets.

Let the sets be numbered 1, . . . , S, and let m(i) be the
number of addresses that are mapped to set i. Letting M be
the total number of addresses, αA,S

f can be estimated as

αA,S
f =

1

M

S∑
i=1

m(i)
m(i)− 1

M − 1
.

Having obtained αA,S
f , we can estimate the set-rdd as fol-

lows. The probability that a reuse interval of size k has i
accesses to the same set as a is by standard probability theory(
k
i

)
(αA,S

f )
i
(1− αA,S

f )
k−i

, hence the set-rdd can be obtained
by

rdds(i) =

∞∑
k=0

[(
k

i

)
(αA,S

f )
i
(1− αA,S

f )
k−i

rdd(k)

]
,

where the sum is truncated at a suitable point.

V. MODELING DIFFERENT REPLACEMENT POLICES
USING THE GENERAL FRAMEWORK

In this section, we instantiate the generic model framework
introduction in section III for three different replacement
policies: LRU, Tree-PLRU and Bit-PLRU. For each policy,
we first briefly describe how it works, and thereafter present
a Markov chain tailored to the policy.

A. LRU On a cache miss, the LRU replacement policy
replaces the least recently used (oldest) cache line in the cache.
In order to know which cache line is the oldest, the cache
lines in the cache are ordered according to the recency of
latest access. For an A-way cache, a property of LRU is that
an access 〈a,m〉 is a miss iff the reuse interval RI 〈a,m〉
contains accesses to at least A different cache lines (i.e., there
are accesses to at least A different cache lines between the
previous access to a and 〈a,m〉). For example, in a 4-way
cache, given the access sequence a b c d b c d e a, after
the first access to a, four different cache lines are accessed
(b c d e), meaning a has been evicted after these accesses.
Reusing a at the end results in a cache miss.

Modeling LRU To study the cache state in a LRU cache, we
assign an age associated with each cache line. The age of a
cache line a is the number of cache lines (in the same set) that
have been accessed more recently than a. Thus, right after a
is accessed (i.e., at t0), its age is set to 0. The age of a is
increased by an access to a cache line (say b) whose age is
bigger than the age of a before this acess to b. For example,
in Figure 2, accessing an older cache line d increases the age
of younger cache lines a, b and c.

a b c d

0 1 2 3

Cache:

Age:

d a b c

0 1 2 3

Access d

Fig. 2: LRU: increase the ages of cache lines

Our Markov chain for LRU will represent the age of the
considered cache line a. It can be obtained from the model
for the random replacement policy in Figure 1 by refining the
state present into one state for each age from 0 to A − 1 (a
cache line is evicted when its age reaches A). The other states
(hit, miss, and evicted) are the same as those in Figure 1. The
resulting set of states is shown in Figure 3.

Let us motivate the transition probabilities for the transi-
tions from one of the “age” states, say k at position ti. The
age of a is increased from k to k + 1 when an older cache
line is accessed, say by an access 〈b, n〉. To make b older than
a at ti, the access 〈b, n − 1〉 must be before the last access
to a, which is 〈a,m− 1〉. Since there are i accesses between
〈a,m − 1〉 and 〈b, n〉 at ti, the reuse distance of b should be
bigger than i, i.e., rd(〈b, n〉) > i.

Assuming that the reuse distance distribution is indepen-
dent of the position in the reuse interval, the probability
that rd(〈b, n〉) > i can be taken as rdd(> i). Thus, the
transition which increases the age has probability rdd(> i).
The transition that goes to hit has probability mrdd(i),
precisely the same as for the random replacement policy.
Thus, the transition that keeps the age unchanged and does
not encounter the reusing access 〈a,m〉 has the remaining
probability 1− rdd(>i)−mrdd(i).

The initial probability is 1 for the state 0, and 0 for the
other states.

Based on the Markov chain in Figure 3, we can apply
the method introduced in Section III. Since the transition
probabilities do not depend on the miss ratio x, we can obtain
a closed-form solution. Just as for the random replacement
policy, we merge the states evicted and miss into the state
doomed. We can calculate the miss ratio from the recurrences

P (i+1)(k) =

{
P (i)(k − 1) · rdd(>i)

+ P (i)(k)(1− rdd(>i)−mrdd(i))
P (i+1)(doomed) = P (i)(doomed) + P (i)(A− 1) · rdd(>i)

and obtain the miss ratio as lim
i→∞

P (i)(doomed).

B. PLRU While exploiting the program’s temporal locality,
LRU is expensive to implement due to the need to keep
accesses’ recency. In practice, a replacement policy approx-
imating LRU is typically used, e.g., PLRU. The policy PLRU
(sometimes called Tree-PLRU) organizes the cache lines in a
set into a binary tree with depth log2A. At the leaves are the
cache lines. Each internal node has a bit which indicates which
of its subtrees was least recently accessed. By convention, the
value 0 denotes that the left subtree was least recently accessed,
and 1 that the right subtree was least recently accessed. These
bits are used to determine which cache line to evict on a cache
miss by traversing the tree from the root and always choosing
the least recently accessed subtree. For example, in Figure 4,
traversing the tree from the root reaches the cache line d.



0 1 ... k ... A− 1

hit evictmiss

1− rdd(>i)− mrdd(i)

rdd(>i)

m
rdd

(i)

1− rdd(>i)− mrdd(i)

rdd(>i)

mrdd(i
)

rdd(>i)

1− rdd(>i)− mrdd(i)

mrdd(i)

rdd(>i) rdd(>i)

1− rdd(>i)− mrdd(i)

mrdd(i)

rdd
(>

i)

1 1

mrdd(i)

1− mrdd(i)

Fig. 3: Modeling LRU

Replacement in PLRU works as follows. Whenever a cache
line is accessed, the bits on the path to this cache line are set
to be pointing away from this cache line. For example, after c
is accessed in Figure 4, the pointers on the path to c (root and
left-subtree pointer) are both set to 1 to point away from c. On
a cache miss, we follow the directions of the bits and replace
the cache line they point to; thereafter we set the pointers on
the path to the replaced location to point away from it. In
Figure 4, on a cache miss, d will be replaced, the top pointer
will be set to 1 and the left to 0. The intuition of the tree-
PLRU replacement policy is that when a cache line is being
pointed to, it is approximately the oldest cache line.

Modeling PLRU In analogy with the model for LRU, we
decompose the present state into several states that are relevant
for the eventual eviction of a. For PLRU, it is natural to choose
the sequence of bits in internal nodes on the path from the
root to a, since their values will determine whether or not a
is evicted on a miss.

By symmetry, we can without loss of generality assume
that cache line a is installed at the rightmost leaf in the tree.
Thus, a will be evicted on a miss iff the bits on the rightmost
path in the tree at all set to 1. At t0 (the beginning of the
reuse interval), these bits are all set to 0. Thus, our model
uses 2log2 A = A states in which a is still in the cache.

0

1

c d

1

b a

Modeled as
(

0
1

)

Fig. 4: Abstract the cache state of a 4-way Tree-PLRU
Let us define our model, illustrated on a 4-way PLRU cache

(Figure 4). There are four cache lines a, b, c and d in this
cache. a is the reused cache line, b is the cache line sharing
a subtree with a. c and d are the two cache lines in the other
subtree. For a 4-way cache, there are, in addition to the states
hit, miss, and evicted, four different states, corresponding to

the four possible values of the bits on the rightmost path:
(

0
0

)
,(

0
1

)
,
(

1
0

)
and

(
1
1

)
.

Let us define the transitions. From each of the four states of
form

(
∗
∗

)
, we consider the following transitions: (1) a miss

at ti, (2) a reuse of a at ti, (3) phitb,i : meaning that cache line b
is accessed at ti, and (4) phitc∨d,i : meaning that cache line c or
d is accessed at ti. We make the uniformity assumption that it
is equally likely to hit on position b, c and d, i.e., each having
1
3 the probability that we have neither a miss nor a reuse of
a. Under this assumption, the probabilities for the respective
cases will become

• a miss has probability x,
• a reuse of a has probability mrdd(i),
• phitb,i has probability 1

3 (1− x−mrdd(i)), and
• phitc∨d,i has probabilitity 2

3 (1− x−mrdd(i)).

With these probabilities, the resulting Markov Chain is shown
in Figure 5. Let us motivate some of the transitions in Figure 4.

• Consider the transition from
(

0
0

)
to
(

1
0

)
, in which the

bit at the root is changed from 0 to 1. This can happen
either by accessing the left subtree (with probability
phitc∨d,i) or by a miss (probability x): note that a miss will
replace a cache line in the left subtree.

• Consider the transition from
(

0
1

)
to itself: the state

(
0
1

)
represents the root pointer pointing to the c and d and the
second pointer pointing to a as shown in Figure 4. The
only way to keep the pointers unchanged is to hit on b,
which makes the probability of this self loop phitb .

Since the miss ratio x appears in the transitions, calculating
the miss rate must be done by solving an implicit equation
(we use fixed-point iteration).

C. bit-PLRU Bit-PLRU (sometimes called MRU) is one of the
most widely used cache replacement policies, and is employed
in mainstream processor architectures like Intel Nehalem (the
architecture codename of processors like Intel Xeon, Core i5
and i7) [9].

For each cache set, the bit-PLRU policy maintains an
ordering between the available slots. For each cache line that
is present in the cache, an extra bit (here called an MRU-bit is
stored, which approximately represents whether this cache line



(
0
0

)

(
0
1

)

(
1
0

)

(
1
1

)

hit

evict

miss

p
hi
t

b

p hitc∨
d +

x

mrdd(i)

phitb

p hitc∨
d +

x

mrdd(i)

phitc∨d

p
h
it
b

+
x

m
rd

d(
i)

phitc∨d

p hitb

x
m

rd
d(
i)

mrd
d(
i) 1−mrdd(i)

1

Fig. 5: States and transitions of PLRU cache model

was recently visited. On a cache hit, the bit associated with
the accessed cache line is set to 1. On a cache miss, the first
cache line (in the set) with a 0 bit is replaced and the bit is
set to 1. Eventually there will be only one MRU-bit being 0 in
the cache set. When the last 0 bit is set to 1, all other bits are
simultaneously flipped to 0; this is called a global flip. Thus
the global flip guarantees that in each set, there is always at
least one MRU-bit which is 0.

f c a e

1 0 0 1

b c a e

0 0 0 1

f g a e

1 1 0 1

f g h e

0 0 1 0

b c e d

1 1 0 0

b c a d

1 1 1 0

a

e (The flip)

fgh

Before the global flip

After the global flip

Fig. 6: Stages of the states in bit-PLRU
As an example, in Figure 6 the access to a causes the first

cache line with a 0 bit (e in this case) to be replaced by a, and
the corresponding bit to be set. The next access (to e) causes
the global flip, whereafter all bits, except for that of e, are 0.

Modeling bit-PLRU. Let us make a model of how the cache
line a and its set evolves during a reuse interval. We note that
at the beginning of the reuse interval, a’s bit is set to 1. Later,
the global flip sets a’s bit to 0, and when a thereafter becomes

the first cache line with a 0 bit, it is eligible for eviction at the
next cache miss (see Figure 6). Thus, to model the “distance”
to eviction, we divide the reuse interval into two stages: before
the global flip and after the global flip. To each cache position,
we assign an index from 0 to A − 1, from left to right. For
cache lines a and b, we say a is before b if the index of a’s
position is smaller than that of b’s.

The states of our model are triples of form (nz, j, flipped),
where nz is the number of zero-bits, flipped is a bit which
is 1 iff the global flip has occurred, and j is the index of
a’s position if flipped = 0, otherwise (i.e., if flipped = 1) j is
number of 0’s before a. We motivate the choice of j as follows.
Before the global flip, the position of a influences the value
of j after the global flip. After the global flip, the number of
zero-bits before a measures of how close a is to eviction.

Let us consider the transitions between states. As in the
PLRU model, we let x denote the miss ratio, mrdd(i) the
marginal probability of reuse. Then at ti, the probability of
a hit is phit = 1− x−mrdd(i). We define the following
probabilities, which depend on the number nz of 0-bits.

• The probability of a hit on a 0-bit cache line is de-
fined as phit0 (nz) = phit · nz

A−1 before the global flip
(assuming equal probability of hit on each bit) and as
phit0,flipped(nz) = phit · nz−1

A−1 after the global flip.
• The probability of a hit on a 1-bit cache line is defined

as phit1 (nz) = phit · A−1−nz
A−1 before the global flip, and

as phit0,flipped(nz) = phit · A−nzA−1 after the global flip.

We have the following classes of transitions from a state
(nz, j, flipped).

Transitions before the global flip (i.e., flipped = 0):

• a miss or hit on 0-bit goes to state (nz−1, j, flipped) with
probability x+ phit0 (nz) if nz > 1, otherwise (if nz = 1)
to state (A− 1, j − 1, 1) if a cache line before j triggers
the global flip with probability (x+ phit0 (1)) j

A−1 , and to
(A−1, j, 1) if cache line after j triggering the global flip
with probability (x+ phit0 (1))A−j−1

A−1 .
• a hit on a 1-bit goes back to (nz, j, flipped) with proba-

bility phit1 (nz).

Transitions after the global flip (i.e., flipped = 1)

1) to state evicted on a miss if j = 0 with probability x,
2) to state (nz− 1, j− 1, 1) on a miss or a hit on a 0 cache

line before a, where nz > 1 and j > 0, with probability
j

nz−1p
hit
0,flipped(nz) + x,

3) to state (nz − 1, j, 1) on a hit on a 0 bit after a,
where nz > 1 and nz − j − 1 > 0, with probability
nz−j−1
nz−1 phit0,flipped(nz),

4) to state (nz, j, 1) on a hit on a 1-bit with probability
phit1,flipped(nz).

For the initial distribution, since the nz and j at t0 is not
known, we assume a uniform initial distribution over the values
of nz and j. We then use the method introduced in section III
to estimate the miss ratio.



VI. EVALUATION

In this section, we evaluate the accuracy of our framework
for a range of different cache configurations. When using our
framework for low-overhead prediction of miss ratios in set-
associative caches from rdds obtained by sampling, there are
three sources of inaccuracy: the inaccuracy introduced (A) by
the policy model (Section V), (B) by the estimation of set-rdds
from rdds (Section IV), and (C) by sampling. We evaluate the
inaccuracy introduced by each of these sources by comparing
actual miss ratios with miss ratios obtained
(1) from actual set-rdds (evaluating (A)),
(2) from set-rdds estimated using

(i) the Hill/Smith model, or
(ii) our adapted model, based on either

(a) actual rdds (evaluating (A)+(B)), or
(b) rdds obtained by sampling (for (A)+(B)+(C)).

Scenario (1) corresponds to a scenario when the extra over-
head of obtaining the actual set-rdds (an order of magnitude
overhead) can be tolerated. Scenario (2) is relevant when such
overhead can not be tolerated: then set-rdds can be estimated
from rdds using either the Hill/Smith model or our adapted
model (see Section IV), since rdds can be obtained with
much less overhead, in particular if sampling is employed [4]
(corresponding to Scenario (2iib).

Experiment setup We evaluated our models with the
SPEC2006 benchmark suite [12]1. Our models are evaluated
with cache sizes 4kB, 8kB, 16kB, 32kB and 64kB, with
associativities from 2 to 16, and with LRU, PLRU, and bit-
PLRU replacement policies. We choose to use small caches
because the SPEC2006 benchmarks have too small miss ratios
in large caches (19 out of 30 benchmarks would then have
a miss ratio smaller than 5% and the average miss ratio is
6.3% in a 64kB cache) to make a thorough evaluation of our
models. The profiling and modeling are done on a 32-core
system SandyBridge architecute with 2.7GHz Intel Xeon E5-
4650 CPUs.

We obtain actual cache miss ratios using Intel’s PIN [16]
tool to trace and record a sequence of ten million memory ac-
cesses for each benchmark. The sequence of memory accesses
is then used to simulate the behavior of caches with different
sizes, replacement policies, and associativities. This sequence
is also used to obtain the actual set-rdds for different cache
sizes and associativities. For mapping cache lines to cache
sets, we use the Xor mapping from [6], also used in [18].

The actual rdds are collected on the fly while tracing
the target application. The sampled rdds are obtained by
sampling the reuse distances of randomly selected accesses.
We make an unbiased sampling from all accesses by using
a sample interval which is geometrically distributed with a
certain parameter, corresponding to the density of sampling.
Berg and Hagersten [4] have shown that the sampled rdds can
be obtained with small overhead. Around 10000 samples for
each benchmark are collected.

Results Figures 7, 8 and 9 show the average absolute error
of estimated miss ratios over all the benchmarks (for lack of

1All benchmarks are included except for 447.dealII, which did not compile
on our system

space, we can only present a selection of cache configurations).
Using the indexing scheme of the first paragraph of this
section, they are estimated (1) from actual set-rdds, (2i) from
sett-rdds estimated with Hill/Smith from actual rdds (2iia) from
set-rdds estimated with our set-rdd model from actual rdds, and
(2iib) from set-rdds estimated with our set-rdd model from
sampled rdds. For the LRU replacement policy, Figure 7 also
shows average absolute error of miss ratios estimated by the
Statstack model [8] from actual set-rdds.

For LRU, our policy model has an average error of 0.72%
over all the configurations (not only the ones shown in the
figure) when applied on actual set-rdds. The estimated error
increases to 3.2% when the set-rdds is estimated with the
Hill/Smith model, but only to 2.8% when using our model for
estimating set-rdds (i.e., our set-rdd model outperforms the
Hill/Smith model by 0.4%). Using Sampling to obtain rdds
adds an extra 0.2% to the absolute error. When comparing our
LRU model (Section V A.) to the StatStack model [8], we find
that StatStack’s average absolute error of 0.92% is higher than
ours by a difference of 0.2%.

For PLRU (Figure 8) and bit-PLRU (Figure 9), our models
give 0.93% and 0.98% of absolute error, respectively, when
applied on actual set-rdds. Estimating set-rdds from actual rdds
increases the error to 2.9% for both the Hill/Smith model and
our model cases. Sampling the rdds adds another percentage
of error.

To indicate how the estimation varies over different bench-
marks, we show data for a particular configuration, in this
case the 8-way 4kB bit-PLRU cache, in Figure 10. The
average absolute error of the policy model from actual set-
rdds for all 30 benchmarks is 2.4%, with the biggest error
7.38% (429.mcf) and the relative standard deviation 0.22. The
estimates obtained using our set-rdd model always have a
lower error (2.8% on average) than the Smith model (3.7%
error on average). The error increases from 2.8% to 2.96%
when the rdds are sampled.

VII. RELATED WORK

The most common metric to characterize a program’s
locality is that of stack distance [5] [19] [7]. The stack
distance is obtained from memory traces, which are typically
collected by an order of magnitude slow-down. Algorithms
for obtaining stack distances from memory traces in time
complexity O(n logm) (n being the length of the memory
trace and m the number of distinct memory addresses) have
been presented by Almási et al [1], Bennet et al [2] and Zhong
et al [21]. The reuse distance can be computed in almost linear
time.

Several techniques have been presented for estimating miss
ratios from stack distances. Guo and Solihin [11] predict cache
miss ratios for varying cache replacement policies, cache sizes
and associativities, based on a combination of stack distance
and reuse distance, which is more expensive to obtain than
only the stack distance. Sen and Wood [18] develop an online
modeling framework to predict the cache miss ratio in set-
associative caches with different replacement policies from
stack distance distributions. They also show how stack distance



Fig. 7: Comparison of LRU error rates of five estimated cache miss ratios

Fig. 8: Comparison of PLRU error rates of four estimated cache miss ratios

distributions can be obtained by special on-chip hardware,
which however is not available in today’s processors.

Not so many techniques have been presented for estimating
miss ratios from data that can be collected with small overhead.
Berg and Hagersten show how reuse distance distributions can
be collected with small overhead [4] and be used to estimate
miss ratios for fully associative random caches [3], in analogy
with the technique we present at the end of Section III. Later,
Eklov and Hagersten showed how reuse distance distributions
could be used to estimate miss ratios in fully associative LRU
caches [8]. In the evaluation in sectionVI, we compared the
accuracy of our LRU model with that of StatStack, based
on actual set-rdds. Our model (error 0.72%) is on average
more accurate than StatStack (error 0.92%). Tam et al. obtain
miss ratio curves for L2 caches on PowerPC processors by
online probing, using features of the PowerPC, which are not
available on other processors [20].

For the problem of estimating set stack distance distribu-
tions from stack distance distributions, Hill and Smith [13]
proposed a probablistic model, which was later used by Sen
and Wood [18]. In section VI, we show that our model is on
average 0.4% more accurate than the Hill/Smith model.

VIII. CONCLUSION

We have presented a general modeling framework for esti-
mating cache miss ratios for running applications, using only
their reuse distance distributions. The framework proposes a
new generic format for cache performance predictions, and
can be instantiated for caches with different sizes, associa-
tivities and cache replacement policies: we showed how the
framework can be instantiated for Random, LRU, PLRU,
and bit-PLRU replacement policies, and also for taking set-
associativity into account by first estimating set-rdds, for which
we proposed an improvement of the previously used Hill/Smith
model. The introduced inaccuracies were generally below 1%
for the model of the policy, and additionally around 2% for
estimating the set-rdd from rdd. The inaccuracy introduced by
sampling is significantly smaller.

A way to increase the precision of predictions would be
to identify phases in an application and make phase-specific
estimations.

ACKNOWLEDGMENT This work is supported by the Swedish
Foundation for Strategic Research through CoDeR-MP, and by
the Swedish Research Council through UPMARC. We are very



Fig. 9: Comparison of bit-PLRU error rates of four estimated cache miss ratios

Fig. 10: Actual miss ratio v.s. estimated miss ratios for a 8-way 4K bit-PLRU cache (15 benchmarks)

grateful to Nikos Nikoleris, Erik Hagersten and David Black-
Schaffer for the valuable discussions. We would like to thank
the anonymous reviewers for their helpful suggestions.

REFERENCES

[1] G. Almási, C. Caşcaval, and D.A. Padua. Calculating stack distances
efficiently. In Workshop on Memory System Performance 2002. ACM.

[2] B. T. Bennett and V.J. Kruskal. Lru stack processing. IBM Journal of
Research and Development, 19(4):353–357, July 1975.

[3] E. Berg and E. Hagersten. StatCache: a probabilistic approach to
efficient and accurate data locality analysis. In ISPASS, 2004.

[4] Erik Berg and Erik Hagersten. Fast data-locality profiling of native
execution. In SIGMETRICS, pages 169–180. ACM, 2005.

[5] K. Beyls and E.H. DHollander. Reuse distance as a metric for cache
behavior. In IASTED PDCS, pages 617–662, 2001.

[6] R. Cypher. Mechanism and method for determining stack distance of
running software, May 18 2006. US Patent App. 11/281,733.

[7] C. Ding and Y. Zhong. Reuse distance analysis. Technical report, 2001.
[8] D. Eklov and E. Hagersten. StatStack: Efficient modeling of LRU

caches. In ISPASS, pages 55–65, 2010.
[9] D. Eklov, N. Nikoleris, D. Black-Schaffer, and E. Hagersten. Cache

pirating: Measuring the curse of the shared cache. In ICPP, 2011.
[10] David Eklov, David Black-Schaffer, and Erik Hagersten. Fast modeling

of shared caches in multicore systems. HiPEAC ’11. ACM.

[11] F. Guo and Y. Solihin. An analytical model for cache replacement policy
performance. In SIGMETRICS ’06/Performance ’06. ACM, 2006.

[12] J.L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH
Computer Architecture News, 34(4):1–17, 2006.

[13] M.D. Hill and A.J. Smith. Evaluating associativity in CPU caches.
IEEE Trans. Computers, 38(12):1612–1630, 1989.

[14] R.E. Kessler, M.D. Hill, and D.A. Wood. A comparison of trace-
sampling techniques for multi-megabyte caches. IEEE Trans. Com-
puters, 43(6):664–675, 1994.

[15] S. Laha, J.H. Patel, and R.K. Iyer. Accurate low-cost methods
for performance evaluation of cache memory systems. IEEE Trans.
Computers, 37(11):1325–1336, 1988.

[16] C.-K. Luk and R.S. Cohn et al. Pin: building customized program
analysis tools with dynamic instrumentation. In PLDI, 2005.

[17] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In PLDI, pages 89–100. ACM, 2007.

[18] R. Sen and D.A. Wood. Reuse-based online models for caches. In
SIGMETRICS, pages 279–292, 2013.

[19] X. Shi, F. Su, J.-K. Peir, Y. Xia, and Z. Yang. Modeling and stack
simulation of CMP cache capacity and accessibility. 2009.

[20] D.K. Tam, R. Azimi, L. Soares, and M. Stumm. RapidMRC: ap-
proximating L2 miss rate curves on commodity systems for online
optimizations. In ASPLOS, pages 121–132. ACM, 2009.

[21] Y. Zhong, X. Shen, and C. Ding. Program locality analysis using reuse
distance. ACM Trans. Program. Lang. Syst., 31(6):20:1–20:39, 2009.


