
Modeling Cache Coherence Misses on Multicores

Xiaoyue Pan Bengt Jonsson
Department of Information Technology

Uppsala University
{xiaoyue.pan, bengt.jonsson}@it.uu.se

Abstract—While maintaining the coherency of private caches,
invalidation-based cache coherence protocols introduce cache
coherence misses. We address the problem of predicting the
number of cache coherence misses in the private cache of a
parallel application when running on a multicore system with an
invalidation-based cache coherence protocol. We propose three
new performance models (uniform, phased and symmetric)
for estimating the number of coherence misses from information
about inter-core data sharing patterns and the individual core’s
data reuse patterns. The inputs to the uniform and phased
models are the write frequency and reuse distance distribution
of shared data from different cores. This input can be obtained
either from profiling the target application on a single core or
by analyzing the data access pattern statically, and does not need
a detailed simulation of the pattern of interleaving accesses to
shared data. The output of the models is an estimated number
of coherence misses of the target application. The output can be
combined with the number of other kinds of misses to estimate the
total number of misses in each core’s private cache. This output
can also be used to guide program optimization to improve cache
performance. We evaluate our models with a set of benchmarks
from the PARSEC benchmark suite on real hardware.

I. INTRODUCTION

The cache system on modern multicore architectures typi-
cally consists of a shared last-level cache for multiple cores and
private cache(s) for each core, which are kept coherent by a
coherence protocol. For parallel applications in which several
cores access common shared data, the cache system affects
performance in many ways. On the one hand, the shared last-
level cache reduces the number of accesses to off-chip memory,
since data that is brought into the shared cache by one thread
can subsequently be accessed by other threads without going
to off-chip memory. On the other hand, shared data accessed
by several cores, must be moved between the private caches of
the corresponding cores, causing some overhead. Furthermore,
whenever a core modifies shared data, copies in other private
caches are invalidated; when those copies are later accessed
by their cores, this triggers a so-called coherence miss in the
private cache of that core, typically forcing the data to be
fetched from the last-level cache.

To illustrate how coherence misses can cause performance
downgrade, consider the ”Deduplication” stage of the dedup
benchmark in the PARSEC benchmark suite [1, version 3.0].
In this stage, a large set of data chunks are processed in parallel
by the threads. During the processing of each chunk, the
threads access a shared hash table with global data. Figure 1
shows how the number of misses in the private caches (both
L1 and L2) increases with the number of cores, for 1 to
8 threads (each thread is pinned to a separate core with
private L1 and L2 caches, and all cores, being on the same

socket, share a last-level cache). The average number of private
cache misses for each core increases by 34% when going
from 1 to 8 threads. The cache misses mainly come from
the critical section where the shared data is accessed. This
increase in the number of private cache misses is caused by
an increase in coherence misses, and causes the execution time
in the critical section that protects the shared data to increase
by 30%. The increased critical section time leads to further
performance-harming effects, including increased waiting time
at lock accesses. The end result is that the speedup obtained by
parallelizing the stage is far from linear. The actual measured
speedup for this stage is 4.72 with 8 threads. Without the
coherence misses, the execution time in the critical section
would not increase, avoiding the further performance-harming
effects. By a detailed calculation, one can conclude that the
speedup achieved without the coherence misses would be
around 7.5. This loss of speedup is purely caused by coherence
misses.

3400

3600

3800

4000

4200

4400

4600

4800

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

M
ea

su
re

d
pr

iv
at

e
ca

ch
e

m
is

se
s

(p
er

lo
op

)

M
ea

su
re

d
st

ag
e

sp
ee

du
p

Number of threads

private cache misses
Measured Speedup

Fig. 1: Private cache misses (L1 + L2) and speedup of the
Deduplication stage in dedup

The example shows that when parallelizing an application
onto several cores that share common data, it is important
to understand how the cache system affects the performance
of the application and to be able to predict the number of
expected cache misses of different forms. It furthermore shows
that an increase in coherence misses can be an important
bottleneck which must be considered, when deciding how
to distribute code and data over the cores. For instance,
the cost of coherence misses can be a reason to choose a
parallelization that minimizes data sharing between cores, even
if this would incur other overheads. The cost of coherence
misses might also be something to consider when parallelizing
code in a compiler. For example, in the aforementioned dedup
benchmark, we can reduce the number of coherence misses by

padding the shared data’s data structure.

The cost of coherence misses should also be considered
when predicting which speedup can be obtained by paralleliza-
tion.

Modeling and predicting coherence misses can of course
be done using detailed simulation. Such analysis can be very
costly for long-running parallel applications. For predicting
other types of cache misses than coherence misses, several
less expensive approaches have therefore been developed for
modeling cache performance. There are, e.g., approaches that
use sampling of native executions (e.g., [2], [3]) with overheads
of only a few 10%. This approach has also been extended to
model how separate applications compete for a shared cache
(e.g., [4], [5], [6]). However, to the best of our knowledge,
there is no work on modeling caches which can predict
the number or cost of coherence misses in multi-threaded
applications.

In this paper, we present three models for modeling and
predicting coherence misses in parallel applications. They all
rely on input that can be obtained by low-overhead profiling
techniques, such as quick sampling techniques that capture
reuse distance information (e.g., [2], [3]). The input to the first
two models (the uniform and the phased model) are reuse
distance distributions and write frequencies by the different
threads to shared data. The first (uniform) model uses this data
to predict the number of coherence misses of the application.
Its precision relies on the assumption that accesses to shared
data by different threads occur uniformly and temporally un-
correlated. This assumption holds for applications that access
shared data in a uniform way, e.g., a common storage, lookup
table, or similar.

For applications that use synchronization to force a par-
ticular pattern of access to shared data, the assumption of
temporally uniform access to shared data does not hold.
The second (phased) model can cope with this problem by
dividing the execution into phases, and using as input the reuse
distance distributions and write frequencies for each phase.
Typically the boundary of a phase is marked by synchro-
nization primitives (conditional variables, barriers, etc). These
synchronization primitives are used to divide the execution.
The model is first applied in each phase of the execution.
Then we sum up the number of coherence misses in each
phase to obtain the total number of coherence misses in the
whole execution.

Our third (symmetric) model can use less detailed input
data than the two other ones. It assumes that the shared data of
a parallel application is accessed symmetrically and uniformly
by the threads. Under this assumption, it needs only the number
of private cache misses for two runs with a different number
of threads. The model predicts the expected number of private
cache misses for any number of threads.

We have implemented the uniform and phased models in
the PIN framework [7]. This implementation is not efficient
but is intended to evaluate our models. We expect that an
efficient implementation can be realized by low-overhead
sampling techniques. Given a target program, we first trace the
memory accesses by each thread. The number of cold misses
is estimated by counting the number of distinct cache lines
accessed. We used the conventional set stack distance to pick

out all the capacity and conflict misses. To calculate the the
number of coherence misses, first we get the reuse distance
distribution and write frequency to shared data from the trace.
Then these parameters are fed to our model to get the number
of coherence misses. Finally, the numbers of all four kinds
of misses are combined to estimate the total number of cache
misses in the private cache.

We evaluate our models on a set of applications from
the PARSEC benchmark suite [1] on actual hardware. Since
the current hardware performance counters do not distinguish
coherence misses from the rest of the cache misses, we
compare the modeled and measured total number of cache
misses in the private cache. The average relative error for the
uniform model is 5.80%. The average relative error of the
phased model is 8.02%. We evaluated the symmetric model
on one benchmarks (dedup), which gives an error rate of 5.4%.

Our proposed models provide a quantitative estimate of
the number of coherence misses. This information can be
used to optimize the program. If a program is likely to have
too many coherence misses, redesigning the data access and
sharing pattern may reduce the number of coherence misses.
The model can also be used to predict the number of private
cache misses with different cache sizes.

The rest of the paper is organized as follows: Section II
introduces the intended target multicore systems and describes
the different kinds of private cache misses on the target system.
Section III describes the assumptions, terms and notations
used throughput the paper. Section IV reviews the methods to
model cold, capacity and conflict misses. Section V presents
our cache coherence models in detail. Section VI discusses
the implementation of two of our proposed models (model
uniform and phased). Section VII shows the model evaluation
results. Section VIII discusses related work and compares it to
this work. Section IX concludes the paper.

II. CACHE MISS CATEGORIZATION

We consider a multicore system with a hierarchical cache
system: multiple cores share a last level cache and each core
has a private (possibly multi-leveled) cache. In the shared
cache, the sharing effect could be both constructive and
destructive. On the one hand, cores may bring in the shared
data, which reduces the number of cache misses for other
cores. On the other hand, cores may evict other cores’ data,
which increases the number of cache misses for other cores. In
a core’s private cache, other cores cannot bring in or directly
evict data. However, the shared data in one core’s private cache
can be invalidated due to another core’s write to it (assuming
an invalidation-based cache coherence protocol).

Modeling and predicting both the constructive and de-
structive sharing effects of cache sharing has been studied
previously [4], [5], [6]. However, we are not aware of any
proposed model for efficiently modeling and predicting the
effect of data sharing on private caches. In this section, we
discuss the cache misses in the private cache with invalidation-
based cache coherence protocols.

In a single-core system, there are three kinds of cache
misses according to Hill et al’s cache miss categorization [8]:
compulsory misses (also known as cold misses), capacity

2

misses, and conflict misses. Cold misses occur when the data
is accessed for the first time. Both capacity misses and conflict
misses are triggered by data eviction. The eviction for capacity
misses is caused by limited cache capacity, while for conflict
misses it is caused by limited cache associativity.

In a multicore system, all cores still experience these
three kinds of cache misses. In addition, cores that share data
may also suffer from cache coherence misses (also known as
communication misses [2]). A cache coherence miss (from
now simply coherence miss) is caused by the invalidation of a
cache line by the cache coherence protocol. When the cache
line is subsequently accessed, it will result in a coherence miss.
Figure 2 illustrates how a coherence miss occurs. Core0 and
Core1 share a data item X , Core0 reads X at t1 and reads
it again (reuse of X) at t2 where t2 > t1. Between these two
accesses to X by Core0, another core, Core1, writes to X at
t (t1 < t < t2). With an invalidation-based cache coherence
protocol, Core1’s write will cause an invalidation of the cache
line containing X in Core0’s private cache. The invalidated
cache line causes Core0’s reuse of X at t2 to become a
coherence miss.

Core0

Core0’s cache

Core1

. .

.

t1 t2

t

read X read X

write X

coherence miss

time

time

X X

time
invalidates X

Fig. 2: Cache coherence miss example

Note that if X is evicted from Core0’s private cache
between t1 and t2 because of a cache access by Core0, the
access at t2 will a capacity or conflict miss instead of a
coherence miss. By convention, we classify such a miss as a
capacity miss, even if the cache line is invalidated by another
core before the evicting access by Core0. Thus, invalidations
of cache lines that would later anyway have been evicted for
capacity or conflict reasons do not give rise to coherence
misses. In other words, a necessary condition for being a
coherence miss is that without the invalidation, the next access
would have been a cache hit (in the private cache). This
convention is consistent with previous work [2].

III. NOTATIONS

In this section, we introduce the assumptions, terms and
notations used throughout this paper. We consider a multi-
threaded program (target program) running with N threads.
We use i to index the cores and threads. Each thread runs on
a designated core (Threadi runs on Corei). The terms and
notations used in this model are shown in Table I.

Symbol Description
Overall parameters

N number of running threads of the target application
C private cache size (in terms of the number of cache lines)
L set of shared cache lines of the target application

Parameters of misses in the private cache
Mi(N) number of memory accesses by Corei, running with N threads
Mmiss

i (N) number of private cache misses by Corei, running with N threads
Mcold

i (N) number of cold misses of Corei, running with N threads
Mcap

i (N) number of capacity misses of Corei, running with N threads
Mconf

i (N) number of conflict misses of Corei, running with N threads
Mcoh

i (N) number of coherence misses by Corei, running with N threads
Mi,X(N) number of memory accesses to shared cache line X by Corei,

running with N threads

TABLE I: Table of notations

There are two kinds of notations we use in this paper: over-
all parameters (about the cache system and target application)
and cache misses. The overall parameters include the number
of running threads in the application, cache size and set of
shared cache lines. We use M to denote the number of cache
misses: Mcold

i (N), Mcap
i (N), Mconf

i (N) and Mcoh
i (N) for

the number of cold, capacity, conflict and coherence misses,
respectively.

The total number of misses in the private cache of Corei is
the sum of all four kinds of cache misses: cold misses, capacity
misses, conflict misses and coherence misses:

Mmiss
i (N) = Mcold

i (N) +Mcap
i (N) +Mconf

i (N) +Mcoh
i (N)

IV. MODELING COLD, CAPACITY, AND CONFLICT MISSES

In this section, we review existing methods to model and
predict the number of cold, capacity and conflict misses, which
will be used in our evaluation.

A. Modeling cold misses

A cold miss in the private cache of Corei is triggered
when a cache line is accessed for the first time by Corei.
In this paper, we therefore use the number of distinct cache
lines accessed by Corei as an estimate of Mcold

i (N). Note
that some of the accessed cache lines may have been brought
into the private cache by prefetching, and thus this estimate in
general overapproximates Mcold

i (N). However, we will still
use this estimate (in the evaluation part) since it is difficult to
estimate the effect of prefetching, and since cold misses are
not the focus of this paper.

B. Modeling capacity and conflict misses

Both capacity and conflict misses are caused by eviction of
cache lines. They differ in the cause. If a cache line is evicted
because the cache is full, it causes a capacity miss. The eviction
for conflict misses is due to the mapped set being full (in a
non-fully-associative cache).

The number of capacity misses depends on a program’s
data locality, cache size and replacement policy. For a fully-
associative cache with the Least Recently Used (LRU) re-
placement policy, stack distance analysis [9] [10] [11] is a
common way to model the number of capacity misses. The
stack distance is defined as the number of distinct cache lines
accessed between the reuse of a cache line. For example, given

3

Core0

X Y Z Y Z Y Z Y Z X

stack distance 2

time

Fig. 3: Example memory access sequence: letters represent
cache lines

a memory access sequence in Figure 3, the stack distance of
the second access to X is two since there are two distinct cache
lines accesses (Y and Z) in between the two accesses of X . In
a fully-associative cache with cache size C < 2, X would have
been evicted before it is reused, resulting in a capacity miss.
If C ≥ 2, the second access to X would be a capacity hit.
In a fully-associative cache with the LRU replacement policy,
the stack distance distribution can be estimated with the reuse
distance distribution [3]. The advantage is that reuse distance
distributions can be obtained efficiently by sampling, even
on native executions, whereas obtaining exact stack distances
requires exact recording of memory access sequences.

Conflict misses can be modeled with set stack dis-
tance [12]. The set stack distance of a memory access is
the distinct number of cache lines accessed within the same
set between the reuse of the memory access. In the previous
example in Figure 3, assuming X and Y map to the same set,
the set stack distance of the second access to X would be one.
The sets are isolated and accesses to one set cannot evict data
from another set. If the set stack distance is bigger than the set
associativity, the memory access will result in a conflict miss.
In a non-fully-associative cache, the conflict misses contain
capacity misses. In the evaluation in Section VII, we adopt
set stack distance analysis to calculate the number of conflict
misses.

V. MODELING CACHE COHERENCE MISSES

So far we have discussed how to analyze the number
of cold misses, capacity misses and conflict misses in the
private cache. These three kinds of misses only depend on
the data locality of the memory access to the core and the
cache parameters (cache size, cache replacement policy and
set associativity). Given a memory access sequence and cache
parameters, the numbers of these misses are deterministic.
However, the number of coherence misses is non-deterministic,
since it depends on the pattern of interleaving accesses to
shared data between cores. One way to analyze the coherence
misses is to enumerate and model all possible interleavings,
which is time consuming. In this section, we describe our two
probabilistic models (uniform and phased) and a third model
(symmetric) for estimating the number of coherence misses.

The first two models (uniform and phased) are based on
the following reasoning. Assume that the target program is
running on N cores. Consider a particular core Corei and a
particular memory access x to a cache line X by Corei. It
follows from the description in Section II that in order for
the memory access x to be a coherence miss, the following
conditions must be satisfied:

1) x is not a cold miss, i.e., the access to X is a reuse.

2) x is not a capacity or conflict miss.
3) Corei shares cache line X with at least one other core,
which may write to X .

4) Another core performs a write access to X before the
access x, but after the previous access to X by Corei.

The access x has a well-defined reuse distance in the sequence
of memory accesses by Corei, which is defined as the number
of memory accesses between the last access to X by Corei
and the access x. For example, in Figure 4, the last access to

Corei

Corej

X Y Z Y Z Y Z Y Z X

memory access x

write X

dx = 8

invalidation window

time

time

Fig. 4: Coherence miss example: Corei and Corej share a
cache line X. Corei reuses X with reuse distances dx.

cache line X by Corei has reuse distance 8. Let dx denote
the reuse distance of access x. Between its previous access to
X and the access x, the core Corei leaves a window for other
cores to perform write accesses to X that invalidate Corei’s
copy of X . The reuse distance dx is a measure of the size of
this window. Note that the relevant measure of window length
is the reuse distance, not the stack distance, since it is not
relevant whether the accesses in the window are to different
cache lines or not.

Let us now consider all accesses to cache line X by Corei
with some fixed reuse distance d. Let P cap

i,d,X(N) denote the
probability that such an access (i.e., an access by Corei to
cache line X with reuse distance d) is a capacity or conflict
miss. Let P inv

i,d,X(N) denote the probability that another core
performs a write access to X before such an access, but after
the previous access to X by Corei. We can then compute the
probability that an access by Corei to cache line X with reuse
distance d is a coherence miss, denoted P coh

i,d,X(N), as

P coh
i,d,X(N) = P inv

i,d,X(N)(1− P cap
i,d,X(N)) (1)

The probability P cap
i,d,X(N) can be obtained by stack distance

analysis. As described in Section IV-B, it can also be efficiently
approximated from a reuse distance histogram that can be
obtained by sampling native executions, using the technique
of [3].

Let Pi,d,X(N) denote the probability that when the ap-
plication executes on N cores, an access by Corei accesses
cache line X with reuse distance d. By summing over all
reuse distances, we can obtain the probability P coh

i,X (N) that
an access by Corei to cache line X is a coherence miss as

P coh
i,X (N) =

∞∑
d=1

Pi,d,X(N)P coh
i,d,X(N) (2)

4

Substituting P coh
i,d,X(N) by Eq. 1,

P coh
i,X (N) =

∞∑
d=1

Pi,d,X(N)P inv
i,d,X(N)(1− P cap

i,d,X(N)) (3)

Let Mi,X(N) denote the total number of memory accesses to
X by Corei (with N running threads), and let L be the set
of cache lines that are shared between cores. The expected
number of coherence misses for Corei is then

Ecoh
i (N) =

∑
X∈L

(Mi,X(N) · P coh
i,X (N)) (4)

Now the remaining problem is to calculate the probability
P inv
i,d,X(N) of an invalidating access by another core during the

reuse window. In this paper, we propose two models for this
calculation, uniform and phased. The uniform model assumes
that accesses by each thread to each data item are spread
uniformly throughout the execution. The phased model works
even without this restriction, by dividing the execution of the
program into phases, and considering accesses in different
phases separately.

A. The uniform model

This model assumes that we can approximate the accesses
of each thread as occurring uniformly throughout the ex-
ecution, and without correlation between threads. Such an
assumption is valid for applications that access and update
some common data in a way that is not tightly coordinated.To
calculate P inv

i,d,X(N), assume that a core Corej different from
Corei writes to cache line X with a frequency of Fwrite

j,i,X (N)
per memory access of core i. This frequency shows the number
of write accesses to X by Corej for each memory access of
Corei. In many applications the frequency of memory accesses
is approximately equal for all cores, and Fwrite

j,i,X (N) does not
depend on i.

For a reuse distance d by Corei, the probability of Corej
not writing to X within a reuse window of length d is (1 −
Fwrite
j,i,X (N))d. Since the memory accesses of different cores are

assumed to be independent, the probability of at least one of
the cores writing to X within d is

P inv
i,d,X(N) = 1−

∏
j 6=i

(1− Fwrite
j,i,X (N))d (5)

By substituting for P inv
i,d,X(N) Eq. (3) and for P coh

i,X (N) in
Eq. (4), we obtain

Ecoh
i (N) =

∑
X∈L

(Mi,X(N) · P coh
i,X (N)) , (6)

where P coh
i,X (N)) is

∞∑
d=1

Pi,d,X(N)

(1−∏
j 6=i

(1− Fwrite
j,i,X (N))d)(1− P cap

i,d,X(N))

 (7)

B. The phased model

The uniform model assumes that all shared cache lines
are written uniformly by the cores throughout the execution.
This is not the case in all real applications. Some applications
show different patterns of shared data access in different
parts of the execution, or coordinate access to shared data
by synchronization. A change of phase is typically marked by
synchronization primitives (e.g., conditional variables, barriers,
etc). For example, the bodytrack benchmark in the PARSEC
benchmark suite has a producer-consumer structure. The mas-
ter threads (the main thread and the I/O thread) first generate
the shared data by writing to it: thereafter they signal the
worker threads (by signaling a conditional variable) to start
processing the shared data. Although a significant amount of
data is shared, the master and worker threads’ accesses to
shared data are separated by the signaling of the conditional
variable. Such a separation prevents interleaved accesses to
shared data by the master and worker threads. Without these
interleaved accesses, the master threads’ writes to the shared
data do not cause any coherence misses in the worker threads.

time

Sync point
phase1

master thread
generate
shared data

phase2

worker threads
process shared
data

Fig. 5: The division of phases for bodytrack

The phased model generalizes the uniform model to
handle programs with phase-dependent pattern of accesses to
shared cache lines. The phased model divides the execution
into phases, by letting synchronization primitives (conditional
variable, barriers, etc) determine that a new phase is entered.
There are two kinds of coherence misses with the phase
division: intra-phase coherence misses where the coherence
miss is caused by an invalidating write in the same phase as the
two accesses of the core that experiences the coherence miss,
and inter-phase coherence misses, where one of the accesses
by the core with coherence miss occurs in a different phase
from the invalidating write access (cf. Figure 6).

The intra-core coherence misses are analyzed using the
uniform model in each phase. Inter-core coherence misses are
analyzed by the phased model as follows. For each phase,
we keep track of which shared cache lines are written to by
each core. In addition, for each core we keep track of the
distance df between each phase boundary and the first access
to each cache line X , and symmetrically the distance dl from
the last access to each cache line X and the following phase
boundary. The distribution of these distances are summarized
in the probabilities Pfirst

i,df ,X
(N) and P last

i,dl,X
(N), respectively,

for each df and dl.

For a target core Corei, and for all pairs of phases
phasefirst and phase last such that Corei does not access X
in the phases between phasefirst and phase last , the phased
model predicts (i) one coherence miss if X is written to by
another core in a phase between phasefirst and phase last , and

5

(ii) a coherence miss with probability

∑
df

∑
dl

P first
i,df ,X(N)P last

i,dl,X(N)

1−∏
j 6=i

(1− Fwrite
j,i,X (N))df+dl


if X is not written to by another core between phases
phasefirst or phase last . This formula gives is the probability
for an invalidating access in either phasefirst or phase last .
For simplicity, we have assumed that Fwrite

j,i,X (N) is the same
in both phases, otherwise the formula must be refined to
consider two different frequencies in the obvious way. Since
the probability in the second case is typically small, and can
add at most one coherence miss, we often omit it in the
analysis.

Corei

Corej

time

time
phase1 phase2 phase3

read X

write X

read X

dl df

inter-phase coherence miss

Fig. 6: Inter-phase coherence miss, phases divided by
synchronization points

C. The symmetric model

For multi-threaded applications where threads access both
local and global data in a symmetric way, we propose our third
model, called the symmetric model. Applications to which this
model can apply include network packet processing, streaming
applications, etc. Due to the symmetry assumption, we can
avoid applying uniform or phased, which needs information
about reuse distance distributions and write frequencies to
shared data. The symmetric model, in that it assumes that all
threads can be treated symmetrically, needs less information
about the behavior of each thread.

We consider programs that process a large set of input data
items, which are evenly divided among threads. The threads
maintain some shared data structure (e.g. a hash table) in
order to manage the data items. All threads access the shared
data structure randomly and independently, i.e., the threads
have symmetric access patterns to the shared data. In addition,
subsequent accesses to shared data are not correlated.

To present our analysis, let us introduce the following
notations:

L is the size (number of cache lines) of the input
data to be processed. L only includes the part of
the input data not having false-sharing effects with
the shared data.

S is the size of shared data
kS is the total number of accesses to S by all threads

during the whole execution.

We make the following assumptions, which holds in typical
applications. The input data size is much larger than the size
of the shared data and cache size (L >> S and L >> C).

Let us describe how the symmetric model models the
different kinds of private cache misses.

Cold misses: When the application executes with only one
thread, it accesses L local data and S shared data. Thus, the
number of cold misses is M cold

1 (1) = L+S. When parallelized
with N threads, the assumption on symmetry makes sure the
input data is distributed evenly. Each thread processes 1

N of
the total input data but all threads access the shared data:
Mcold

i (N) = 1
N · L+ S. Assuming L >> S,

Mcold
i (N) ≈ 1

N
Mcold

1 (1) (8)

The point of this approximation is that we do not need to know
L or S.

Capacity and conflict misses: Let kL be all reuses to
L that are cache misses, which means the accessed cache line
have been evicted prior to the access. Since each access in kL is
a reuse of the non-shared data item, the eviction must be due to
the limited cache capacity, which makes the access a capacity
misses. Running with one thread, there are kL capacity misses
and with N threads, there are 1

N · kL misses for each thread
due to the symmetry assumption.

The shared data may be reused. Let r be the miss ratio for
the shared data running with one thread. When parallelized to
N threads, due to the symmetry, each core has the same cache
size and each thread accesses both the local and shared data
in the same pattern as the one-core case. Thus the miss ratio
r does not change with the number of threads. Therefore the
number of capacity misses for the shared data is kS · r for
the one-thread case and 1

N · kS · r for each thread in the N -
thread case. To sum up, the total number of capacity misses
is kL + kS · r and 1

N · kL + 1
N · kS · r for one thread and N

threads respectively. Thus we have

M cap
i (N) =

1

N
M cap

i (1) (9)

Similarly for the conflict misses:

M conf
i (N) =

1

N
M conf

i (1) (10)

Coherence misses: To convert a Corei’s potential cache
hit into a coherence miss, the thread on a foreign core needs
to write to the shared data before its reuse by Corei. The
probability of the last write to the shared data not being the
same thread is 1 − 1

N . Then the probability of invalidating a
shared data item for each thread is simply Pinv(N) = (1 −
1
N) · Fwrite

j,i,X (N) in steady state.

After knowing the number of each kind of cache misses in
the private cache, we can calculate the total number of cache
misses. In the one-thread run, there are only cold, capacity and
conflict misses:

Mmiss
1 (1) = Mcold

1 (1) +Mcap
1 (1) +Mconf

1 (1) (11)

6

If there are Mhit
1 (1) cache hits of shared data in the one-thread

case, the probability of converting them into coherence misses
is Pinv(N). Thus we have

Mcoh
i (N) = Mhit

1 (1) · Pinv(N) (12)

and the total number of cache misses is the sum of the four
different kinds of misses. Putting equations (8), (9), (10), (12),
and (11) together, we get

Mmiss
i (N) ≈ 1

N
Mmiss

1 (1) +Mhit
1 (1) · Pinv(N) (13)

Then we measure the number of cache misses for one thread
and two threads to get Mmiss

i (2) and Mmiss
1 (1). We solve

equation (13) to get Mhit
1 (1):

Mhit
1 (1) =

Mmiss
i (2)− 1

2M
miss
1 (1)

Pinv(2)

With Mhit
1 (1) and Mmiss

1 (1) known, we now can predict
the number of private cache misses for any number of threads
with Eq. (13).

VI. IMPLEMENTATION

In this section, we describe how we have implemented our
models, for the purpose of evaluating the applicability and
accuracy of our models by comparing predictions obtained
by the models with measurements from executions on actual
hardware. The goal is to compare the modeled number of
coherence misses in the private cache with the measured
number. However, it is difficult to measure the number of
coherence misses on actual hardware. One way would be to
count the number of invalidation messages sent by the cache
coherence protocol. However, not all invalidation messages
will trigger future coherence misses. Therefore, using the
number of invalidation messages as the number of coherence
misses would be very inaccurate. However, the total number
of private cache misses can be easily measured by reading
the hardware performance counters. To compare with the
measured total number of cache misses, we sum up the number
of all four kinds of misses to estimate the total number of
cache misses. Then this estimated value is compared with the
measured one.

A. Trace the target program

We used Intel’s PIN [7] tool to trace memory instructions.
As a tool that introduces heavy profiling overhead (base over-
head without any user-inserted instrumentation is 30% [13]),
PIN does not guarantee to keep the traced program’s thread
interleaving as when the program runs on real hardware. Luck-
ily, our models do not rely on capturing the exact pattern of
interleaving of threads. We can even run the target application
with PIN on a single core.

For each memory access, we record the memory address,
thread id, operation (either memory read or write), and a
time stamp which increments by 1 with each memory access.
The time stamp shows the relative position of this memory
access in all the memory accesses by the same thread. When
a synchronization primitive (pthread_cond_signal()
pthread_cond_broadcast()or pthread_barrier()) is

encountered, the time stamps of all threads are recorded. This is used
to divide the whole execution into phases for the phased model.

PIN records virtual addresses with the first few bits indicating the
tag and index of the cache line and the last few bits indicating the
offset in the cache line (Figure 7). In our target platform, each cache
line is 64B, meaning the last 6 bits of the virtual address is the offset
in the cache line. Truncating these bits gives an address identifying
the cache line of the virtual address. This allows us to account for
the coherence misses caused by both true and false sharing.

Tag Index Offset

Fig. 7: Segments of a virtual address

B. Extract input to model from trace

By profiling the target program, we get a trace of the memory
accesses. Now we need to extract input to our models from this trace.
uniform and phased need the following inputs for each kind of cache
misses:

• Cold misses: the number of accessed cache lines
• Capacity and conflict misses: the set stack distance of all memory
accesses.
• Coherence misses: reuse distance distribution for all shared cache
lines, and other threads’ write frequencies to the shared cache lines

First, we generate a set of all the distinct cache lines accesses
by each core. By searching through all the sets, we find all the
shared cache lines. The number of cold misses can be estimated by
counting the number of distinct cache lines. The stack distance of
each memory access is measured by counting the number of distinct
memory accesses in the same set between the last and current access
to the same cache line. If the set stack distance is bigger than the
set associativity, the memory access is counted as a conflict miss.
Otherwise, if the accessed cache line is a shared cache line, we record
its reuse distance for the analysis for coherence misses.

To calculate the number of coherence misses for a target core
Corei, we need the reuse distance distribution of all shared cache
lines by Corei and the other core’s write frequency to all the shared
cache lines. We collect all reuse distance for all the shared cache lines
obtained from the previous step. Then we generate a reuse distance
histogram. Next, we get the frequency of other cores (other than
Corei) write to X . For each Corej where j 6= i, the frequency of
Corej writes to X is calculated as

Fwrite
j,X (N) =

writes to X

of total accesses of i

This frequency is a relative frequency of Corej to Corei where Corei

is our target core.

VII. EVALUATION OF OUR MODELS

A. Experiment setup

We evaluate our models on a 32-core system with 2.7GHz Intel
Xeon E5-4650 CPUs. There are 4 sockets with 8 cores on each socket.
The L2 cache is non-inclusive and non-exclusive of the L1 cache. A
cache line is 64B. The experiment machine implements a MESIF
coherence protocol[14].

7

Cache Specification
L1 32KB, private, 8-way
L2 256KB, private, 8-way
L3 20MB, shared among cores on the same socket

TABLE II: The cache hierarchy of the experiment machine

B. Obtaining reference cache misses

All the multi-threaded benchmarks run with each thread pinned to
a designated core. We read the hardware performance counter of each
core for L2 misses with the Performance Application Programming
(PAPI) library [15]. The performance counter starts right before a
thread is created and stops right after a thread finishes (The Pthread
library’s pthread_create() function was overridden to control
the counters). After collecting each core’s L2 cache miss count, we
take the average among all threads, which is used as a reference for
the number of cache misses in the private cache.

C. Benchmarks

To validate our model, we chose 7 benchmarks (blacksc-
holes, bodytrack, fluidanimate, streamcluster, raytrace, swaptions and
dedup) from the PARSEC 3.0 benchmark suite. 1 Table III shows the
input size and applied model for each benchmark. All benchmarks are
compiled with gcc version 4.7.2 and optimization level O3. We ran
all the benchmarks with 1− 8 thread(s), which utilizes all the cores
on one socket. For dedup, which implements the pipeline parallelism,
all threads in a parallel stage are assigned to the same socket.

benchmark input method
blackscholes 4, 096 options uniform

bodytrack 100 particles uniform, phased
fluidanimate 5, 000 particles uniform
streamcluster 128 input points uniform, phased

raytrace teapot.env uniform
swaptions 10, 000 swaptions uniform, phased

dedup 640MB random input data symmetric

TABLE III: Benchmarks and inputs

D. Results (all benchmarks except for dedup)

Figure 8 shows the evaluation results for the uniform and phased
models. Each vertical bar in the histogram represents the modeled
number of private cache misses. It is further divided into four kinds
of misses: capacity (including conflict) misses, cold misses, coherence
misses and inter-phase coherence misses. The reference dots are the
measured number of L2 misses. By comparing the number of different
cache misses as the number of cores scales up, we can decide which
kind of miss is the scalability bottleneck for the benchmarks.

Benchmarks analyzed with the uniform model:
blackscholes and fluidanimate are analyzed with the uniform model.
These two benchmarks do not have phase-wise behaviors in accessing
the shared cache lines. The average relative error for uniform is 5.8%.
In blackscholes, the number of coherence misses increases with more
threads, which is due to the fact that the number of shared cache lines
fluctuates in a small range (between 642 and 730) regardless of the
number of threads. Sharing the same number of cache lines with more
threads will increase the number of coherence misses. This can be
shown in our model: the invalidation probability P inv

i,d,X(N) increases
if there are more foreign cores write to shared data according to
Eq. (5).

1We excluded benchmarks that do not compile, have no input, incompatible
with the PIN framework and with no Pthread implementation.

Benchmarks analyzed with both the uniform and phased
models: bodytrack, streamcluster, raytrace and swaptions are ana-
lyzed with the phased model combined with the uniform model.
The run of streamcluster with one thread does not have any coherence
misses. Taking out this instance run, the average relative error of all
these benchmarks is 8.02%. The phased model divides bodytrack’s
whole execution into two phases, where the master threads generate
the shared data in phase1 and the worker threads process the shared
data in phase2. All the coherence misses come from phase2 since the
accesses to shared data from phase1 do not interleave with the shared
data accesses in phase2. The number of capacity misses decreases
with more threads. This is because the amount of data for each thread
decreases as there are more threads sharing the data to process. For
streamcluster, the number of coherence misses dominates the total
number of cache misses. The inter-phase coherence misses contribute
to a noticeable part of the cache misses. This is due to the frequent
barrier calls in the benchmark (over 19, 000 barriers). Most shared
variables are used in multiple phases.

E. Applying symmetric to dedup

In this section, we take the dedup benchmark as an example
to show how to use the symmetric model to predict the coherence
misses. dedup implements pipeline parallelism (Figure 9 shows the
structure, taken from [16]). There are five stages in this benchmark.
The first and last stages are sequential and the other three stages
are parallel. Adjacent stages share buffer queue(s) (Q1-Q8). The first
stage Fragment splits the input data into coarse-grained chunks, then
the FragmentRefine stage divides these chunks into finer-grained
chunks. The Deduplicate stage processes the fine-grained chunks and
inserts pointers to them into a hashtable. Then the Compress stage
compresses the chunks. The last stage Reorder writes the compressed
data into an output file. Our analysis focuses on the Deduplicate
stage.

In the Deduplicate stage, all threads process their local data
chunks and share a hash table. Each thread executes the following
loop: 1) fetch a data chunk 2) generate a hash key for the data chunk
and 3) search the hash key in the hash table 4) if the key is not found,
insert the key into the hash table. There are some false-sharing effects
between the local data and the shared data.

Fig. 9: Structure of the dedup benchmark: figure taken from
[16] with updated stage names of PARSEC 3.0

By applying the symmetric model, we obtain the invalidation
probabilities for 1−8 threads, as shown in Table IV. Then we measure

threads 1 2 3 4 5 6 7 8
inv prob 0 0.5 0.67 0.75 0.8 0.83 0.86 0.88

TABLE IV: Analyzed invalidation probability for
Deduplicate stage in dedup

8

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8

N
o.

L
2

m
is

se
s

blackscholes

0

5000

10000

15000

20000

25000

30000

1 2 4 8

fluidanimate

0

50000

100000

150000

200000

250000

1 2 3 4 5 6 7 8

bodytrack

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

1 2 3 4 5 6 7 8

N
o.

L
2

m
is

se
s

#threads

streamcluster

0

100000

200000

300000

400000

500000

600000

2 3 4 5 6 7 8

#threads

raytrace

0

50000

100000

150000

200000

250000

300000

350000

1 2 3 4 5 6 7 8

#threads

swaptions

coherence misses
capacity misses

cold misses

inter-phase coherence misses
reference

Fig. 8: Evaluation results

the number of private cache misses for 1 and 2 threads, solve Eq. (13)
and use the equation to predict the number of private cache misses
for 3 − 8 threads (we can only evaluate the model with at most 8
threads since there are 8 cores on each socket). Figure 10 shows the
prediction results. The average relative error of the symmetric model
on dedup in predicting the number of L2 misses is 5.4%. We also
did the same analysis on the private L1 cache and the relative error
is 0.658%.

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8

N
um

be
r

of
L

2
m

is
se

s

Number of threads

Measured L2 miss
Modelled L2 miss

Fig. 10: Modeling the number of L2 misses for each loop of
the Deduplicate stage in dedup

VIII. RELATED WORK

Stack distance: To quantify the data locality of a program,
Mattson et al [17] introduced the stack distance as a measure
to describe a program’s data locality. It was used later by other
researchers to analyze program locality [18] [19] [20] [21].

In the multicore era, Chandra et al [4], Xu et al [5] and
Eklov et al [6] used the stack distance histogram to model cache
contention in the shared cache. While predicting the cache contention
effect accurately, none of these methods consider inter-core data
sharing. Jiang et al [11] introduced the concurrent reuse distance
(CRD) to consider interleaved memory accesses by all cores. Wu
and Yeung [22] analyzed how the CRD changes with multiple
threads. Dilation, spreading and distortion effects are observed in
the CRD distribution compared to the non-concurrent reuse distance
distribution. This observation is used to predict the CRD distribution
with a number of threads.

Modeling coherence misses: So far the work taking coherence
misses into account has been sampling-based. Schuff et al [10]
presented a sampling-based approach to speed up detailed online
simulations. It keeps track of the stack distance profile of a multi-
threaded application and simulates the cache behavior with the profile.
It models both the shared and private caches without distinguishing
the kinds of cache misses. Each thread keeps a private stack and
the cache line invalidation is propagated to other threads at synchro-
nization points. Berg et al [2] also present a sample-based method
to analyze the data locality of a multi-threaded program. To capture
coherence misses, a cache line is monitored until it is reused by the

9

same core. During the monitoring, it maintains a writer list to catch
the foreign cores’ write to the cache line. On reuse by the same
core, a non-empty writer list means at least a core invalidated the
cache line, which makes the reuse a coherence miss. Both of the
sampling methods rely on capturing the exact thread interleavings.
Sampling-based approaches are sensitive to interference from other
processes. In addition, it cannot be used to model cache misses
for another hardware configuration (e.g., different cache size). Our
profiling approach only collects software-specific data, which makes
our profiling process insensitive to interference. Another advantage of
analytical-based approaches including ours is the ability to evaluate
performance in another system’s settings. For example, our model
can be used to predict the cache misses with a different cache size.

Optimization with inter-core data sharing: Zhang et al [23]
point out that the inter-core data reuse is not fully exploited by the
current on-chip cache hierarchy or the state-of-the-art optimizations.
An optimization scheme that balances the inter-core and intra-core
data reuse is proposed. Demetriades et al [24] propose a run-time
coherence miss prediction scheme. The scheme is based on the
observation that the coherence misses and synchronization points in
a program are usually correlated.

IX. CONCLUSION

In this paper, we proposed three new analytical models to analyze
cache coherence misses for a multi-threaded application on multicore.
The model builds on the observation that the occurence of a coherence
miss is caused by a foreign write interleaving with the reuse of a
shared cache line. The model quantifies the cache coherence misses
of a core with the reuse distance distribution and the frequency
of other cores’s writing to the shared cache lines. The predicted
cache coherence misses can then be added to the cold misses and
capacity misses (calculated with existing methods) to model the total
number of cache misses in the private cache. The model we proposed
can be used to predict the private cache misses of a multi-threaded
application for different cache sizes, to guide program optimizations
in order to better utilize the private cache. We evaluated our models
with a set of benchmarks in the PARSEC benchmark suite.

X. ACKNOWLEDGMENT

This work is supported by the Swedish Foundation for Strategic
Research through CoDeR-MP, and by the Swedish Research Council
through UPMARC. We are very grateful to Andreas Sembrant, An-
dreas Sandberg and Alexandra Jimborean for the valuable discussions.
We would like to thank the anonymous reviewers for their helpful
suggestions.

REFERENCES

[1] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton, NJ, USA, 2011, aAI3445564.

[2] E. Berg, H. Zeffer, and E. Hagersten, “A statistical multiprocessor cache
model.” in ISPASS, 2006, pp. 89–99.

[3] D. Eklov and E. Hagersten, “Statstack: Efficient modeling of lru
caches,” in ISPASS. IEEE Computer Society, 2010, pp. 55–65.

[4] D. Chandra, F. Guo, S. Kim, and Y. Solihin, “Predicting inter-thread
cache contention on a chip multi-processor architecture.” in HPCA,
2005, pp. 340–351.

[5] C. Xu, X. Chen, R. P. Dick, and Z. M. Mao, “Cache contention and
application performance prediction for multi-core systems.” in ISPASS,
2010, pp. 76–86.

[6] D. Eklov, D. Black-Schaffer, and E. Hagersten, “Fast modeling of
shared caches in multicore systems.” in HiPEAC, 2011, pp. 147–157.

[7] C.-K. Luk, R. S. Cohn, R. Muth, H. Patil, A. Klauser, P. G. Lowney,
S. Wallace, V. J. Reddi, and K. M. Hazelwood, “Pin: building cus-
tomized program analysis tools with dynamic instrumentation.” in
PLDI, 2005, pp. 190–200.

[8] M. D. Hill and A. J. Smith, “Evaluating associativity in cpu caches.”
1989, pp. 1612–1630.

[9] K. Beyls and E. H. D’Hollander, “Reuse distance as a metric for cache
behavior,” in In Proceedings of the IASTED Conference on Parallel and
Distributed Computing and Systems, 2001, pp. 617–662.

[10] D. L. Schuff, M. Kulkarni, and V. S. Pai, “Accelerating multicore reuse
distance analysis with sampling and parallelization.” in PACT, 2010,
pp. 53–64.

[11] Y. Jiang, E. Z. Zhang, K. Tian, and X. Shen, “Is reuse distance
applicable to data locality analysis on chip multiprocessors?” in CC,
2010, pp. 264–282.

[12] G. Balakrishnan and Y. Solihin, “West: Cloning data cache behavior
using stochastic traces.” in HPCA, 2012, pp. 387–398.

[13] M. Bach, M. Charney, R. Cohn, E. Demikhovsky, T. Devor, K. M.
Hazelwood, A. Jaleel, C.-K. Luk, G. Lyons, H. Patil, and A. Tal,
“Analyzing parallel programs with pin.” 2010, pp. 34–41.

[14] “The common system interface: Intels future interconnect.” [Online].
Available: http://www.realworldtech.com/common-system-interface/5/

[15] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “Papi: A portable interface
to hardware performance counters,” in In Proceedings of the Department
of Defense HPCMP Users Group Conference, 1999, pp. 7–10.

[16] A. G. Navarro, R. Asenjo, S. Tabik, and C. Cascaval, “Analytical
modeling of pipeline parallelism.” in PACT, 2009, pp. 281–290.

[17] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation
techniques for storage hierarchies.” 1970, pp. 78–117.

[18] C. Cascaval and D. A. Padua, “Estimating cache misses and locality
using stack distances.” in ICS, 2003, pp. 150–159.

[19] C. Ding and Y. Zhong, “Predicting whole-program locality through
reuse distance analysis.” in PLDI, 2003, pp. 245–257.

[20] Y. Zhong, S. Dropsho, and C. Ding, “Miss rate prediction across all
program inputs.” in IEEE PACT, 2003, pp. 79–90.

[21] Y. Zhong, X. Shen, and C. Ding, “Program locality analysis using reuse
distance.” 2009.

[22] M.-J. Wu and D. Yeung, “Coherent profiles: Enabling efficient reuse
distance analysis of multicore scaling for loop-based parallel programs.”
in PACT, 2011, pp. 264–275.

[23] Y. Zhang, M. T. Kandemir, and T. Yemliha, “Studying inter-core data
reuse in multicores.” in SIGMETRICS, 2011, pp. 25–36.

[24] S. Demetriades and S. Cho, “Predicting coherence communication by
tracking synchronization points at run time.” in MICRO, 2012, pp. 351–
362.

10

