Inferring Semantic Interfaces of Data Structures*

Falk Howar!, Malte Isberner!, Bernhard Steffen! Oliver Bauer!, and Bengt
Jonsson?

1 Technical University Dortmund, Chair for Programming Systems, Dortmund,
D-44227, Germany
{falk.howar|malte.isberner|steffen|oliver.bauer}@cs.tu-dortmund.de
2 Dept. of Information Technology, Uppsala University, Sweden
bengt.jonsson@it.uu.se

Abstract. In this paper, we show how to fully automatically infer se-
mantic interfaces of data structures on the basis of systematic testing.
Our semantic interfaces are a generalized form of Register Automata
(RA), comprising parameterized input and output, allowing to model
control- and data-flow in component interfaces concisely. Algorithmic
key to the automated synthesis of these semantic interfaces is the exten-
sion of an active learning algorithm for Register Automata to explicitly
deal with output. We evaluated our algorithm on a complex data struc-
ture, a “stack of stacks”, the largest of which we could learn in merely
20 seconds with less than 4000 membership queries, resulting in a model
with rougly 800 nodes. In contrast, even when restricting the data do-
main to just four values, the corresponding plain Mealy machine would
have more than 10° states and presumably require billions of membership
queries.

1 Introduction

With the increased use of external libraries and (web-)services, mining behav-
ioral interfaces of black-box software components gains practical and economical
importance. Automata learning techniques [3] have therefore successfully been
employed for inferring behavioral interfaces of software components [1], such as
data structures.

Most of these algorithms come with the limitation of being restricted to finite
input alphabets, which hinders adequate treatment of parameterized actions
whose parameter values often range over infinite domains. Apart from the infinite
structure of possible input actions, another issue is raised by the influence of data
on the control flow. As a simple example, consider a set-style data structure:
Upon insertion of a new element, the effect in terms of control flow will naturally
depend on whether this element is already contained in the set, or not. Such
behavior cannot be modeled adequately by “classical” automata models such

* This work was partially supported by the European Union FET Project CON-
NECT: Emergent Connectors for Eternal Software Intensive Networked Systems
(http://connect-forever.eu/).

as DFAs or Mealy machines. What is required are semantic interfaces, which
transparently reflect the behavioral influence of parameters at the interface level.

In this paper, we show how to efficiently overcome these limitations by gen-
eralizing our approach for inferring register automata [6,11] models, which are
designed for symbolically dealing with parameterized input, to also capture pa-
rameterized output. This extension, which is similar in guise to the extension of
finite automata learning to the learning of Mealy machines, allows us to fully
automatically infer semantic interfaces solely on the basis of systematic test-
ing. Although this extension is technically quite straightforward, its impact is
dramatic: Our Register Mealy Machines

— express the data structures’ behavior concisely and faithfully, at a level ideal
even for manual inspection,

— the inference of RMMs does not require any prerequisites like manual ab-
straction, a real bottleneck for “classical” learning of practical systems, and

— RMMSs can be learned much more efficiently than both Register Automata
and plain Mealy machines at some predefined level of abstraction.

In the evaluation section of this paper, we will discuss data structures whose
complexity reaches far beyond the state of the art [1,9], the largest of which would
comprise more than 10° states as a plain Mealy machine for an abstract data
domain of just four values. In contrast, the RMM model—which is semantically
richer—has only 781 nodes, independently of the size of the data domain, and is
learned fully automatically in approximately 20 seconds using only 9 equivalence
queries!

Related work. Synthesis of component interfaces has been a research interest for
the past decade. Presented approaches fall into three classes described in [15].

First, Client-side Static Analysis uses a static analysis of source code using
the component of which a model is to be inferred. The approach described in [15]
mine Java code to infer common sequences of method calls.

Second, Component-side Static Analysis uses a static analysis on the com-
ponent itself. In [1] an approach is presented that generates behavioral inter-
face specifications for Java classes by means of predicate abstraction and active
learning. Another approach uses counterexample guided abstraction refinement
(CEGAR) [10] instead of active learning in order to derive a regular model from
the Boolean program obtained by predicate abstraction.

Finally, Dynamic Analysis infers interface models from actual program exe-
cutions. The authors of [2] present an approach for inferring probabilistic finite
state automata (PFSA) describing a components’ interface using a variant of
the k-tail algorithm [5] for learning finite state automata from positive exam-
ples. In [12] behavioral models are inferred from program traces obtained through
monitoring using passive automata learning. The influence of data values on the
behavior is inferred with an invariance detector [8]. The authors of [7] use a com-
bination of component-side static analysis, identifying side-effect free methods
(so-called inspectors), which are then used to identify states of the component.
These states are explored systematically in a dynamic analysis.

All static-analysis methods rely on access to source-code, either of the component
or of code using the component. Only dynamic analysis can deal with black-box
systems. Most of the dynamic approaches, on the other hand, use passive learning
and are thus limited to (possibly small) sets of observed concrete executions. In
case some functionality of a component is not executed, it will not be captured
in the inferred model. In contrast, our approach does not depend on the quality
of preexisting observations as it uses active automata learning to interact with
black-box components and produce a model in an “active” dynamic analysis.

Outline. This paper is organized as follows. In the following section, we will
introduce the modeling formalism of Register Mealy Machines. We will develop
an active learning algorithm for our new formalism in Section 3, highlighting the
key ideas and differences compared to Register Automata learning. The practical
impact of our algorithm is discussed in Section 4 by evaluating it on a number
of examples. Finally, Section 5 concludes the paper, giving an outlook on both
extensions and more elaborate case studies.

2 Modeling data structures

As discussed above, in many real systems data parameters of inputs influence
the behavior of the system. In order to represent such systems as finite models,
storing and comparing data values has to be made explicit in the automaton
representation. In this section we will present a Register Automaton model that
allows for modeling data in outputs and discuss how such an automaton can be
reconstructed from its semantics.

2.1 Register Mealy machines

Let D be an unbounded domain of data values which can be compared for
equality, and X be a set of parameterized input symbols, each with a fixed arity
(i.e., number of arguments it takes from D). A data input is a pair (a,d), where
a € ¥ is the base symbol with arity k, and d = (di,...,dy) is a sequence of
data values from D. In the following, we will use the more intuitive notation
a(dy,...,dy) instead of (a,d). We write a” for the set of all data inputs with
base symbol a and data values from D, and EP for the set of all data inputs with
base symbols in Y. Sequences of data inputs are data words, for given X' and D
the set of all data words is denoted by Wy p = (Z’D)*7 and W;D =Wsp\{e}
for the set of all non-empty data words. For a data word w, let Acts(w) be
the sequence of parameterized input symbols in w and Vals(w) be the sequence
of data values in w (from left to right). Let then ValSet(w) denote the set of
distinct data values in Vals(w). Data words are concatenated just like plain
words.

Let now a symbolic input be a pair (a,p), of a parameterized input a of arity
k and a sequence of symbolic parameters p = (p1, ..., px). Especially when de-
picting automaton models, we will use the more intuitive notation a(p1, ..., px)-

Let further X = (x1,...,2m,) be a finite set of registers. A guard is a proposi-
tional formula of equalities and negated equalities over symbolic parameters and
registers of the form

G:=GANG|GVG|pi=pj|pi#p|zi=pj|x #pj;|true,

where true denotes the atomic predicate that is always satisfied. A parallel as-
signment is a partial mapping o : X — X U P for a set .S of formal parameters.
Finally, a symbolic output is a pair (o, 7), of a parameterized output o of arity k
and a sequence of symbolic references ¥ = (rq,...,7x), where r; € X U P.

Definition 1 (Register Mealy Machine). A Register Mealy Machine (RMM)
is a tuple M = (X, 02, L,ly, X, I"), where

— X is a finite set of parameterized inputs,

— (2 is a finite set of parameterized outputs,

— L is a finite set of locations,

— lgp € L is the initial location,

— X is a finite set of registers,

— I is a finite set of transitions, each of which is of form (I, (a,p), g, (0,7),0,l'),
where 1 is the source location, I’ is the target location, (a,p) is a symbolic
input, g is a guard, (o,7) is a symbolic output, and o is a parallel assign-
ment. O

Let us describe how an RMM M = (X, 2, L, 1y, X, I') processes data words. A
valuation, denoted by v, is a (partial) mapping from X to D. A state of M is a
pair (I, v) where [€ L and v is a valuation. The initial state is the pair of initial
location and empty valuation (ly, ().

A step of M, denoted by (I, v) M (I, V"), transfers M from (I, v) to

(I',v") on input (a, d) if there is a transition (I, (a,p), g, (0,7),0,l') € I' such that

1. g is satisfied by d and v, i.e., if it becomes true when replacing all p; by d;
and all z; by v(x;), and

2. v/ is the updated valuation, where v/(z;) = v(z;) whenever o(z;) = z;, and
V'(z;) = dj whenever o(z;) = p;.

When performing the above step, M generates an output (o,d’), where d’ is
obtained from 7 = (rq,...,rg) by adequate substitution of the references, i.e.,
d; =d; if r; = p;, and d; = v(x;) if r; = x;. Note that this means that 7 refers
to the old valuation rather than the updated one.

A run of M over a data word (ay,d1)... (ay,d) is a sequence of steps

(a1,d1)/(01,d}) (ak,dr)/(ok,dy)

<ZO7®> <lkayk>'
The output data word produced during this run is (o1, d}) . .. (og, d},).
An RMM M is called deterministic if every data word in W;D has exactly
one run in M. For the remainder of this paper, we will assume RMMSs to be
deterministic.

(li,m) oo k=1, ve—1)

put(p) | w1=p/x put(p) | 961217\/902210/X

put(p) | rl#p//

xo:=p

put(p) | w1#pAzz¢p/

r3:=p

v

get() | true get() | true get() | true

— /out(zl) P /out(zl) m/OUt(II
ut true
get() | true/X %/X

Fig. 1. RMM for a FIFO-set with a capacity of 3.

Ezxample 1. At this point, we introduce our running example, which aligns with
the field of application we envision for our technique: inferring semantic interfaces
of data structures. Consider a collection data structure that allows storing a
bounded number of data values, which combines aspects of both a queue and a
set: when retrieving values from the collection, FIFO semantics apply. However,
like in a set, it is not possible to store the same value twice; doing so will have no
effect. For insertion and retrieval, the interface offers the input actions put(p)
and get(). The response upon put is v’ or X, signaling whether or not the
collection was modified. A get operation is either answered by out(x), with x
being the value that is returned, or x if the collection is empty.

An RMM of this data structure is depicted in Fig. 1 for a capacity of three.
A transition (I, (a,p), g, (0,7),0,l’) is represented by an arrow between ! and ',

with the label %/o(?). O

2.2 Register Mealy Machine semantics

Let us now define the semantics of RMMs. Register Mealy Machines are trans-
ducers, consuming inputs and producing outputs. Technically speaking, an RMM
realizes a function from Wg p to W?z' p- Since we further assume that an output
symbol is emitted every time an inpu’t symbol is read (and only then) and since
data outputs may only contain data values that have previously occurred in the
input data word the semantics of an RMM M can be expressed as a function
[M]: WED — 0P with [M](w) being the last output symbol that was emitted
in the run of M over w € Wy, .

Since a Register Mealy Machine M can test data values in parameters only
against values in registers (and not against constants), the function [M] is closed
under permutations on the data domain in the following sense: For all permu-
tations 7 on D it holds that [M](7(w)) = w([M](w)). This property fits the
context of data structures very well: the behavior and output depend on the or-
dering in which data arises in the data structure while not depending on concrete
values.

This closedness under permutations on D can be leveraged when inferring
RMM models: it will be sufficient to use one word to represent an infinite number

of equivalent words. Let w ~ w' if Acts(w) = Acts(w’) and w(w) = w’ for some
permutation m on D. Let [w]., be the set of all words w’ =~ w, i.e., words that can
be derived from w by some 7, and let @w be the canonical representative word
for [w]. in which the data values from D occur in some fixed order in Vals(w).
Since [M] is closed under permutation, [M](w) = 7([M](w)) for w = =(w).

When constructing RMM models from a system under learning (SUL), we
will use test cases, i.e., canonical data words, to infer the semantics of a SUL
and then construct an RMM from it. While the first step is covered in the
next section, the remainder of this section will focus on how to derive an RMM
model from a function S': WgD — 2P with the properties discussed above.
In particular, it will be discussed how locations, registers and assignments, and
guarded transitions of an RMM can be constructed from a function S.

From semantics to locations. In classical Mealy machine learning, words are
recognized as leading to the same state if they have the same residual seman-
tics [16], i.e., the same output for all suffixes. This requirement has to be loosened
slightly, since we have to abstract from concrete data values while still respecting
(in-)equalities between data values.

Definition 2. Words u,u’ € Wx p are equivalent wrt. S, denoted by u =g v/,
iff for some permutation © on D

S(u-v) = 7 (S -7(v)) YveW . 0

Definition 2 is a straightforward adaption of the well-known Nerode relation for
regular languages. The permutation on D helps abstracting from concrete data
values and focusing on the flow of data values. In an RMM for S, locations will
correspond to equivalence classes of =g.3

Classes of =g can be distinguished by suffixes: According to Definition 2
there is at least one suffix v € W;’D for u #g u’ such that for all permutations
7 on D it holds that S(u-v) # 7 1 (S(u - 7(v))).

In our running example, the two data words £ and put(1) are not equivalent.
They can be distinguished by the suffix get() for all permutations 7:

Se- n(get())) = x # m(out(l)) = n(S(put(l)get())).

In this particular case 7 is not essential for distinguishing locations. The dif-
ferent behavior is observable at the level of output symbols already. However,
to establish, e.g., the equivalence of words put(1) and put(1l)get()put(2) the
permutation on D is mandatory.

From semantics to registers. Considering a prefix u and a suffix v, there are two
observations from which one might conclude that, in the state reached by u, a
value from u has to be stored in a register:

3 We will not introduce a location for every class of =g as is discussed at the end of
Section 2.2.

1. A data value occurring in the output equals a data value in w.
2. The output depends on the equality of data values in u and v.

The set of memorable data values in u is denoted by mem(u). Memorable data
values have to be stored in registers of an RMM. In order to identify memorable
data values in the prefix, we will replace data values in the suffix and observe
the effect.

In particular, it is important to observe what happens if equalities between
data values in the prefix and in the suffix are eliminated: Let d € ValSet(u) N
ValSet(v) and d' € D\ ValSet(uv). Let further 7: D — D be a transposition
of d and d', i.e., a permutation exchanging d and d’ and leaving all other data
values untouched. Applying 7 to v yields the suffix w(v) with all occurrences of
d replaced by d’.

Now, the data value d is memorable in u if 7(S(uv)) # S(u - 7(v)): In such
a case either ValSet(S(u - m(v))) still contains a data value d (first case), or an
equality between an occurrence of d in both u and v was meaningful, leading to
the changed output (second case).

Considering our FIFO set, in put(1) the argument is memorable, as can be
proven either by the suffix get() (yielding out(1)) or by the suffixes put(1) and
put(2), yielding outputs x and v'.

From semantics to transitions. In an RMM, transitions are guarded by logic
formulas over binary (in-)equalities between registers and symbolic parameters.
Assume a data word u with memorable data values mem(u) for some semantics
S. Then, the transitions for some input symbol a originating in the location
reached by u in the RMM for S can be derived from the set {u} x aP of a-
continuations of u in two steps. In the first step we construct many atomic
transitions, each describing exactly one combination of equalities between pa-
rameters of a and memorable data values of u, i.e., one atomic transition per
class [u - (a,d)].. In a second step, we will group these transitions depending on
the location they lead to.

Let k, : mem(u) — X be an arbitrary injective function determining in
which registers the memorable data values of a prefix u are to be stored in the
RMM for S. Then, for some word u - (a,d) we can construct a transition, where

— the classes of u and u-(a, d) wrt. =g determine the source and target location
of the transition,

— the guard describes exactly the equalities of data values in u - (a, d), i.e., for
d; € d and d € mem(u) there will be the atomic proposition x(d) = p; in
the guard if d = d;, and the proposition x(d) # p; otherwise, and

— the assignment will be determined using k, and k(4 g)-

Since S is closed under permutations on D this will result in a finite number
of transitions, bounded by the number of combinations of possible equalities
between parameters of a and the (finitely many) memorable data values in wu.

In the second step we will group all a-transitions that (1) lead to the same
location and (2) have compatible assignments, i.e., where corresponding memo-
rable data values are stored in identical registers.

r1 =pANx2=p

T1=pAT2F£DP T1#£PAT2 =D

Fig. 2. Grouping atomic transition guards for the put-transitions originating from I
in Fig. 1 (left) and corresponding poset of conjunctions of equalities; minimal elements
underlined for all transitions (right).

Figure 2 (left) shows an example of how atomic transitions can be grouped
for the put-transitions originating from Iy of the FIFO-set from Figure 1. The
atomic guard x7 # p A x2 # p corresponds to the put-transition to l3. The
other atomic guards are grouped by the reflexive put-transition. The guard
x1 = p/Ax2 = p is colored gray in the figure as it does not occur in the RMM: In
our example location Il can never be reached with identical values in x; and 5.
However, since the guard is not accessible, we can add the case to any transition,
resulting in the abstract guard 1 = pV s =p

Now, we can construct an RMM for some function S: the locations are deter-
mined by the classes of =g, registers and assignments are determined using the
memorable data values and the guards of abstract transitions are obtained by
grouping atomic transitions. However, when inferring RMM models in the next
section, we will use two interrelated optimizations.

First, we do not introduce a location for every class of =g but merge com-
patible locations as is described in [6] to obtain exponentially smaller models
in some cases. Intuitively, we group locations that only appear to be different
because in one location data values in two registers are identical, resulting in
fewer memorable data values and inequivalence wrt. =g.

Second, we do not use all atomic transitions but only certain “representative”
ones. In [6,11] it is shown that one can introduce a partial order on the set of
atomic guards and that it is sufficient to use the minimal elements (wrt. to
this partial order) in the domain of each transition. The basic idea is shown in
Figure 2: Removing the in-equalities from each atomic guard (in the left) results
in a partially ordered set (by implication), which is shown in the right of the
figure. Representative elements are underlined.

During inference this will allow for an approach reminding of interval stack-
ing, adding one “representative” atomic case at a time.

3 Inferring RMM models

In this section, we want to discuss the key ideas of adapting automata learning
techniques to Register Mealy Machines. Our algorithm is based on the one for

inferring Register Automata as presented in [11]. As usual in active learning, we
will assume a teacher answering two kinds of queries:

— membership queries (MQs), which query the reaction of the system under
learning (SUL) for a given input word,

— equivalence queries (EQs), which check if a constructed hypothesis correctly
models the target system, and if not, return a counterexample exposing a
deviation in the behavior of the target system from the behavior predicted
by the hypothesis.*

According to this two kind of queries the learning algorithm can be divided into
two phases: hypothesis construction, during which the learner poses membership
queries until it has enough information to consistently construct a hypothe-
sis, and hypothesis verification, where an equivalence query is posed and the
counterexample—if existent—is handled accordingly.

3.1 Inferring residuals from test cases

Before we describe the two phases of the algorithm, let us briefly consider how
membership queries can be used to infer residuals, which will be one cornerstone
of our algorithm. As discussed in the previous section, residuals are essential for
constructing an automaton from a semantic function. The main problem here is
to represent or infer an infinite (partial) residual with finitely many test cases.

Thus, first of all, instead of considering all data words, we can focus on
canonical data words as discussed early in Section 2.2. In the examples we will
use D = N and < as a total order on N. In our running example, the data
words put(1)put(1l) and put(1)put(2) are canonical while put(2)put(l) and
put(1)put(3) are not.

Then, for a function S: Wi , — 027, a (canonical) data word u, and a set
V C X7 of sequences of inputs symbols (so-called suffixz patterns), let the partial
residual of v wrt. S and V' be a mapping S{; from W;D to 2P s.t.

Sy (v) = S(uv) for v with Acts(v) € V.

The mapping S{; can be represented finitely using canonical words. In a partial
residual, memorable data values may be identified using the approach discussed
in the previous section. Let memy (u) denote the (subset of) memorable data
values of u identified by S§;.

Now, we need a means of comparing partial residuals algorithmically in order
to derive locations. The main problem here is that the finite representations of
partial residuals for words u,u’ with differently many distinct data values will
have domains of different sizes. In order to compare such partial residuals, we
will restrict their domains.

In [11], we have shown that the domain of the finite representation of S} can
be restricted since the future behavior after u for suffixes from V only depends

4 In true black-box scenarios, equivalence queries cannot be realized. Several ap-
proaches have been proposed to approximate equivalence queries (e.g., [4]).

on data values from memy (u) (by construction of memy (u)). In particular, the
domain can be restricted to the set of suffixes v with Acts(v) € V for which
(1) wv is canonical and (2) where data values that are shared between prefix
and the suffix are from memy (u). The size of this new domain depends only
on V', which will be uniform for all prefixes in our algorithm and on the size of
memy (u).

In fact, for u =p v’ we will have |memy (u)| = |memy (v')| and there will ex-
ist a permutation 7 on D such that for all suffixes v from the restricted domain of
S the word m(v) is in the (restricted) domain of S and 7 (S (v)) = S{j/ (m(v)),
denoted by Sy =v S"j/.

We can now formulate our learning algorithm for RMMs.

3.2 Hypothesis construction

As usual in active learning, the algorithm uses a table for organizing observations.
An observation table is a tuple (U, V,T), where U C Wp is a prefix-closed set of
data words (the prefizes), the set V' C X+ contains sequences of parameterized
symbols (the suffix patterns), and T maps prefixes u from U to their partial
residuals Sy.

The learning algorithm will maintain a special set Us C U of access sequences
(to locations in the SUL) and for all u € U, there will at least be the canonical
word ua® in U. There, ua® denotes the canonical word from {u} x a® which has
no additional equalities between data values and corresponds to the true case in
Figure 2.

As usual, in order to be able to construct a well-defined hypothesis, we require
the observation table to be closed, meaning that every prefix in U \ Us has a
matching counterpart in Us. By matching we here mean that for v € U \ Us
there is a prefix v’ € Uy with S{ =y S{j/. This can be achieved by subsequently
adding prefixes violating this requirement to Us.

In addition, we also require an observation to be register consistent, as defined
n [11]: For a prefix ua, we require all of its memorable data values which also
occur in u to be memorable for the prefix u as well, guaranteeing well-defined
register assignments along the transitions of the hypothesis. This can be achieved
by subsequently extending the set of suffix patterns. In case a data value d
from u is proven to be memorable in ua by the suffix pattern v, we extend the
observation table by Acts(a) - v, which will prove d memorable in w.

Now, constructing a hypothesis RMM H from an observation table turns out
to be rather straightfoward. Similar to L*, prefixes in U identify locations in H.
Transitions in the hypothesis are constructed as follows from prefixes ua € U,
with w € Wx p, a € xD.

1. The destination is the location for v’ € U, with T[v'] =y T'[ua] due to some
permutation m on D, transforming T'[ua] to T[u'] (where ua = u’ in case
ua € Us).

2. Guards are derived by analyzing which data values in a equal data values in
u. As prefixes are minimal words in the realm of a transition, none of these

equalities are accidental and have to be expressed in the guard. The missing
inequalities and other atomic cases are added in a post-processing step once
all transitions are created (cf. Section 2.2).

3. For assignments, one has to copy the contents of the registers (corresponding
data values in memy (u)) as well as the parameter values (corresponding
to data values in memy (ua) \ memy (u)) to the target registers (concrete
registers are determined using 7 from step 1).

4. Outputs can be derived from analyzing the equalities of the values occur-
ring in the output symbol. If the data value in question is in memy (u),
then a register is used, and the respective parameter of the input symbol a
otherwise.

Once a hypothesis RMM is constructed from the observation table, an equiva-
lence query can be used to determine if the hypothesis is a model of the system
under learning, already.

3.3 Hypothesis verification

In case a hypothesis is not equivalent to the system under learning, an equiva-
lence query will return a counterexample. Handling counterexamples in our case
is a much more involved task than in L*, where each counterexample gives rise
to at least one additional state in the hypothesis. In contrast, when inferring
RMMs, the obtained growth can be in any of three dimensions. A counterexam-
ple can:

1. prove a data value to be memorable, leading to the introduction of a new
register;

2. disprove a permutation which is used for matching the target location of a
transition. If no alternative permutation accomplishing this can be found,
this leads to the creation of a new location;

3. prove an abstract transition too coarse, leading to a new minimal represen-
tative word and thus a new transition.

When a counterexample is returned, all of the above cases have to be investi-
gated accordingly. We refer to [11] for technical details of the approach. The
construction presented there can be extended to RMMs straightfowardly. We
here just state a variant of the resulting theorem.

Theorem 1. From a counterezample w with [H](w) # [SUL](w) a prefiz u
and a suffiz v can be derived such that either

1. w is in Us and the suffix pattern Acts(v) witnesses a new memorable data
value in u,

2. w is in U\ Uy and the suffic pattern Acts(v) disproves the permutation used
in the table to show T(u] =y T[u'] for some u' € U

3. uw=u"(a,d) ¢ U, where u' € Us, the prefiz u is a new unknown minimal
canonical word for some transition. ad

Thus, a counterexample will lead to progress in one of the three dimensions when
extending the observation table accordingly.

Algorithm 1 L%,/

Input: A set of parameterized input symbols X
Output: An RMM model H with [H] = [SUL]

1: Us :={e} > Initialize observation table
2: U:=Us U {a* |a€ X} > Use one “base-case” per input
3 V=X > Use inputs as suffix patterns
4: loop

5: repeat

6: T := compute_residuals(U, V) > Fill table using MQs, cf. Section 3.1
7 if (U,V,T) not closed then

8: Let win U\ Us s.t. Vo' € Us . Tu] Zv T[] > New access seq.
9: Us :=Us U {u} > Extend prefizes
10: U:=U U {ua* |a € X} > by “base cases”
11: end if

12: if (U,V,T) not register-consistent then

13: Let ua € U, and |Acts(a)| = 1 s.t. for d € ValSet(u) \ ValSet(a):

14: - d is memorable in T[ua] proven by o € V

15: - d is not memorable in T[u] > To make d memorable in wu:
16: V:=V U {Acts(a) - v} > Extend suffizes accordingly
17: end if

18: until (U, V,T) is closed and register-consistent.

19: ‘H := construct_hypothesis(U, V, T) > cf. Section 3.2
20: ce := EQ(H) > Perform equivalence query
21: if ce = 'OK’ then
22: return H > Done!
23: end if
24: (u,v) := decompose(ce) > ¢f. Theorem 1
25: if uw € U then
26: V=V U {Acts(v)} > New remapping, location, or assigment
27: else
28: U:=U U {u} > New guarded transition
29: end if
30: end loop

3.4 The L%,y algorithm

Put together, this results in Algorithm 1. Lines 1-3 initialize the observation
table. The set U, contains the prefix €, reaching the initial location. The remain-
ing prefixes are the canonical words representing the true cases (cf. Figure 2)
for transitions from the initial location. As usual in active learning of Mealy
machines, the set of suffix patterns is initialized using the input alphabet.

Hypothesis construction is covered in lines 5-19: First, in line 6 partial resid-
uals are computed as described in Section 3.1. Then, the observation table is
checked for closedness (lines 7-11) and for register consistency (lines 12-17). This
is repeated until a hypothesis can be constructed from the observation table (line
19) as discussed in Section 3.2.

The second phase, hypothesis verification, begins in line 20 with performing
an equivalence query. If no counterexample is returned the algorithm terminates
successfully with the last hypothesis (line 22). Otherwise, the counterexample
is analyzed as described in Section 3.3. In case the obtained prefix is in the set
of prefixes, the obtained suffix will be used as the basis for a new suffix pattern
(line 26). In case the prefix is unknown, it will be added to the set of prefixes
(line 28).

As discussed in the previous section, this leads to progress in one of three di-
mensions: new locations (or at least less permutations), new register assignments,
or new guarded transitions. Progress achieved in any of the three dimensions is
strictly monotonic. The idea for proving convergence is the same as in [11]: the
model is monotonically refined only when this is observed to be necessary, thus
the hypothesis can never exceed the level of refinement of the (finite) model of
the target system. However, since the algorithm is guaranteed to make progress
after each equivalence query, a finite number certainly suffices.

The wost case complexity in terms of membership queries and equivalence
queries of L, is the same as in the case of inferring RAs [11] (in the worst
case the outputs in an RMM encode only acceptance and rejection). Instead
of restating the result here, we will show in the next section that the RMM
approach will outperform the RA approach on many concrete examples.

4 Experimental evaluation

We have implemented the algorithm outlined in this paper on top of Learn-
Lib [14], our framework for active automata learning. We conducted several
experiments to demonstrate the efficiency of our algorithm. Note that for all of
the experiments we conducted, we used a cache, preventing membership queries
for the same words to be posed twice.

In a first series of experiments, we employed our algorithm for learning models
of small container data structures: a stack, a queue, and a (FIFO-)set with fixed
capacities. All those data structures expose two input actions: put of arity one,
and get without any parameters. The semantics of put and get is the same as
the one in our running example (cf. Fig. 1 for the example RMM of a FIFO-set
with a capacity of three). The queue and the stack allow storing the same object
multiple times, while the set can only store distinct elements.

For assessing the efficiency of our algorithm, we considered two different
approaches that can be employed in order to infer models of such data structures:
We used a classical active learning algorithm, treating the data structure as an
ordinary Mealy machine. In this case, it was necessary to restrict the size of the
(visible) data domain in order to gain a finite representation. For a stack with a
capacity of two and D = {1, 2}, this is exemplarily displayed in the left of Fig. 3.
In the experiments we used n + 1 as size of the data domain for data structures
of capacity n. This allows to observe the behavior of the data structures in the
case where all registers store different values. The additional “new” data value is
used as data parameter. We have used symmetry reduction, i.e., normalizing the

put(p) | true
Xo:=p

put(p) | true

X1:=p

put(p) | true
X2:=p

get()_| true /out(xl)

4
/okw/out(m)

Fig. 3. Three variants of modeling a stack with a capacity of two: As a Mealy machine
with a sample data domain D = {1,2} (left), as a prefix-closed Register Automa-
ton (right), or as a Register Mealy Machine (middle). Unsuccessful operations (e.g.,
reflexive transitions) and sink locations are omitted in all three models.

Table 1. Experimental results for inferring register automata models from data struc-
tures using various algorithms

Name Mealy (|D| = n 4 1)|Mealy w/ sym.red.| RA [11]° RMM

Q] MQs EQs|MQs EQs||L] MQs EQs||L| MQs EQs
Stack (1) 3 30 0] 16 o 3 35 2|2 10 0
Stack (2) 13 252 1| 52 114 135 4/3 18 0
Stack (3) 85 2,833 3| 232 3|5 554 6|4 38 1
Stack (4) 781 39,996 4] 890 4/ 6 2,998 8 5 53 2
Queue (4) 781 39,996 4] 890 41 6 2,711 5 5 76 2
FIFO-Set (4)|206 9,484 2| 128 216 1,566 15/ 5 129 12

order of data values occurring in an input word as described in [13], to reduce
the number of queries when inferring plain Mealy machine models.

We also compared our algorithm to an alternative way of representing output
in systems with data: by modeling them as Register Automata, i.e., acceptors,

5 The algorithm infers a complete model also containing a sink, hence the greater
number of locations compared to our new algorithm.

and considering the (prefix-closed) data language of all valid combinations of
input symbols with the respective data values in the output. This is detailed in
the right of Fig. 3 for the case of a stack: here, the input symbol get also has a
parameter, and transitions are only valid if the provided data value matches the
one in the output. This resembles a common way of encoding Mealy machines as
(prefix-closed) DFA. For inferring these models, we used the algorithm presented
n [11]. The difference between an RA model and an RMM model is apparent
in the figure: While in the RMM model (middle) transitions have outputs with
data values, these outputs have to be encoded as guarded transitions in the RA
model.

The results of this evaluation series are displayed in Tab. 1. Our novel algo-
rithm impressively outperforms the alternative approaches in all but one cases.
When looking at the series of stacks with growing capacities, it is particularly
striking that, while the number of membership queries for learning RAs grows
quickly, there is only moderate growth for the inference of RMMs. As was an-
alyzed in [11], handling counterexamples in order to infer guards is a task with
an exponential worst-case complexity in the number of registers, as numerous
combinations of (in-)equalities between parameter values have to be considered.
When modeling the component as an RMM, however, memorable data values
are provided by output symbols without any additional effort. Apart from this
improvement in terms of efficiency, our algorithm also produces a much more
intuitive model. In the case of the FIFO set of size 4, on the other hand, infer-
ring plain Mealy machines using symmetry reduction is as efficient as inferring
RMMs. This is due to the fact that for the FIFO set guards have to be inferred,
which is expensive.

Table 2. Impact of the size of D on model and algorithmic complexity when inferring
classical Mealy machine models of a stack with a capacity of 4

|D|| |Q||w/o sym.red.|w/ sym.red.
MQs EQsMQs EQs

5/ 32 2| 32 2
31| 486 4| 277
121| 3,072 4| 657
341|12,710 4| 854

B~ W N =
NN

Considering the plain Mealy machines, one notices the rather large state
space. This is due to the fact that, since Mealy machines are data-unaware, each
possible combination of data values results in a different state (as can also be
seen in Fig. 3). Further, to faithfully relate data values in both input and output
in a Mealy machine, it would be necessary to have at least as many different data
values as can be distinguished by the component. This leads to an exponential
growth of the state space (and thus complexity in terms of membership queries),
as can be seen in Tab. 2, where both the size of the state space and the query

l push2d()// push2d() // push(p) v push(p) v

I pop2d()

— /v

pop2d() /J

push(p) / ~| | BerO /Out(vo)

vo:=p
ush2d
pus [§) //

pop2d() //

pop) /out<v1>

push2d() v push(p) v push(p) v
— voi=p v3:=p
pop2d() @ -@
- Y p0p2d(>// pop() /out(w

pop2d()

pop2d() //

Fig. 4. RMM for a 2-dimensional stack of overall capacity 4. Operations push2d and
pop2d operate the outer stack while push and pop operate the inner stacks. Unsuc-
cessful operations (i.e., reflexive transitions) are omitted.

complexity are displayed for growing values of |D| and a fixed capacity of 4. As
with increasing capacities more data values are needed to observe the behavior
exhaustively, one easily sees that this becomes intractable very quickly. Symme-
try reduction helps to reduce the number of membership queries, but does not
solve the issues regarding the large state space.

We conducted a second series of experiments in order to analyze the behavior
of our algorithm on more complex data structures. For this, we chose a two-
dimensional data structure, a stack of stacks. The interface exposes operations
push2d, pop2d, push, pop, the former two operating on the (outer) “stack of
stacks”, the latter two on the (inner) stack (of plain values) currently at the top:
push2d() puts an additional stack on top of the outer stack (as long as this
does not violate capacity restrictions), and pop2d() removes this stack. On the
other hand, push(p) pushes a value onto the current inner stack, while pop()
outputs and removes the top value of the inner stack. The capacity of the inner
stacks is denoted by m, while n denotes the capacity of the outer stack. The
experimental results can be found in Tab. 3.

The inferred RMM model for the case m = n = 2 is shown in Figure 4:
From the initial location a push2d() in required to make the first inner stack

accessible. The transitions between locations Iy, l5, and lg are operations on
the first inner stack. From each of these locations a push2d() will lead to a
subgraph, describing actions on the second inner stack — relative to the state
(contents) of the first inner stack.

For this series of experiments we did not compare our algorithm to alternative
approaches as this would certainly be a vain endeavor: Considering the stack
for m = 4,n = 4 (thus capable of holding in total 16 elements), the state
space of a Mealy machine with |D| = 4 would have significantly more than
416 = 232 states, which is several orders of magnitude higher than the number
of membership queries alone required by our algorithm. In particular, we tested
this for n = 3,m = 3,|D| = 3, where the unfolded Mealy machine has 65,641
states, compared to 3,910 membership queries for inferring the respective RMM.
Further, when increasing any of these values, it was not possible to unfold the
model in reasonable time any more.

We did not measure time in our experiments, as we deem the complexity
in terms of membership queries the more relevant result. However, even these
complex models could be inferred rather quickly with our tool, not exceeding 20
seconds even for n = 4,m = 4. This is by far lower than the time required to
unfold the RMM in order to obtain a plain Mealy machine, even for |D| = 2.

Table 3. Experimental results for inferring a two-dimensional stack with outer capacity
n and inner capacity m.

n =2 n=23 n=4
|[L] MQs EQs| |L|] MQs EQs| |L| MQs EQs

7 160 1| 15 470 3| 31 1,142
13 373 2| 40 1,596 51121 5,126
21 744 3] 8 3,910 6 | 341 16,454
31 1,283 51156 8,551 9| 781 44,589

W N 3
© O Ut Ut

5 Conclusions and Future Work

In this paper we have presented a new method for generating semantic (i.e.,
data-aware) interfaces for black-box components. Our approach is based on an
extension of active automata learning for Register Automata, allowing us to deal
with data values in inputs and outputs. Although this extension is technically
quite straightforward, its impact is dramatic: The complexity of our “stack of
stacks” examples is far beyond the reach of the state of the art in interface
synthesis: our largest example, whose RMM has only 781 states, independently
of the size of the data domain and is learned fully automatically in 20 seconds
using only 9 equivalence queries, would lead to more than 10° states for an
abstract data domain of just four values!

Currently, we are investigating the limitations of the RMM technology. In
particular, we are investigating whether this technology is sufficient to satisfy
the real time requirements of the CONNECT project, where component interfaces
must be learned fully automatically at run time, a requirement considered a true
bottleneck up to now.

References

1. Rajeev Alur, Pavol Cerny, P. Madhusudan, and Wonhong Nam. Synthesis of
interface specifications for Java classes. In POPL, pages 98-109, 2005.

2. Glenn Ammons, Rastislav Bodik, and James R. Larus. Mining specifications. In
POPL, pages 4-16, 2002.

3. D. Angluin. Learning Regular Sets from Queries and Counterexamples. Informa-
tion and Computation, 75(2):87-106, 1987.

4. Therese Berg, Olga Grinchtein, Bengt Jonsson, Martin Leucker, Harald Raffelt,
and Bernhard Steffen. On the Correspondence Between Conformance Testing and
Regular Inference. In FASE 2005, volume 3442 of LNCS, pages 175-189. Springer
Verlag, April 4-8 2005.

5. A. W. Biermann and J. A. Feldman. On the Synthesis of Finite-State Machines
from Samples of Their Behavior. IEEE Trans. Comput., 21:592-597, June 1972.

6. S. Cassel, F. Howar, B. Jonsson, M. Merten, and B. Steffen. A Succinct Canonical
Register Automaton Model. In ATVA, volume 6996 of LNCS, pages 366-380.
Springer Verlag, 2011.

7. Valentin Dallmeier, Christian Lindig, Andrzej Wasylkowski, and Andreas Zeller.
Mining object behavior with ADABU. In Proceedings of the 2006 international
workshop on Dynamic systems analysis, WODA ’06, pages 17-24, New York, NY,
USA, 2006. ACM.

8. M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz,
and C. Xijao. The Daikon system for dynamic detection of likely invariants. Science
of Computer Programming, 69(1-3):35-45, 2007.

9. C. Ghezzi, A. Mocci, and M. Monga. Synthesizing Intentional Behavior Models by
Graph Transformation. In ICSE 2009, Vancouver, Canada, 2009.

10. Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. Permissive interfaces.
In ESEC/SIGSOFT FSE, pages 31-40, 2005.

11. Falk Howar, Bernhard Steffen, Bengt Jonsson, and Sofia Cassel. Inferring Canon-
ical Register Automata. In VMCAI 2012, to appear.

12. Davide Lorenzoli, Leonardo Mariani, and Mauro Pezze. Automatic generation of
software behavioral models. In ICSE 2008, pages 501-510. ACM, 2008.

13. Tiziana Margaria, Harald Raffelt, and Bernhard Steffen. Knowledge-based rele-
vance filtering for efficient system-level test-based model generation. Inmnovations
in Systems and Software Engineering, 1(2):147-156, July 2005.

14. Harald Raffelt, Bernhard Steffen, Therese Berg, and Tiziana Margaria. LearnLib:
a framework for extrapolating behavioral models. Int. J. Softw. Tools Technol.
Transf., 11(5):393-407, 2009.

15. Sharon Shoham, Eran Yahav, Stephen Fink, and Marco Pistoia. Static specification
mining using automata-based abstractions. In ISSTA 2007, pages 174-184, New
York, NY, USA, 2007. ACM.

16. B. Steffen, F. Howar, and M. Merten. Introduction to Active Automata Learning
from a Practical Perspective. In SFM, volume 6659 of LNCS, pages 256—-296.
Springer, 2011.

