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Abstract. Our overall goal is to support model-based approaches to ver-
ification and validation of communication protocols by techniques that
automatically generate models of communication protocol entities from
observations of their external behavior, using techniques based on regular
inference (aka automata learning). In this paper, we address the problem
that existing regular inference techniques produce “flat” state machines,
whereas practically useful protocol models structure the internal state in
terms of control locations and state variables, and describes dynamic be-
havior in a suitable (abstract) programming notation. We present a tech-
nique for introducing structure of an unstructured finite-state machine
by introducing state variables and program-like descriptions of dynamic
behavior, given a certain amount of user guidance. Our technique groups
states with “similar control behavior” into control locations, and obtain
program-like descriptions by means of decision tree generation. We have
applied parts of our approach to an executable state machine specifi-
cation of the Mobile Arts Advanced Mobile Location Center (A-MLC)
protocol and evaluated the results by comparing them to the original
specification.

1 Introduction

Model-based techniques for verification, testing, and validation of commmuni-
cation protocols, including model checking and model-based testing [8], have
witnessed drastic advances in the last decades. They require access to a formal
model that specifies the behavior of protocol entities, which ideally should be
developed during specification and design. However, the construction of models
typically requires significant manual effort, implying that in many cases no such
model is available, or becomes outdated as the system evolves over time. It is
therefore important to develop automated techniques that support the task of
producing models, e.g., models that reflect the behavior of an existing protocol
implementation. Such techniques would be highly useful for producing models of
standardized protocols, for introducing model based testing techniques to replace
manual testing of an existing product, for regression testing, etc. A potential ap-
proach is to use program analysis to construct models from source code (e.g.,



[4, 16]). However, many system components, such as library modules, or third-
party components, often do not allow analysis of source code. We will therefore
focus on techniques for constructing models from observations of their external
behavior.

The construction of models from observations of component behavior can be
performed using regular inference (aka automata learning) techniques [2, 12, 18,
27]. This class of techniques has recently started to get attention in the testing
and verification community, e.g., for regression testing of telecommunication sys-
tems [15, 17], for integration testing [19, 19, 14], and for combining conformance
testing and model checking [23, 13]. In regular inference, a finite-state machine
(or a regular language) is constructed from the answers to a set of membership
queries, each of which observes the component’s output in response to a certain
input string. Given “enough” membership queries, the constructed automaton
will be a correct model of the observed component.

Our overall goal is to construct models of entities in communication pro-
tocols, which can be readily understood and maintained by protocol designers
and test engineers. Manually constructed models of protocol behavior facilitate
understanding by describing messages as consisting of a message type with a
number of parameters, by representing the internal states of the entity in terms
of control locations and state variables, and by describing the reaction to in-
coming messages by a change of location and variable transformation in some
suitable language. This style of modeling is supported by several formalisms,
such as UML state diagrams [11].

A serious obstacle to constructing structured models from observations is that
existing regular inference techniques produce “flat” state machines, in which nei-
ther states nor transitions have any structure. In this paper, we therefore present
techniques for restructuring the representation of an unstructured finite-state
machine, in order to make it readily understandable by humans. Since there
are many ways to restructure state-machine descriptions, and since most likely
there is no unique optimal restructuring, our techniques use some heuristically
motivated general principles for forming state variables and control locations,
which if needed can be changed by a user. Based on such principles, our trans-
formation first equips the “flat” state machine with state variables. Thereafter
it groups states with similar control behavior into control locations. Finally,
the “flat” description of the reaction to received messages is transformed into a
compact description in the chosen coding language; we have chosen the intuitive
formalism of decision trees, which can be generated by well-developed tools.

We evaluate our techniques by applying them to the Mobile Arts Advanced
Mobile Location Center (A-MLC) protocol, which is a commercially available
middleware protocol that allows mobile network operators to provide presence
information from the GSM/UMTS network. We have access to an executable
specification of A-MLC, which is structured for human readability by developers
and testers of the protocol. This makes it a suitable object for evaluation, since
we can both observe its reaction to a large number of input sequences, as well



as compare the results of our restructuring to the structure of the executable
specification. We present the results of our comparison.

Related Work Regular inference techniques have been used for verification and
test generation, e.g., to create models of environment constraints with respect
to which a component should be verified [10], for regression testing to create a
specification and a test suite [15, 17], to perform model checking without access
to source code or formal models [13, 23], for program analysis [1], and for formal
specification and verification [10]. Groz, Li, and Shahbaz extend regular inference
to Mealy machines with a finite subset of input and output symbols from the
possible infinite set of symbols [19, 28, 14]. Mariani and Pezzé use inference in
integration testing of commercial off the shelf components [20]. They infer two
separate models: one for the finite-state control, and the others being a relation
on the parameters in each interaction. They use different inference techniques for
each type of model. In previous work [5], we presented an optimization of regular
inference to cope with models where the domains of the parameters are booleans.
We have also presented an approach using regular inference, in which systems
have input parameters from a potentially infinite domain and parameters may
be stored in state variables for later use [6].

Organization of Paper In next section, we review Mealy machines and Symbolic
Mealy Machines. In Section 3 we describe the employed inference algorithm for
Mealy machines by Niese [22], we present our transformation from “flat” to
symbolic Mealy machines. Our implementation is described in Section 4, and in
Section 5 we describe its application so the A-MLC protocol, which is evaluated
in Section 6. Section 7 contains conclusions and proposed future work.

2 Mealy Machines

Basic Definitions. We will use Mealy machines to model communication pro-
tocol entities. A Mealy machine is a tuple M = 〈ΣI , ΣO, Q, q0, δ, λ〉 where ΣI

is a nonempty set of input symbols, ΣO is a nonempty set of output symbols, Q
is a nonempty set of states, q0 ∈ Q is the initial state, δ : Q × ΣI → Q is the
transition function, and λ : Q × ΣI → ΣO is the output function. The sets of
states and symbols can be finite or infinite: if they are all finite we say that the
Mealy machine is finite. Elements of Σ∗

I are called input strings, and elements
of Σ∗

O are called output strings. We extend the transition and output functions
to input strings in the standard way, by defining:

δ(q, ε) = q λ(q, ε) = ε
δ(q, ua) = δ(δ(q, u), a) λ(q, ua) = λ(q, u)λ(δ(q, u), a)

where u ∈ Σ∗
I . We define λM(u) = λ(q0, u) for u ∈ Σ∗

I . Two Mealy machines M
and M′ with the same set of input symbols are equivalent if λM(u) = λM′(u)
for all input strings u.



Intuitively, a Mealy machine behaves as follows. At any point in time, the
machine is in some state q ∈ Q. When supplied with an input symbol a ∈ ΣI ,
it responds by producing an output symbol λ(q, a) and transforms itself to a

new state δ(q, a). We use the notation q
a/b−→ q′ to denote that δ(q, a) = q′ and

λ(q, a) = b; in this case q
a/b−→ q′ is called a transition of M.

The Mealy machines that we consider are deterministic, meaning that for
each state q and input symbol a exactly one next state δ(q, a) and output string
λ(q, a) is possible.

Symbolic Representation In order to conveniently model entities of commu-
nication protocols, we should be able to describe messages as consisting of a
message type with a number of parameters, describe states as consisting of a
control location and values of a set of state variables, and describe the reaction
to incoming messages in a suitable programming language-like syntax. We there-
fore introduce a symbolic representation of Mealy machines, similar to Extended
Finite State Machines [24].

So, assume a set of action types. Each action type α has a certain arity, which
is a tuple of domains (a domain is a set of allowed data values) Dα,1, . . . ,Dα,n

(where n depends on α). For a set I of action types, let ΣI be the set of terms
of form α(d1, . . . , dn), where di ∈ Dα,i is a data value in the appropriate domain
for each i with 1 ≤ i ≤ n. We write d for d1, . . . , dn. Also assume a set of state
variables. Each state variable has a domain of possible values, and a unique
initial value. We use v to range over state variables, and v to range over values.
We write v for v1, . . . , vk and v for v1, . . . , vk

To provide a structured representation of the transition and output functions,
we use a simple formalism with constructs for selection, output, and assignment.
We will use a finite set of formal parameters, ranged over by p1, p2, . . ., which
will serve as local variables to which values of parameters in input symbols are
bound. We write p for p1, . . . , pn. Let an expression, ranged over by e, be either
a formal parameter, a state variable or a data value. Define the set of action
expression, ranged over by ae, by the grammar

oe ::= output β(d1, . . . , dm); nextloc l
| case e of d1 : oe1 · · · dk : oek

ae ::= oe ; v1, . . . , vk := e1, . . . , ek

Here, v1, . . . , vk := e1, . . . , ek simultaneously assigns the values of the expressions
ei to the variables vi. In a case expression, the values d1, . . . , dk must be different,
and cover the possible results of evaluating the expression e. Sometimes we use
if e then ae1 else ae2 instead of case e of true : ae1 false : ae2.

Intuitively, an action expression first traverses a decision tree. Depending on
the values of state variables and input parameter, eventually an output symbol
is generated, and the next control location is determined. Before actually chang-
ing control location, the state variables are updated in a multiple assignment
statement.



Definition 1. A Symbolic Mealy machine (SMM) is a tuple SM = 〈I, O, L, l0, v, ϕ〉,
where I and O are disjoint finite sets of action types (input action types and
output action types), where L is a finite set of locations, where l0 ∈ L is the
initial location, where v is a finite tuple v1, . . . , vk of state variables, and where
ϕ maps each location l ∈ L and input action type α ∈ I to an action expression.

We write in location l when α(p1, . . . , pm) ae end to denote that
ϕ(l, α) is the action expression ae.

The meaning of a SMM SM = 〈I, O, L, l0, v,−→〉 is defined by its deno-
tation, which is the Mealy machine MSM = 〈ΣI , ΣO, Q, q0, δ, λ〉, where ΣI is
obtained from I as described earlier, and similarly for ΣO, where Q is the set
of pairs 〈l, v〉 consisting of a location l ∈ L and tuple v of values of the state
variables v, where q0 is the pair 〈l0, v0

1, . . . , v
0
k〉 in which v0

1, . . . , v
0
k are the initial

values of v1, . . . , vk.
The reaction to input symbols is described by the mapping ϕ, as follows.

For each location l ∈ L and input symbol α(d), the action expression ϕ(l, α)
will follow exactly one branch of the nested case expression leading to an ex-
pression of form output β(d

′
) ; nextloc l′; thereafter follows a multiple

assignment of form v1, . . . , vk := e1, . . . , ek. This implies that for the transi-
tion and output functions we have δ(〈l, v1, . . . , vk〉, α(d)) = 〈l′, v′1, . . . , v′k〉, and
λ(〈l, v1, . . . , vk〉, α(d)) = β(d

′
), for all tuples v′1, . . . , v

′
k of values of v1, . . . , vk,

where v′1, . . . , v
′
k is the result of performing the multiple assignment statement.

In Figure 1, we show a possible action expression, from an idealized version
of the receiver in the alternating bit protocol, in which we have action types
Data and Ack, each of which has a bit (either 0 or 1) as a parameter.

in location rec when Data(sn)
case (sn) of 0 : case v of 0 : output Ack(0); nextloc rec;

1 : output Ack(1); nextloc rec;
1 : case v of 1 : output Ack(1); nextloc rec;

0 : output Ack(0); nextloc rec;
v := sn

end

Fig. 1: Example syntax defining part of reciever in alternating bit protocol.

3 Inference of Symbolic Mealy Machines

In this section, we present our approach for inferring an SMM model for the
behavior of an entity in a communication protocol, by observing its responses
to selected input strings. We will hereafter refer to the given protocol entity as
the System Under Test (SUT). We assume that the behavior of a SUT can be
modeled as an SMM, and that its input and output action types as well as their
arities, are known.

The problem of inferring a model of the SUT naturally decomposed into
two subproblems. First we infer a “flat” Mealy machine M which models the



behavior of SUT. Thereafter, we generate an SMM SM such that MSM is
equivalent to M. For the first subproblem we use an adaptation of the L∗ al-
gorithm [2] to Mealy machines, due to Niese [22]. For the second subproblem,
we have developed a technique for transforming a Mealy machine into an SMM
by introducing state variables, control locations, and action expressions. Each
subproblem is described in more detail in the following subsections.

3.1 Inference of Mealy Machines

To infer a Mealy machine that models the behavior of SUT, we use an adapta-
tion of the L∗ algorithm due to Niese [22]. It is assumed that the L∗ algorithm
initially knows the static interface of SM, i.e., the sets I and O of input and out-
put actions together with their arities. It may then ask a sequence of membership
queries; each one supplying a chosen input string u ∈ (ΣI)∗ and observing the
response λSM(u). After a “sufficient” number of membership queries the Learner
can build a “stable” hypothesis H from the obtained information. The hypoth-
esis H should of course agree with SM on the performed membership queries
(i.e., λSM(u) = λH(u) whenever u was supplied in a membership query), but
must make suitable generalizations for other input strings. In order to increase
confidence in the hypothesis H, one can subject SM to thorough conformance
testing or longer-term monitoring in order to search for input strings on which
SM disagrees with H. In the setting of L∗, this is idealized as an equivalence
query, which asks whether H is equivalent to SM, and which is replied with
either yes, or with no and a counterexample, which is an input string u ∈ Σ∗

I

such that λSM(u) 6= λH(u). In a black-box setting, where source code is not
available, there is in general no perfect implementation of equivalence queries.
In the case that there is a known upper bound on the number of states of M,
(typically large) conformance test suites (as described in, e.g., [9, 29]) can con-
clusively settle equivalence queries. In practice, equivalence queries are often
approximated by large random test suites and/or by monitoring the SUT under
a long period of time. The algorithm is guaranteed to terminate after at most
n such equivalence queries, where n is the number of states of M, having posed
in total O(|ΣI |n2 + n log m) membership queries, where m is the length of the
longest counterexample returned in some equivalence query [27].

3.2 Generating Symbolic Representation of Mealy Machines

In this subsection, we describe our transformation from a Mealy machineM into
an equivalent SMM SM (i.e., such that MSM is equivalent to M), which can
more easily be understood by human designers or testers. The transformation
(1) represents the states of M in terms of control locations and state variables,
and (2) represents the transition and output function of M in terms of action
expressions. We first describe how we introduce a symbolic representation of
states, and thereafter how we generate action expressions.



Transforming the Representation of States In the symbolic representation,
states are formed as a combination of control locations that capture “high level
control” aspects of behavior, and of state variables that record information in
received parameters of input symbols that may influence future behavior. For a
given “flat” Mealy machine, there are several ways to accomplish this, among
which there is most likely no “best” one. Our transformation makes default
choices in the following way.

– Sequences of transitions that contain the same sequence of input and out-
put action types should lead to the same control location. For example, by
applying this criterion, the Mealy machine described in Figure 1 would be
transformed into an SMM in which only one control location could be reached
from the initial location, since there is only one combination of input and
output action types (namely Data/Ack).

– For each input action type α with arity Dα,1, . . . ,Dα,n there are state vari-
ables vα,1, . . . , vα,n which record the values of the parameters in the most
recently received input symbol of form α(d1, . . . , dn). The transformation
chooses default initial values for these variables. With this principle, the Al-
ternating bit protocol in Figure 1 would have a state variable vData.sn, which
is assigned the parameter value sn in action expressions triggered by the
action type Data.

In our implementation, these default choices can be replaced by other criteria
for forming state variables and control locations. To keep the presentation in
this section simple, they are briefly described in Section 4.

Using the above principles, our transformation generates a symbolic repre-
sentation of states as follows. Let an extended state be defined as a pair 〈q, v〉,
where q ∈ Q is a state of M and v is a tuple of values of the state variables v.
Thus, for each state q of M, there are many extended states of form 〈q, v〉, cor-
responding to the many different combinations of values v that may be received
along different execution paths. Let an extended transition be a transition of form

〈q, v〉 α(d)/β(d
′
)−→ 〈q′, v′〉 between extended states, which exists whenever M has

a transition q
α(d)/β(d

′
)−→ q′ and v′ is obtained from v and α(d) by appropriately

updating state variables.
We must now form control locations as sets of extended states with “same

control behavior”, using a technique similar to the subset construction for nonde-
terministic finite automata. Such an algorithm is described in Algorithm 1. The
algorithm maintains two sets of locations; Locs accumulates the set of formed
locations, whereas TempLocs is a set of locations whose successor locations re-
main to be constructed, and a set Edges of generated edges. Algorithm 1 starts
by forming the initial location l0 ∈ L, containing the extended state formed
from the initial state q0 and initial values v0 of variables. The algorithm then
iteratively picks some location l from TempLocs; for each pair α, β of input and
output action types it constructs a new location containing the targets of all

transitions 〈q, v〉 α(d)/β(d
′
)−→ 〈q′, v′〉 with the same source location, input, and out-



put action types, and adds it to TempLocs, and also adds l
α/β−→ l′ to Edges. The

process of forming locations continues iteratively until all locations in TempLocs
have been used for forming successor locations. The process is guaranteed to
terminate since the set of extended states is finite.

Algorithm 1 MAKELOCATIONS

1: Locs := ∅;
2: Edges := ∅;
3: TempLocs := {〈q0, v0〉};
4: while TempLocs 6= ∅ do
5: choose l ∈ TempLocs;
6: for all pairs α, β do

7: l′ := {〈q′, v′〉 : ∃〈q, v〉 ∈ l , ∃d, d
′
. 〈q, v〉 α(d)/β(d

′
)−→ 〈q′, v′〉};

8: if (l′ 6= ∅ and l′ 6∈ (Locs ∪ TempLocs)) then
9: TempLocs := TempLocs ∪ l′;

10: Edges := Edges ∪ l
α/β−→ l′;

11: end if
12: end for
13: TempLocs := TempLocs \ l;
14: Locs := Locs ∪ l;
15: end while

During Algorithm 1, we additionally merge locations which are “similar”,
in the sense that they share an extended state, since presumably their future
behavior is rather similar. Such new formed locations are added to TempLocs to
properly generate their successors. However, we must not merge locations if as
a result they will contain two extended states 〈q, v〉 and 〈q′, v〉 with the same
variable values but different control state, since action expressions (which can
only test values of variables) will not be able to distinguish the difference in
future behavior between q and q′.

Generating Action Expressions It remains to generate an action expression
for each location l and input action type α, which distinguishes between the dif-
ferent behaviors of different extended states in the location. Our transformation
generates action expressions as decision tree structures of case expressions, each
of which tests some input parameters in p1, . . . , pn or state variable in v, reach-
ing appropriate leaves of form output β(d

′
) ; nextloc l′ . By thereafter

adding the appropriate assignment statement, a complete action expression has
been generated.

The decision tree structure of the case expressions in the action expression
of location l and input action type α should be constructed so that whenever it
is presented with values d of input parameters p and values v of state variables



v, such that

〈q, v〉 α(d)/β(d
′
)−→ 〈q′, v′〉

is an extended transition from some 〈q, v〉 ∈ l to some 〈q′, v′〉 ∈ l′ with l
α/β−→

l′ ∈ Edges, then the decision tree should reach the output symbol β(d
′
) and

location l′. There are well-developed algorithms to generate decision trees from
a set of such constraints, among the most well-known being ID3 [25, 21]. The
ID3 algorithm generates a minimal decision tree from a given set of examples (in
our case generated from extended transitions as above). The generated decision
tree structures are typically much more compact than the set of “flat” Mealy
machine transitions that they cover, in particular if the input alphabet is large.

4 Implementation

Based on the techniques described in Section 3.2, we have developed an imple-
mentation, which gets a description of a “flat” Mealy machine, possibly together
with user-supplied criteria for forming state variables and control locations to
override the default ones, and generates a Symbolic Mealy machine. Several
non-default criteria for making control locations and/or decision trees have been
considered and implemented. In addition to the criterion used in Algorithm 1,
our implementation also accepts the criterion that sucessor locations of extended

transitions 〈q, v〉 α(d)/β(d
′
)−→ 〈q′, v′〉 with the same output action type β should be

in the same location, as well as the criterion that extended transitions with the
same output symbol β(d

′
) should be in the same location. For these criteria,

Algorithm 1 and the generation of action expressions are changed accordingly.
Users can try alternative criteria to see which resulting structure better suits
their purpose.

In our tool we use an implementation of ID3 provided by Weka (Waikato
Environment for Knowledge Analysis) a data mining tool developed at the Uni-
versity of Waikato, New Zealand, and distributed under the Gnu Public Licence.
It includes a wide variety of state-of-the-art algorithms of data mining and ma-
chine learning which are implemented in Java [30].

5 Experiments

In this section, we describe the application of our implemented technique to
generating a model of the Mobile Arts Advanced Mobile Location Center (A-
MLC) protocol. We have chosen A-MLC because we have access to an executable
specification, which has been created to be understood by developers and testers.
This makes A-MLC suitable for our experimentation since we can both execute
large numbers of membership queries and can compare our resulting model with
the provided one.



The A-MLC protocol is a middle-ware product that allows Mobile Network
Operators to provide presence information from the GSM/UMTS network, in-
cluding details about the location, present status, and capabilities of mobile
devices. It is commercially available and has been deployed at several telecom
operators within Europe.

The implementation of A-MLC was made mainly in Erlang [3] It consists
of approximately 130,000 lines of Erlang code and 5,500 lines of C code. The
originators of the A-MLC protocol have written a functional specification of
the protocol in order to generate high-quality test suites [7]. The specification
essentially has the form of a Symbolic Mealy machine, and captures all traffic
sequences through A-MLC. Low level protocols, as well as operation and main-
tenance interfaces, are not part of the specification. The specification models
the behavior resulting from an individual client request, since the interaction
between concurrent requests is minimal.

We have used an executable version of this specification, implemented using
the Erlang behavior module gen fsm (Generic Finite State Machine Behavior),
as the SUT. The specification consists of 13 control states, 23 state variables,
and 10 input action types with different arities.

For the inference experiment, we defined small domains for the values of
parameters in input symbols, in order to be able to carry out enough membership
queries to complete the inference process. For most parameters, these domains
were already small in the original specification (typically 2 − 4 values), and
for others, we could choose a representive sample that would allow coverage
of the entire specification. In one case, however, this reduction made a part of
the model unreachable (as described in Section 6): for input parameter status
of atir action type which can assume values not reachable, reachable and
undefined, we only used the value not reachable. In all, this resulted in an
input alphabet of 1560 input symbols.

To construct a Mealy machine model of the executable specification of the
A-MLC protocol by regular inference, we used the LearnLib tool [26], developed
at the University of Dortmund, which has an efficient implementation of the L∗

algorithm. This tool provides several different realizations of equivalence queries,
including conformance tests suite generated by the Vasilevsky-Chow algorithm[9,
29]), and random test suites of user-controlled size. We finally applied our im-
plementation of the transformation in 3.2 to transform the flat Mealy machine
generated by LearnLib into a symbolic one.

6 Results

Applying LearnLib to the executable specification resulted in a Mealy machine
with 44 states. It took about 43 hours to complete the inference, during which
LearnLib asked about 175 million membership queries. As equivalence oracle,
LearnLib used a test suite of 1000 randomly generated tests of length 10.

The generated “flat” Mealy machine exhibits 59 different sequences of output
symbols on its transitions, formed from 11 distinct sequences of output action



types. A part of the Mealy machine is shown in Figure 2. In the figure, states
q0 till q8 can be seen with some of their transitions, which we have labeled by
pairs of input-output action types. E.g., the dashed transition from state q7 to
state q1, has srir as input action type and write cache and slia as output
action types. Later in this section, in Table 3a, we correlate the states of this
figure with control locations of the executable specification.

q1

q0

slir/slia slir/slia,ati

q2

slir/ati

q3

slir/psi

q4

slir/sri q5

slir/sri

q6

slir/sri

q7

slir/sri

atir/sri

psir/slia

srir/slia

srir/sliaq8

srir/fsmTimer

srir/sliasrir/write_cache,slia srir/write_cache,slia

Fig. 2: The inferred Mealy machine, states q0− q8.

Most of the transitions of the Mealy machine output the error symbol (rep-
resenting that the corresponding input symbol is “illegal”). Before generating a
symbolic representation using our tool, we removed these, since we are interested
in being equivalent with respect to the legal input strings. The structure of con-
trol locations and edges generated by our transformation is shown in Figure 3b,
We used the same criterion for forming control locations as used in Algorithm 1.
In Figure 3b, boxes represent locations. Each location is labeled with the set of
states of that “flat” Mealy machine that occured in forming this location.

6.1 Evaluation

To evaluate our transformation we compare

– coverage: the number of the control locations and edges in the executable
specification that are captured in our symbolic representation,

– similarity: of the locations in our symbolic representation and of those in the
executable specification,

– readability: of the action expressions of our symbolic representation, as com-
pared with those in the executable specification.

Coverage: Out of the 13 control locations of the executable specification, 12 have
been reached in our symbolic representation. The control location LAST NETPARAM
could not be reached, since we had reduced the range of parameter status, as
described in Section 5.

The executable specification has 60 edges. The described reduction of the
parameter range of status causes 20 of these to become unreachable. Of the



remaining 40, our model captured 26. The missing 14 edges are all missing
for the reason that LearnLib incorrectly merged two particular states in the
flat Mealy machine. Let us explain how. The state q5 in Figure 2 is reached by
(among others) slir messages with both the values psi and ati of one particular
parameter. The effect of these parameter values is not externally observable
immediately in the behavior of the SUT, but shows up only two transitions later.
However, the L∗ algorithm sees that the message following the slir message
with parameter value psi triggers the same output as the message following the
slir message with parameter value ati. L∗ then assumes that all the replies to
all following messages does not depend on whether the parameter value psi or
ati was supplied with the slir message. It then continues to explore continued
behavior of the SUT only for longer input strings that start with the ati value.
This problem can be avoided by having more powerful test suites in equivalence
oracles. Our equivalence test used only 1000 randomly chosen input strings of
length 10; we conjecture that longer input strings and a larger equivalence test
would discover the differences between the two parameter values.

Location Control State

[q0] IDLE
[q1] DONE
[q2] LAST POS
[q3] LAST POS
[q4-q7] ACCESS NETPARAM
[q8] FORCE UPDATE
[q9] TIMER TRIGGERED
[q11-q15] NOT YET UPDATED,

WAIT FSM RESP
[q16] MAYBE UPDATED
[q17] WAIT POS RESP
[q10,q18-q41] UPDATED
[q42] TERMINATE MMS

LAST NETPARAM

(a) Correspondence between loca-
tions in our symbolic representa-
tion and in the executable specifi-
cation

[q1]

[q0]

slir/slia

[q2]

slir/ati

[q3]

slir/psi

[q4-q7]

slir/sri

atir/sri

psir/slia

[q8]

sri/fsmTimer

fsmr/timerStop,write_cache,slia

[q10, q18-q41]

fsmr/timerStop,ati

[q9]

fsmTimer/ati

atir/sliaatir/write_cache,slia [q42]

atir/write_cache,slia,fsmr

[q11-q15]

atir/ok

[q17]

fsmr/abort,write_cache,slia

[q16]

fsmr/ok

fsmr/write_cache,slia

fsmr/ati

atir/ok

atir/ati

fsmr/ok

(b) The compacted structure

Fig. 3

Similarity Table 3a shows how the locations of our symbolic represen-
tation correspond to those of the executable specification. The locations
NOT YET UPDATED and WAIT FSM RESP are not distinguished in our sym-
bolic representation, since they are reached by the same sequence of input-output
action types. Also, locations [q2] and [q3] correspond to location LAST POS,
which can be reached by two different pairs of input-output action types.



1 in location IDLE
2 when S l i r ( m s i s , l o c t , n e t p , e p s i , f r c , l r a )
3 i f ( e p s i )
4 i f ( f r c )or ( ( ! f r c )and ( ( l r a )and( l o c t = l a s t ) ) )
5 case ( n e t p ) of
6 f a l s e : output P s i ( n e t p ) ; nextloc LAST POS ;
7 true : output S r i ( m s i s ) ; nextloc ACCESS NETPARAM;
8 endcase
9 else i f ( ( ! f r c )and ( ! l r a ) ){output S l i a ( n e t p , m s i s ) ; nextloc DONE;}

10 else{output E r r M s g ; nextloc ErrLoc ;}
11 . . .
12 M S I S : = m s i s ; L O C T : = l o c t ; N E T P : = n e t p ; F R C : = f r c ; L R A : = l r a ;
13 end

Fig. 4: Small extract of executable specification

1 in location IDLE
2 when S l i r ( m s i s , l o c t , n e t p , e p s i , f r c , l r a )
3 i f ( e p s i )
4 case n e t p of
5 f a l s e :
6 i f ( ! f r c )
7 i f ( ! l r a ) {output S l i a ( n e t p , m s i s ) ; nextloc DONE;}
8 else i f ( l r a ) {output P s i ( n e t p ) ; nextloc LAST POS;}
9 else i f ( f r c ) {output P s i ( n e t p , m s i s ) ; nextloc LAST POS;}

10 true :
11 i f ( ! f r c ) {
12 i f ( ! l r a ) {output S l i a ( n e t p , m s i s ) ; nextloc DONE;}
13 else i f ( l r a ) {output S r i ( m s i s ) ; nextloc ACCESS NETPARAM;}
14 else i f ( f r c ) {output S r i ( m s i s ) ; nextloc ACCESS NETPARAM;}
15 endcase
16 . . .
17 M S I S : = m s i s ; L O C T : = l o c t ; N E T P : = n e t p ; F R C : = f r c ; L R A : = l r a ;
18 end

Fig. 5: Small extract of action expression related to specification part in Figure 4

Readability Since we cannot compare the two models in their entirety, we have
chosen to compare two typical action expressions, representing the same be-
havior. Figure 5 shows a part of our generated action expression from the ini-
tial location when a message of form Slir with formal parameters (msis, loct,
maxage, netp, epsi) is received, and Figure 4 shows the corresponding part of
the executable specification. In the figures, the values of input parameters are
assigned to state variables, shown by upper-case letters, in line 17 of Figure 5 and
line 12 of Figure 4. To simplify the comparison between the action expression
and executable specification we have replaced the parameter values of output
symbols by the names of parameters received with the input symbol. For this
we carefully matched the values of the parameters in output symbols with the
input action type’s parameter names and found the corresponding parameter
name for each parameter value.

We see that the action expression is more compact in the executable speci-
fication. One reason is that it uses complex boolean expressions (e.g., Figure 4
line 4), whereas our representation only uses a simple decision tree structure
which tests one parameter or variable at a time. This makes the executable
specification smaller than our representation, but sometimes more difficult to
understand.

Another difference is that our representation does not explicitly return an
error message on illegal input. This allows our action expressions to sometimes



omit distinctions. In this example, the parameter loct is tested in Figure 4 line 4
but not in Figure 5.

7 Conclusions and Future Work

We have presented an technique for using regular inference to infer symbolic
models of communication protocol entities, aiming to make them compact and
readable. We first apply existing regular inference techniques to construct a “flat”
Mealy machine model of the protocol, which is thereafter folded into a Symbolic
Mealy machine. We have applied our approach to an executable specification of
the A-MLC protocol developed by Mobile Arts. We used LearnLib to generate a
flat Mealy machine, which was then transformed into a symbolic representation
by our implementation. We evaluated the result by comparing it to the original
executable specification.

The two models had many similarities, but differed in some respects. Our
model did not cover all the locations and transitions of the SUT, due to an
incorrect merging of two states by the L∗ algorithm, which caused a part of the
behavior to be unexplored. We conjecture that this problem would go away if
we would have used a larger test suite for checking the generated model; at the
time of the experiment our time and space resources did not allow this. Our
structure of locations was surprisingly similar to that of the manually generated
executable specification. Our action expressions has a rather simple form, and
thus they become longer than corresponding hand-generated ones. This suggests
to look at more advanced ways to generate action expressions in a richer syntax,
and to employ code transformations that reduce redundancies.
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