
Regular Inference for State Machines using

Domains with Equality Tests

Therese Berg1, Bengt Jonsson1, Harald Raffelt2

1 Department of Computer Systems, Uppsala University, Sweden
{thereseb, bengt}@it.uu.se

2 Chair of Programming Systems and Compiler Construction, University of
Dortmund, Germany

harald.raffelt@cs.uni-dortmund.de

Abstract. Existing algorithms for regular inference (aka automata learn-
ing) allows to infer a finite state machine by observing the output that
the machine produces in response to a selected sequence of input strings.
We generalize regular inference techniques to infer a class of state ma-
chines with an infinite state space. We consider Mealy machines extended
with state variables that can assume values from a potentially unbounded
domain. These values can be passed as parameters in input and output
symbols, and can be used in tests for equality between state variables
and/or message parameters. This is to our knowledge the first exten-
sion of regular inference to infinite-state systems. We intend to use these
techniques to generate models of communication protocols from observa-
tions of their input-output behavior. Such protocols often have param-
eters that represent node adresses, connection identifiers, etc. that have
a large domain, and on which test for equality is the only meaningful
operation. Our extension consists of two phases. In the first phase we
apply an existing inference technique for finite-state Mealy machines to
generate a model for the case that the values are taken from a small
data domain. In the second phase we transform this finite-state Mealy
machine into an infinite-state Mealy machine by folding it into a compact
symbolic form.

1 Introduction

Model-based techniques for verification and validation of reactive systems, such
as model checking and model-based test generation [1] have witnessed drastic
advances in the last decades. They depend on the availability of a formal model,
specifying the intended behavior of a system or component, which ideally should
be developed during specification and design. However, in practice often no such
model is available, or becomes outdated as the system evolves over time, im-
plying that a large effort in many model-based verification and test generation
projects is spent on manually constructing a model from an implementation. It
is therefore important to develop techniques for automating the task of generat-
ing models of existing implementations. A potential approach is to use program
analysis to construct models from source code, as in software verification (e.g.,

[2, 3]). However, many system components, including peripheral hardware com-
ponents, library modules, or third-party components do not allow analysis of
source code. We will therefore focus on techniques for constructing models from
observations of their external behavior.

The construction of models from observations of component behavior can
be performed using regular inference (aka automata learning) techniques [4–10].
This class of techniques has recently started to get attention in the testing and
verification community, e.g., for regression testing of telecommunication systems
[11, 12], and for combining conformance testing and model checking [13, 14]. They
describe how to construct a finite-state machine (or a regular language) from
the answers to a finite sequence of membership queries, each of which observes
the component’s output in response to a certain input string. Given “enough”
membership queries, the constructed automaton will be a correct model of the
system under test (SUT). Angluin [4] and others introduce equivalence queries,
queries to whether a hypothesized automaton is a correct model of the SUT,
they can be seen as idealizing some procedure for extensively verifying (e.g., by
conformance testing) whether the learning procedure is completed. The reply to
an equivalence query is either yes or a counterexample, an input string on which
the constructed automaton and the SUT respond with different output.

We intend to use regular inference to construct models of communication
protocol entities. Such entities typically communicate by messages that consist
of a protocol data unit (PDU) type with a number of parameters, each of which
ranges over a sometimes large domain. Standard regular inference can only con-
struct models with a moderately large finite alphabet. In previous work [15], we
presented an optimization of regular inference to cope with models where the
domain over which parameters range is large but finite. But, in order to fully
support the generation of models with data parameters, we must consider a gen-
eral theory for inference of infinite-state state machines with input and output
symbols from potentially infinite domains.

In this paper, we present the first extension of regular inference to infinite-
state state machines. We consider Mealy machines where input and output sym-
bols are constructed from a finite number of message types that can have param-
eters from a potentially infinite domain. These parameters can be stored in state
variables of the machine for later use. The only allowed operation on parameter
values is a test for equality. The motivation is to handle parameters that, e.g.,
are identifiers of connections, objects, etc. This class of systems is similar to, and
slightly more expressive than, the class of “data-independent” systems, which
was the subject of some of the first works on model checking of infinite-state
systems [16, 17].

In standard regular inference control states and transitions are inferred, and
counterexamples to a hypothesized automaton are only used to add more con-
strol states to the automaton. In this paper, we also infer state variables and
operations on them, and counterexamples to a hypothesized model are used to
extend the model with either more control states or more state variables.

2

In our approach, we first observe the behavior of the protocol when the pa-
rameters of input messages are from a small domain. Using the regular inference
algorithm by Niese [18] (which adapts Angluin’s algorithm to Mealy machines),
we generate a finite-state Mealy machine, which describes the behavior of the
component on this small domain. We thereafter fold this finite-state Mealy ma-
chine into a smaller symbolic model.

Organization. The paper is organized as follows. In the next section, we review
the Mealy machine model and in Section 3 we introduce the model for state
machines using domains with equality tests. In Section 4 we review the inference
algorithm for Mealy machines by Niese [18], and the adaptation required for our
setting. In Section 5 we present our algorithm to map Mealy machines to Sym-
bolic Mealy machines. Correctness and complexity of our algorithm is discussed
in Section 6, and conclusions and future work are presented in Section 7.

Related Work. Regular inference techniques have been used for verification and
test generation, e.g., to create models of environment constraints with respect
to which a component should be verified [19], for regression testing to create a
specification and a test suite [11, 12], to perform model checking without access
to code or to formal models [14, 13], for program analysis [20], and for formal
specification and verification [19]. Li, Groz, and Shahbaz [21, 22] extend regular
inference to Mealy machines with a finite subset of input and output symbols
from the possible infinite set of symbols. This work resembles the intermediate
model, in our earlier work [15], used to construct a symbolic model. In this work
we handle infinite sets of parameter values, and can also generate infinite-state
models with both control states and state variables that range over potentially
infinite domains.

2 Mealy Machines

A Mealy machine is a tuple M = 〈ΣI , ΣO, Q, q0, δ, λ〉 where ΣI is a nonempty set
of input symbols, ΣO is a finite nonempty set of output symbols, Q is a nonempty
set of states, q0 ∈ Q is the initial state, δ : Q×ΣI → Q is the transition function,
and λ : Q×ΣI → ΣO is the output function. Elements of Σ∗

I and Σ∗
O are (input

and output, respectively) strings or words. Given u, v ∈ Σ∗
I , u is said to be a

prefix of v if v = uw for some w ∈ Σ∗
I .

An intuitive interpretation of a Mealy machine is as follows. At any point
in time, the machine is in one state q ∈ Q. It is possible to give inputs to the
machine, by supplying an input symbol a. The machine responds by producing
an output string λ(q, a) and transforming itself to the new state δ(q, a).

We extend the transition and output functions from input symbols to se-
quences of input symbols in the standard way, by defining:

δ(q, ε) = q λ(q, ε) = ε
δ(q, ua) = δ(δ(q, u), a) λ(q, ua) = λ(q, u)λ(δ(q, u), a)

3

The Mealy machines that we consider are completely specified, meaning that
at every state the machine has a defined reaction to every input symbol in ΣI ,
i.e., δ and λ are total. They are also deterministic, meaning that for each state
q and input a exactly one next state δ(q, a) and output string λ(q, a) is possible.

Let q and q′ be two states of the same Mealy machine with input symbols ΣI

and output function λ, or two states in different machines. The states q and q′

are equivalent if λ(q, u) = λ(q′, u) for each input string u ∈ Σ∗
I . That is, for each

input string the machine starting in q will produce the same output string as the
machine starting in q′. A Mealy machine M is minimized if there are no pair of
states q and q′ of M, where q 6= q′, that are equivalent. There are well-known
algorithms for efficiently minimizing a given Mealy machine [23]. Given a Mealy
machine M with input alphabet ΣI , initial state q0, and output function λ we
define λM(u) = λ(q0, u), for u ∈ Σ∗

I . Two Mealy machines M and M′ with
input alphabets ΣI are equivalent if λM = λM′ .

3 Symbolic Mealy Machines

In this section, we introduce Symbolic Mealy machines. They extend ordinary
Mealy machines in that input and output symbols are messages with parameters,
e.g., as in a typical communication protocol. We will specialize to the case when
these parameters are from a large (in practice “infinite”) domain D, on which the
only permitted operation is test for equality. In general, we could have several
such domains, but let us here assume that all parameters are from one domain.

Let I and O be finite sets of (input and output) actions, each of which has a
nonnegative arity. Let D be a (finite or infinite) domain of data values. Let ΣD

I

be the set of input symbols of form α(d1, . . . , dn), where α ∈ I is an action of
arity n, and d1, . . . , dn ∈ D are parameters from D. The set of output symbols
ΣD

O is defined analogously.
We assume a set of location variables, ranged over by v, v1, v2, . . ., and a set

of formal parameters, ranged over by p, p1, p2, A symbolic value is either a
location variable or a formal parameter. We use y or z to range over symbolic
values. A parameterized input action is a term of form α(p1, . . . , pn), where α is
an input action of arity n, and p1, . . . , pn are formal parameters. A parameterized
output action is a term of form β(z1, . . . , zk), where β ∈ O is an output action of
arity k and each zi is a symbolic value. We write d for d1, . . . , dn, p for p1, . . . , pn,
v for v1, . . . , vm, y for y1, . . . , ym, and z for z1, . . . , zk. A guard over the location
variables v and formal parameters p is a conjunction of equalities and inequalities
between the symbolic values in v, p. A guarded action is of the form

α(p); g/v := y; β(z)

where α(p) is a parameterized input action, g is a guard over location variables
and the formal parameters p, where v := y is the multiple assignment statement
〈v1, . . . , vm〉 := 〈y1, . . . , ym〉, meaning that yi is assigned to vi, in which each yi

is a symbolic value, and β(z) is a parameterized output action. An example of a
guarded action is α(p1, p2); true/v1 := p1; β(p2), where the first input parameter

4

value is stored in a location variable, and the second input parameter value is
output.

Let a valuation function ρ be a mapping from a (possibly empty) set Dom(ρ)
of location variables to data values in D. We let ρ0 denote the valuation func-
tion with an empty domain. We extend valuation functions to operate on vectors
of location variables by defining ρ(v1, . . . , vm) as ρ(v1), . . . , ρ(vm). For an input
symbol α(d), a valuation function ρ, and guard g such that vi ∈ Dom(ρ) for all lo-
cation variables vi occurring in g, we let (α(d), ρ) |= g denote that g[d/p, ρ(v)/v]
is true, i.e., that g is true when the formal parameters p assume the data values
d and the location variables v assume the data values ρ(v).

Definition 1 (Symbolic Mealy machine). A Symbolic Mealy machine is a
tuple SM = (I, O, L, l0,−→), where

– I is a finite set of input actions,
– O is a finite set of output actions,
– L is a finite set of locations, each of which has a nonnegative arity repre-

senting the number of location variables in that location,
– l0 ∈ L is the initial location with arity 0, and
– −→ is a finite set of transitions. Each transition is a tuple 〈l, α(p), g, v :=

y, β(z), l′〉, where l, l′ ∈ L are locations and α(p); g/v := y; β(z) is a guarded
action respecting constraints given by arities of l and l′. ⊓⊔

We write l
α(p);g/v:=y;β(z)

−→ l′ to denote 〈l, α(p), g, v := y, β(z), l′〉 ∈ −→. We
require that Symbolic Mealy machines are completely specified and determin-
istic, i.e., for each reachable 〈l, ρ〉 and input symbol α(d), there is exactly one
transition 〈l, α(p), g, v := y, β(z), l′〉 from l such that (α(d), ρ) |= g.

Example An example of a Symbolic Mealy machine is shown in Figure 1. The
Symbolic Mealy machine has one input action α with arity two, two output
actions β and β′, both with arity one, one location l0 with arity zero, and a
second location l1 with arity one.

l0 l1

α(p1, p2); true/v1 := p1; β(p2)

α(p1, p2); p1 6= v1/β(p2)

α(p1, p2); p1 = v1/β′(p1)

Fig. 1. Example of a Symbolic Mealy machine.

Let D be a (finite or infinite) domain of data values. A Symbolic Mealy
machine SM = (I, O, L, l0,−→) acting on the domain D is the (possibly infinite-
state) Mealy machine SMD = 〈ΣD

I , ΣD
O , Q, 〈l0, ρ0〉, δ, λ〉, where

5

– ΣD
I is the set of input symbols,

– ΣD
O is the set of output symbols,

– Q is the set of pairs 〈l, ρ〉, where l ∈ L and ρ is a valuation function which
domain v1, . . . , vm is given by the arity m of location l,

– 〈l0, ρ0〉 is the initial state, and

– δ and λ are defined as follows. Whenever l
α(p);g/v:=y;β(z)

−→ l′ and (α(d), ρ) |= g
then

• δ(〈l, ρ〉, α(d)) = 〈l′, ρ′〉, where ρ′(vi) is

∗ ρ(vj) if yi is a location variable vj ,
∗ dj if yi is a formal parameter pj , and

• λ(〈l, ρ〉, α(d)) = β(d′1, . . . , d
′
k), where d′i is

∗ ρ(vj) if zi is a location variable vj ,
∗ dj if zi is a formal parameter pj .

Note that δ is well-defined since SM is completely specified and deterministic.

If D is finite, then SMD is a finite-state Mealy machine with at most∑

l∈L

|D|arity(l) states, where arity(l) is the arity of location l. Two Symbolic Mealy

machines SM and SM′ are equivalent if SMD is equivalent to SM′
D for any

data value domain D.

Let M be a Mealy machine with the set of input symbols ΣD
I , the set of states

Q, initial state q0 ∈ Q, and output function λ. For two data values d and d′ in
domain D and a string u ∈ (ΣD

I)∗, let u[d ↔ d′] denote the result of swapping the
values d and d′ in the string u. For each state q ∈ Q define an equivalence relation
on data values, denoted ≃q by d ≃q d′ if λ(q, u[d ↔ d′]) = λ(q, u)[d ↔ d′].
Intuitively, d ≃q d′ means that the data values d and d′ are treated symmetrically
from state q. We say that M treats d and d′ symmetrically if d ≃q0

d′, i.e., d and
d′ are treated symmetrically from the initial state. We say that M is symmetric
if d ≃q0

d′ for any two data values d, d′ ∈ D.

4 Inference of Symbolic Mealy Machines

In this section, we present our algorithm for inference of Symbolic Mealy ma-
chines. It is formulated in the same setting as Angluin’s L∗ algorithm [4], in
which a so called Learner, who initially knows nothing about SM, is trying to
infer SM by asking queries to a so called Oracle. The queries are of two kinds.

– A membership query consists in asking what the output is on a word w ∈
(ΣE

I)∗ for some data value domain E .

– An equivalence query consists in asking whether a hypothesized Symbolic
Mealy machine H is correct, i.e., whether H is equivalent to SM. The Oracle
will answer yes if H is correct, or else supply a counterexample, which is a
word u ∈ (ΣD

I)∗ such that λSMD
(u) 6= λHD

(u), for some data value domain
D.

6

The typical behavior of a Learner is to start by asking a sequence of membership
queries until she can build a “stable” hypothesis H from the answers. After that
she makes an equivalence query to find out whether H is equivalent to SM. If the
result is successful, the Learner has succeeded, otherwise she uses the returned
counterexample to perform subsequent membership queries until converging at a
new hypothesized Symbolic Mealy machine, which is supplied in an equivalence
query, etc.

We start by fixing a small, finite data value domain E . In our algorithm for
the Learner, we build a hypothesis H in two phases: In the first phase we supply
input from the domain E , and infer a hypothesis M for the Mealy machine SME

using an adaptation of Angluin’s algorithm due to Niese [18]. When building
M, we must treat all data values symmetrically in the following sense: for all
performed membership queries w ∈ (ΣE

I)∗, we also make a membership query
for w[d ↔ d′] for any data values d, d′ ∈ E . This implies that we also supply
membership queries for all permutations of data values in E in w. This implies
that the resulting hypothesis M will be symmetric.

There is an optimal smallest size of E which is still large enough to be able
to exercise all tests for equalities between parameter values in SM, and find
the data values required to be stored in location variables of the constructed
Symbolic Mealy machine in order for it to be deterministic, but we do not a
priori know this size. Therefore, we start with a small domain E that can be
gradually extended when feedback from equivalence queries show that E is too
small.

To characterize the “optimal smallest size”, let M be 〈ΣE
I , ΣE

O, Q, q0, δ, λ〉,
where I, O are the input and output action alphabet, respectively. We say that
a data value d ∈ E is fresh in a state q ∈ Q if

– there exists an input string u ∈ (ΣE
I)∗ which leads to δ(q0, u) = q such that

d does not occur as a data value in u, and

– for every input string v ∈ (ΣE
I)∗ which leads to q and in which d but not

some other d′ ∈ E occurs as data value, it holds that δ(q0, v[d′/d]) = q.

The first item intuitively means that if a data value does not occur in an input
string leading to a state then it cannot either be saved in a location corresponding
to that state. The second item intuitively means that if a data value in a string
can be replaced by another data value and the string still leads to the same state,
then it has no special affect in the Mealy machine and is therefore not stored in
a location corresponding to that state. We say that M is fresh if for each state
q ∈ Q, there are n data values in E which are fresh in q, where n is the maximal
arity of input actions in I. A sufficient condition on E is given by the following
Lemma 1.

Lemma 1. Let SM = (I, O, L, l0,−→) be a Symbolic Mealy machine, E be a
domain of data values, m be the maximal arity of the locations in L, and n be
the maximal arity of the input actions in I. Then if the size of E is bigger than
m + max(n, m), the Mealy machine SME is fresh.

7

Proof. Let SME be 〈ΣE
I , ΣE

O, Q, 〈l0, ρ0〉, δ, λ〉 and let E be bigger than m +
max(n, m). Let M be the minimal version of SME , which we get by partition-
ing Q with respect to an equivalence relation ∼=, where two states are equivalent
q ∼= q′ iff they produce the same output λ(q, u) = λ(q′, u) for all input strings
u ∈ (ΣE

I)∗. The states of M is the set Q/ ∼= of equivalence classes of Q. Let us call
M’s set of states QM, its transition function δM, and its output function λM.
In M the initial state is [〈l0, ρ0〉], the transition function is δ([q], a) = [δ(q, a)],
and the output function is λ([q], a) = λ(q, a). We will show that SME is fresh,
i.e. that in each 〈l, ρ〉 ∈ Q there are n data values in E that satisfies the two
conditions in order to be fresh.

First we will show that for each state 〈l, ρ〉 ∈ Q and each di there exists an
input string ui ∈ (ΣE

I)∗ which leads to δ(〈l0, ρ0〉, ui) = 〈l, ρ〉 such that data value
di does not occur in ui, where i = 1, 2, . . . , n. It follows that the same holds for
all states in QM.

Let us assume that the size of E is larger than m + n. Let Range(ρ) be the
range of ρ. We will show by induction on the distance from 〈l0, ρ0〉 that if 〈l, ρ〉
is reachable and data value d ∈ E is not in Range(ρ), then we can reach 〈l, ρ〉
with an input string in which d does not occur. Since there are at most m data
values in Range(ρ) there exists at least n + 1 such data values d in 〈l, ρ〉.

Assume that 〈l′, ρ′〉 ∈ Q is at distance k + 1 from 〈l0, ρ0〉. Then there exists

a state 〈l, ρ〉 at distance k from 〈l0, ρ0〉 such that 〈l, ρ〉
α(d

I
)/β(d

O
)

−→ 〈l′, ρ′〉 is
a transition in SME . By induction hypothesis, for each data value d not in
Range(ρ) we can reach 〈l, ρ〉 with an input string in which d does not occur. Let
Range(ρ′) be the range of ρ′. At most m data values are in Range(ρ), and at

most n data values are used in α(d
I
) on the transition to 〈l′, ρ′〉, which leaves

at least one data value in E not used. Let us call this data value d, and let u
be an input string of length k leading to 〈l, ρ〉 and having no occurrences of d

in it. Then data value d does not occur in the input string uα(d
I
) leading to

〈l′, ρ′〉, hence d cannot be in Range(ρ′). Since there are at most m data values
in Range(ρ′) there are least n + 1 such data values d in each 〈l′, ρ′〉 ∈ Q.

For each q ∈ QM we define ≃q to be an equivalence relation on E such that
e ≃q e′ iff the behavior in q is completely symmetric with respect to e, e′, i.e.,
λM(q, w)[e′ ↔ e] = λM(q, w[e′ ↔ e]) for all w ∈ (ΣE

I)∗, where w[e′ ↔ e] is the
result of switching all occurrences of e′ to e, and vice versa, in the string w. It
follows that all data values not in Range(ρ) are equivalent in state [〈l, ρ〉] due
to symmetry.

Let us assume that state q ∈ QM contains a state 〈l, ρ〉 ∈ Q, and some input
string u ∈ (ΣE

I)∗ that leads to q does not contain occurrences of data value d ∈ E .
It was shown in the first part of this proof that such a d and u for state 〈l, ρ〉
can be found if d /∈ Range(ρ). Let us also assume that there is an input string
v ∈ (ΣE

I)∗ such that d occurs in v, another data value d′ ∈ E does not occur in
v, and it leads to a state 〈l′, ρ′〉 ∈ Q in q, i.e., [〈l, ρ〉] = [〈l′, ρ′〉] in QM. Next,
we will show that whenever v leads to δ(〈l0, ρ0〉, v) = 〈l′, ρ′〉, then the string v
in which d is replaced by d′ leads to δ(〈l0, ρ0〉, v[d′/d]) = 〈l′, ρ′〉.

8

Assume that the size of E is bigger than 2m. We have that d′ 6∈ Range(ρ′)
since d′ does not occur as data value in v. In state 〈l′, ρ′〉 data value d′ is in an
equivalence class induced by ≃〈l′,ρ′〉 of at least size |E|−m, since the equivalence
class contains the data values E except the at most m data values in Range(ρ′).
In state 〈l, ρ〉 data value d is in an equivalence class of at least size |E| − m
induced by ≃q. Since [〈l, ρ〉] = [〈l′, ρ′〉] and both d and d′ is in the largest
equivalence class of at least size |E| − m in state q the data values are in the
same equivalence class d ≃q d′. Hence, d is not in Range(ρ′), and therefore
v[d′/d] leads to δ(〈l0, ρ0〉, v[d′/d]) = 〈l′, ρ′〉 in Q, and to q in QM. ⊓⊔

Returning to our inference algorithm, if the hypothesis M generated by
Niese’s algorithm is not fresh, we do not make any equivalence query, but instead
enlarge E by one, and continue Niese’s algorithm with the new enlarged E . If
M is fresh, we transform M into a Symbolic Mealy machine H such that HE is
equivalent to M: this transformation is presented in Section 5. Thereafter H is
supplied in an equivalence query, to find out whether H is equivalent to SM. If
the result is successful, the algorithm terminates. Otherwise, the counterexample
returned needs to be analyzed, since it may contain values outside of E . Let the
counterexample be input string u ∈ ΣD

I , with data values from domain D.
In the case that |D| ≤ |E|, we apply any injective mapping from D to E , on

the data values in the counterexample, and use the mapped counterexample in
Niese’s algorithm.

In the case that |D| > |E|, we try to find a mapping from D to a subset
D′ ⊆ D which is as small as possible, but such that the mapped counterexample
is still a counterexample to H. To find such a mapping, one can either use an
exhaustive search or a heuristic search guided by H. The search involves asking
more membership queries. We then extend E to the same size as D′, and continue
Niese’s algorithm with the mapped counterexample.

5 Transforming Mealy Machines to Symbolic Mealy

Machines

In this section, we present the transformation from a Mealy machine M to a
Symbolic Mealy machine SM. Throughout this section, we will use the Symbolic
Mealy machine in Figure 1 as a running example to illustrate the steps in our
algorithm. We assume that we used the domain E = {1, 2, 3} of size 3, which is
the smallest domain to make SME fresh, and that we obtained the hypothesis
Mealy machine shown in Figure 2.

In the second phase, we transform the Mealy machine M into a Symbolic
Mealy machine SM, which must ”simulate” M in the sense that SME is equiv-
alent to M. The transformation algorithm has four steps.

– In the first step, the algorithm figures out for each state of M which data
values must be remembered by a corresponding Symbolic Mealy machine in
order to produce its future behavior. These data values are the basis for con-
structing the location variables required in the corresponding location in the

9

q0 q1

q2

q3

α(1, 1)/β′(1),
α(1, 2)/β′(1),
α(1, 3)/β′(1)

α(2, 1)/β′(2),
α(2, 2)/β′(2),
α(2, 3)/β′(2)

α(3, 1)/β′(3),
α(3, 2)/β′(3),
α(3, 3)/β′(3)

α(1, 1)/β(1),
α(1, 2)/β(2),
α(1, 3)/β(3)

α(2, 1)/β(1), α(3, 1)/β(1),
α(2, 2)/β(2), α(3, 2)/β(2),
α(2, 3)/β(3), α(3, 3)/β(3)

α(2, 1)/β(1),
α(2, 2)/β(2),
α(2, 3)/β(3)

α(3, 1)/β(1),
α(3, 2)/β(2),
α(3, 3)/β(3)

α(1, 1)/β(1), α(3, 1)/β(1),
α(1, 2)/β(2), α(3, 2)/β(2),
α(1, 3)/β(3), α(3, 3)/β(3)

α(1, 1)/β(1), α(2, 1)/β(1),
α(1, 2)/β(2), α(2, 2)/β(2),
α(1, 3)/β(3), α(2, 3)/β(3)

Fig. 2. A Mealy machine constructed with the inference algorithm applied to the ex-
ample in Figure 1. All transitions that have the same start and target state are depicted
with one edge.

Symbolic Mealy machine. In the running example of Figure 2, the algorithm
figures out that, e.g., in state q1 the data value 1 must be remembered.

– In the second step, we use the data values inferred in the first step to
transform transitions of M into a so called symbolic normal form, which
is especially designed to capture exactly the equalities and inequalities be-
tween formal parameters and location variables. In the running example, the
transition on α(1, 2)/β′(1) from, e.g., location q1, will be transformed into
α(v1, p1)/v1 := v1; β

′(v1).
– In the third step, we merge states of M into locations of SM, if the symbolic

forms of their future behavior are the same, using an adaptation of a standard
partition-refinement algorithm. In the running example, states q1, q2, and q3

will be merged into one location.
– In the fourth and final step, we transform transitions from symbolic normal

form to the standard form used in Definition 1, and merge transitions when
possible. The result of the first part of this step is shown in Figure 4.

Step One The first step in our algorithm is to compute a state-value function
V : Q 7→ 2E from states in M to sets of data values, which for each state gives
the set of data values that M must remember for its future behavior. We first
observe that if the data value d is fresh in a state q, then obviously d should
not be in V (q). Furthermore, if a data value d′ is not remembered by M in q,

10

then the future behavior from q remains unchanged if we swap the roles of d
and d′ (note that d and d′ will occur in future input symbols). Let u be the
input string which takes M from its initial state to q and does not contain d.
The input string u′, obtained by replacing all occurrences of d′ by d in u will,
by symmetry, take M from its initial state to a state q′ whose future behavior
has swapped the roles of d and d′ as compared with q. Since M is minimized,
q must be the same state as q′. Thus d′ is also in fresh in q. In summary, V (q)
should contain all data values that are not fresh in q.

The calculation of the state-value function in the example in Figure 2 yields
that V (q0) is the empty set ∅, V (q1) is {1}, V (q2) is {2}, and V (q3) is {3}.

Step Two In the second step, we transform transition labels into a symbolic form.

Intuitively, the transition q
α(d

I
)/β(d

O
)

−→ q′ will be transformed into a symbolic

transition q
α(p);g/v:=y;β(z)

−→ q′ where g is as strong as possible. We will use a
different representation for such a symbolic transition, which we call symbolic

normal form, which does not use guards: instead each data value in d
I

and d
O

will be replaced by vi if it occurs as the ith data value stored in state q, otherwise
by an appropriate input parameter symbol pj. Furthermore, different symbolic
values are implicitly required to be different. A problem is that we cannot know
in which “order” the data values in V (q) will be mapped to location variables,
so therefore the transformation will depend on a specific ordering d of the data

values in V (q) and a specific ordering d
′
of the data values in V (q′).

Let us define precisely the symbolic normal form. For each ordering d of the

data values in V (q), for each vector d
I

of data values received in an input symbol,

and for each data value d in d ∪ d
I
, define SV

d,d
I (d) as

– vi if there exists di ∈ d such that d = di, or else

– pk if j is the smallest index such that dj ∈ d
I

is dj = d, and k is the number

of unique data values dl ∈ d
I

with index l ≤ j, such that dl does not appear
in d,

We extend SV
d,d

I to vectors of data values, by defining SV
d,d

I (d1, . . . , dn) as

SV
d,d

I (d1), . . . , SV
d,d

I (dn).

For each ordering d of the data values in V (q) and each ordering d
′

of the

data values in V (q′), the symbolic normal form of q
α(d

I
)/β(d

O
)

−→ q′ is defined as

(q, d)
α(SV

d,dI (d
I
))/v:=y;β(SV

d,dI (d
O

))

−→ (q′, d
′
),

where v := y is an assignment in which yi is

– SV
d,d

I (dj) if d′i = dj , for some d′i ∈ d
′
and dj ∈ d, or else

– SV
d,d

I (dI
j) if d′i = dI

j , for some d′i ∈ d
′
and dI

j ∈ d
I
.

11

As an example, the symbolic normal form of q0
α(1,2)/β(2)

−→ q1, a transition in the

Mealy machine in Figure 2, calculates to (q0, [])
α(p1,p2)/v1:=p1;β(p2)

−→ (q1, 1), where
[] is the empty vector of data values.

Step Three In the third step, we merge states of M if the symbolic forms of
their future behaviors are equivalent. As explained in the description of Step
two, the symbolic normal form of the behavior from a state q is defined only
with respect to a given ordering d of the data values in V (q), meaning that for
each state q we must fix some ordering of the stored data values. However, since
some combinations of orderings allow to merge more states and obtain smaller
machines than others, we shall not fix this ordering a priori. Instead, we create
several copies of each q, one for each possible ordering of the data values in V (q),
and thereafter perform the merging starting with all these copies. Since at the
end, we need only one pair of form (q, d) for each q, we will prune copies of q
that will create additional states, as long as at least one copy of each q remains.

Thus, our partitioning algorithm partitions pairs (q, d) of states and data-
value vectors into blocks B1, . . . ,Bm, representing potential locations in a Sym-
bolic Mealy machine. Each block Bi is a set of pairs (q, d), where q ∈ Q and d is
some ordering of the data values V (q). To break the symmetry between different
orderings of data values, we pick for each block Bi an arbitrary pair (q, d) ∈ Bi

which is called the representative for Bi, to represent how the symbolic transi-
tions from Bi will look like. The goal of the partitioning is that each block should
be consistent, as defined in the following definition.

Definition 2 (Block consistency for a block B). Let (q, d) ∈ B be the rep-
resentative for block B. Block B is consistent if whenever (r, e) ∈ B there is a

transition (r, e)
α(z)/v:=y;β(z′)

−→ (r′, e′) (on symbolic normal form) iff there is a

transition (q, d)
α(z)/v:=y;β(z′)

−→ (q′, d
′
) (on symbolic normal form) with the same

label, such that (r′, e′) and (q′, d
′
) are in the same block. ⊓⊔

We find a partitioning of pairs into consistent blocks by fix-point iteration, using
a variation of the standard partition-refinement algorithm, as follows.

– Initially, for each i which is the size of V (q) for some q ∈ Q, there is a block
Bi with all pairs (q, d) such that d has exactly i data values.

– Repeat the following step until convergence.
• Pick a block Bi and let (q, d) be the representative for Bi.
• Split Bi by letting a pair (r, e) in Bi remain in the block if for all α(z)

there is a symbolic transition (q, d)
α(z)/v:=y;β(z′)

−→ (q′, d
′
) from the repre-

sentative (q, d) iff there is a symbolic transition (r, e)
α(z)/v:=y;β(z′)

−→ (r′, e′)

from (r, e) with the same label, such that (q′, d
′
) and (r′, e′) are in the

same block. Let B′
i be the set of all pairs (r, e) that were originally in Bi

but did not pass this test.
• Delete from B′

i all pairs (r, e) for which some other pair (r, e′) with the
same state r remains in Bi. It should be noted that this deletion of copies

12

is safe due to the strong symmetry between different orderings of data
values e in pairs of form (r, e).

• If B′
i is thereafter non-empty, we let B′

i be a new block, and choose an
arbitrary member in B′

i as its representative,
– The algorithm terminates when all blocks are consistent. Let {B1, . . . ,Bf}

denote the final set of blocks.

From the example in Figure 2 we create two consistent blocks, B0 and B1, see
Figure 3. Block B0 contains the pair (q0, []), and block B1 contains the pairs
(q1, 1), (q2, 2), and (q3, 3). Let us choose (q0, []) as the representative for block
B0, and (q1, 1) as the representative for block B1. In the figure, from block B1

only the labels on the outgoing transitions from one of the pairs is drawn, since
all pairs have the same labels on outgoing transitions.

B0 :
(q0, [])

B1 :
(q1, 1),
(q2, 2),
(q3, 3)

α(v1, v1)/v1 := v1; β
′(v1),

α(v1, p1)/v1 := v1; β
′(v1),

α(v1, p1)/v1 := v1; β
′(v1)

α(p1, p1)/v1 := p1; β(p1),
α(p1, p2)/v1 := p1; β(p2),
α(p1, p2)/v1 := p1; β(p2)

α(p1, v1)/β(v1), α(p1, v1)/β(v1),
α(p1, p1)/β(p1), α(p1, p1)/β(p1),
α(p1, p2)/β(p2), α(p1, p2)/β(p2)

Fig. 3. The set of consistent blocks constructed from the example in Figure 2.

Step Four In the fourth step, we complete the transformation of the Mealy
machine M by creating a Symbolic Mealy machine SM from the result of step
three. This also involves transforming the symbolic normal form of transitions
into the form used in Definition 1, and merging transitions. The locations of
SM correspond to the blocks resulting from the third step. When creating the
transitions of SM, we can select an arbitrary member (q, d) in each block Bi, and
use only these selected members and the transitions between them to construct
SM. It is possible to select only one member since, by block consistency, all
members are equivalent. For simplicity we let the block representative be the
selected member.

Each transition between representatives must be transformed from symbolic
normal form to the form used in Definition 1. As an example, consider the
self-loop from the representative (q1, 1) in Figure 3 labeled by α(v1, p1)/v1 :=
v1; β

′(v1). It states that if an input symbol α(d1, d2) is received where d1 is equal
to the current value of the location variable v1, and d2 is different from the value
of any location variable, then the location variable is unchanged, and β′(d1)
is generated. It should obtain the label α(p1, p2) : (p1 = v1 ∧ p2 6= v1)/v1 :=

13

v1; β
′(v1), to conform with Definition 1. To define this transformation precisely,

for a vector z of symbolic values, let Tz be a mapping from symbolic values to
symbolic values, defined as

– Tz(vj) = vj for any location variable vj ,
– Tz(pj) = pi if pj is a formal parameter which occurs in z, and i is the smallest

value such that pj is the ith element zi in z.

Tz is extended to vectors of symbolic values, by defining Tz(y1, . . . , yn) as
Tz(y1), . . . ,Tz(yn). For example Tp1,p1,v1,p2

(p2, v1, p1, p1) = p4, v1, p1, p1.
For a vector z of symbolic values and vector v of location variables, define the

guard gz,v over formal parameters p and location variables v as the conjunction
of the following conjuncts:

– for each formal parameter pj which is the ith element zi in z:
• pi 6= vk for all location variables vk in v,
• pi = pk whenever pj is both the ith and the kth element of z, and k is

the largest index such that pj is the kth element of z,
• pi 6= pk whenever the kth element zk in z is a formal parameter different

from pj and i < k,
– for each location variable vj which is the ith element zi in z:

• pi = vj .

From the set of consistent blocks {B1, . . . ,Bf} resulting from the third step,
starting from M = 〈ΣE

I , ΣE
O, Q, q0, δ, λ〉, we can now construct a Symbolic Mealy

machine SM = (I, O, L, l0,−→), where

– I is the set of input actions,
– O is the set of output actions,
– L is the set of blocks {B1, . . . ,Bf}; the arity of each location Bi ∈ L is the

size of d, where (q, d) is the representative of Bi,
– l0 ∈ L is the block among B1, . . . ,Bf that contains the pair (q0, []),

– −→ contains for each symbolic normal form (q, d)
α(z)/v′:=y;β(z′)

−→ (q′, d
′
) of a

transition between representative (q, d) of block B and representative (q′, d
′
)

of B′, the transition

B
α(p) ; gz,v / v′:=Tz(y) ; β(Tz(z′))

−→ B′ ,

where v is the location variables of B, and p is the vector p1, . . . , pn of formal
parameters where n is the size of z.

In general, the resulting Symbolic Mealy machine in general has “too small”
transitions, since each guard completely characterizes equalities and inequalities
between the formal input parameter p and the location variables. To get a final
Symbolic Mealy machine, we merge transitions that differ only in their guards,
by taking the disjunction of their guards, whenever the new guard is still a
conjunction.

14

In the final step in our work with our example, we create a Symbolic Mealy
machine from the set of consistent blocks shown in Figure 3. The initial construc-
tion, after transforming transitions from symbolic normal form is the Symbolic
Mealy machine shown in Figure 4. We thereafter merge the two self loops in
Figure 4 into α(p1, p2) : p1 = v1/v1 := v1; β

′(v1). On the other edges, the pa-
rameterized output actions can be replaced by β(p2) without altering the output
behavior, then we merge transitions, obtaining the Symbolic Mealy machine in
Figure 1.

l0 l1

α(p1, p2); p1 = p2/v1 := p1; β(p1),
α(p1, p2); p1 6= p2/v1 := p1; β(p2)

α(p1, p2); p1 6= v1 ∧ p2 = v1/β(v1),
α(p1, p2); p1 = p2 ∧ p1 6= v1 ∧ p2 6= v1/β(p1),
α(p1, p2); p1 6= p2 ∧ p1 6= v1 ∧ p2 6= v1/β(p2)

α(p1, p2); p1 = v1 ∧ p2 = v1/v1 := v1; β
′(v1),

α(p1, p2); p1 = v1 ∧ p2 6= v1/v1 := v1; β
′(v1)

Fig. 4. Intermediate Symbolic Mealy machine constructed from the blocks in Figure 3.

6 Correctness and Complexity

The correctness of our transformation from a Mealy machine M to a Symbolic
Mealy machine SM follows from the following two theorems.

Theorem 1. Let E be a finite domain such that M = 〈ΣE
I , ΣE

O, Q, q0, δ, λ〉 is
a fresh and finite-state (minimized) Mealy machine. If SM = (I, O, L,−→, l0)
is the result of the transformation described in Section 5 from M, then M and
SME are equivalent (i.e., they produce the same output for all input strings
u ∈ (ΣE

I)∗).

Proof. Let E be as in the theorem. We will show by induction over the length of
u ∈ (ΣE

I)∗ that SM outputs w on u iff M outputs w on u, where w ∈ (ΣE
O)∗.

That M outputs w on u means that there is a sequence of transitions

q0
α0(d

I

0)/β0(d
O

0)
−→ q1

α1(d
I

1)/β1(d
O

1)
−→ . . .

αn(d
I

n)/βn(d
O

n)
−→ qn+1 in M, where the string

α0(d
I

0), α1(d
I

1), . . . , αn(d
I

n) is u and the string β0(d
O

0), β1(d
O

1), . . . , βn(d
O

n) is w.
In the transformation described in Section 5, pairs of form 〈qi, di〉, where qi ∈ Q
and di is a vector of the values in V (qi), are partitioned into a set of consis-
tent blocks {B0, . . . ,Bf}. By induction we prove that for all i ≥ 0, whenever

qi
αi(d

I

i)/βi(d
O

i)
−→ qi+1 and 〈qi, di〉 ∈ Bi for some di, there is a corresponding transi-

tion Bi
αi(p);g/vi+1:=Tz(y);βi(Tz(z′))

−→ Bi+1 in SM such that 〈qi+1, di+1〉 ∈ Bi+1 for
some order di+1 of the data values in V (qi+1), and

15

– the guard is satisfied (αi(d
I

i), vi 7→ di) |= g,

– z is the symbolic version SV
di,d

I

i

(d
I

i) of the data values in the input,

– z′ is the symbolic version SV
di,d

I

i

(d
O

i) of the data values in the output,

– Bi,Bi+1 ∈ {B0, . . . ,Bf},
– and the vectors vi, vi+1 are the location variables of Bi and Bi+1, respectively.

Base case: by construction of Symbolic Mealy machines, the pair 〈q0, []〉 is in
the initial location B0 of SM.

Induction step: this follows from observing that after the partitioning of pairs
of states and data-value vectors into consistent blocks, there is at least one pair
〈r, e〉 in a block for each r ∈ Q, specially a pair 〈qi+1, di+1〉 for qi+1. We can there-

fore construct the symbolic normal form 〈qi, di〉
αi(z)/vi+1:=y;β(z′)

−→ 〈qi+1, di+1〉 of

each transition qi
αi(d

I

i)/βi(d
O

i)
−→ qi+1 in M. By our construction of Symbolic Mealy

machines, there is in SM a transition Bi

αi(p);gz,vi
/vi+1:=Tz(y);βi(Tz(z′))

−→ Bi+1 that

corresponds to the symbolic transition 〈qi, di〉
αi(z)/vi+1:=y;βi(z

′)
−→ 〈qi+1, di+1〉, and

gz,vi
is a disjunct in g. ⊓⊔

Theorem 2. Let SM and SM′ be Symbolic Mealy machines with the same set
of input actions I and output actions O. Let m be the maximal arity of the
locations in SM and SM′, and let n be the maximal arity of the input actions
in I. If the size of E is bigger than m + max(n, m), and if SME and SM′

E are
equivalent, then for any data-value domain D the Mealy machines SMD and
SM′

D are equivalent.

Proof. If D is at most as big as E , we can injectively map the data values in D
to a subset E ′ ⊆ E . We can do this since the only test on the parameters are
tests for equality between input parameters in Symbolic Mealy machines. Then
it is easy to see that SME′ and SM′

E′ are equivalent.
Let us prove the case when D is bigger than E . We will define a mapping

from D to E for each position in any input string uD ∈ (ΣD
I)∗. Let SME be the

Mealy machine 〈ΣE
I , ΣE

O, QE , qE0 , δE , λE〉, and let SMD be the Mealy machine

〈ΣD
I , ΣD

O , QD, qD0 , δD, λD〉. Let uD = α1(d
1
), α2(d

2
), . . . , αk(d

k
) be a string in

(ΣD
I)∗ of length k, and let ui

D denote the prefix α1(d
1
), α2(d

2
), . . . , αi(d

i
) of uD of

length i, where i ≤ k. Let VE be the state value function of SME , V ′
E of SM′

E , and
VD of SMD, respectively. For each position i in uD let γi : D 7→ E be a mapping
from D to E . We define γi inductively for i = 0, 1, . . . , k. Assume γi is defined, we

extend γi to vectors of data values, by defining γi(d
i
) as γi(d

i
1), . . . , γi(d

i
j), where

j is the length of d
i
. The domain of mapping γi+1 is VD(δD(qD0 , ui

D))
⋃

d
i+1

. The
values in the domain will be injectively mapped to E . The mapping γi+1 is defined
as follows.

– If γi(d) ∈ VE(δE (qE0 , α1(γ1(d
1
)), . . . , αi(γi(d

i
)))) then γi+1(d) is defined as

γi(d). This means, if a data value d ∈ D has been mapped to a data value

16

e ∈ E , which is stored in a location variable, then d must in the next step be
mapped to the same data value e.

– If γi(d) 6∈ VE(δE (qE0 , α1(γ1(d
1
)), . . . , αi(γi(d

i
)))) then γi+1(d) is mapped on

some e ∈ (E \VE(δE(qE0 , α1(γ1(d
1
)), . . . , αi(γi(d

i
)))). There are enough values

in E to find such a data value e since SME is fresh.

Due to Lemma 1, SM′
E and SME are fresh. This in turn imply that their

state value functions, VE and V ′
E , can be calculated. Since SM′

E is equivalent to
SME , their state value functions VE and V ′

E are equivalent. We apply the inverse

mapping γ−1
i of γi for each position i in α1(γ1(d

1
)), . . . , αk(γk(d

k
)) to get the

corresponding input string for SM′
D. The corresponding string is (of course)

α1(γ
−1
1 (γ1(d

1
))), . . . , αk(γ−1

k (γk(d
k
))) = α1(d

1
), . . . , αk(d

k
) = uD.

Let the output λE(qE0 , α1(γ1(d
1
)), . . . , αk(γk(d

k
))) in SME be the output

string β1(e
1), . . . , βk(ek). Then the output λD(qD0 , uD) in SMD is the output

string β1(γ
−1
1 (e1)), . . . , βk(γ−1

k (ek)). The output for SM′
D is also the string

β1(γ
−1
1 (e1)), . . . , βk(γ−1

k (ek)). I.e., running the string uD in SMD and SM′
D

produces the same output string. ⊓⊔

The two preceding theorems imply that if SM is the Symbolic Mealy ma-
chine which we attempt to learn, and SM′ is the Symbolic Mealy machine we
construct, then SME is equivalent to SM′

E for any domain E .
An upper bound on the number of membership queries can be obtained

from the corresponding bound on the number of membership queries needed
to infer a Mealy machine M = 〈ΣE

I , ΣE
O, Q, q0, δ, λ〉, which is O(|ΣE

I | × |Q| ×
max(|ΣE

I |, |Q|) × C), where

– |ΣE
I | =

∑

α∈I

|E|actarity(α), where actarity(α) is the arity of α,

– |Q| =
∑

l∈L

|E|arity(l),

– C is the length of the longest counterexample returned in equivalence queries.

where |E| can be chosen as m + max(n, m) + 1 (in the notation of Lemma 1)
to make sure that SME is fresh. The maximum number of equivalence queries
required by the algorithm is |Q| + |E|. To infer our example in Figure 2 we
performed 333 membership queries and 1 equivalence query.

A way to reduce the number of membership queries required to infer the
Mealy machine is to use a symmetry filter which deduces answers to membership
queries from already answered membership queries [12]. The symmetry filter will
filter out membership queries which have the same differences and equalities
between parameter values as an already answered membership query.

7 Conclusions and Future Work

We have extended regular inference to a class of state machines with infinite
state-spaces and infinite alphabets. Our motivation is to develop techniques for

17

inferring models of entities in communication protocols by observing test exe-
cutions. It would be interesting to try to extend our approach to data domains
with more complex operations, such as counters, time-stamps, etc.

Our two-phase approach implies that the intermediate finite-state Mealy ma-
chine may get rather large, in comparison with the final Symbolic Mealy ma-
chine. This problem might be mitigated by developing an algorithm where the
generation of the intermediate machine and the compacting transformation are
performed “in parallel”. Next on our agenda is to apply the results of this paper
in a case study on realistic communication protocols.

Acknowledgement We thank B. Steffen and J. Parrow for helpful discussions.

References

1. Broy, M., Jonsson, B., Katoen, J.P., Leucker, M., Pretschner, A., eds.: Model-
Based Testing of Reactive Systems. Volume 3472 of Lecture Notes in Computer
Science. Springer Verlag (2004)

2. Ball, T., Rajamani, S.: The SLAM project: Debugging system software via static
analysis. In: Proc. 29th ACM Symp. on Principles of Programming Languages.
(2002) 1–3

3. Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Proc.
29th ACM Symp. on Principles of Programming Languages. (2002) 58–70

4. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75 (1987) 87–106

5. Balcázar, J., Daz, J., Gavaldá, R.: Algorithms for learning finite automata from
queries: A unified view. In: Advances in Algorithms, Languages, and Complexity.
Kluwer (1997) 53–72

6. Dupont, P.: Incremental regular inference. In Miclet, L., de la Higuera, C., eds.:
ICGI. Volume 1147 of Lecture Notes in Computer Science., Springer (1996) 222–
237

7. Gold, E.M.: Language identification in the limit. Information and Control 10

(1967) 447–474

8. Kearns, M., Vazirani, U.: An Introduction to Computational Learning Theory.
MIT Press (1994)

9. Rivest, R., Schapire, R.: Inference of finite automata using homing sequences.
Information and Computation 103 (1993) 299–347

10. Trakhtenbrot, B., Barzdin, J.: Finite automata: behaviour and synthesis. North-
Holland (1973)

11. Hagerer, A., Hungar, H., Niese, O., Steffen, B.: Model generation by moderated
regular extrapolation. In Kutsche, R.D., Weber, H., eds.: Proc. FASE ’02, 5th

Int. Conf. on Fundamental Approaches to Software Engineering. Volume 2306 of
Lecture Notes in Computer Science., Springer Verlag (2002) 80–95

12. Hungar, H., Niese, O., Steffen, B.: Domain-specific optimization in automata learn-
ing. In: Proc. 15th Int. Conf. on Computer Aided Verification. (2003)

13. Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. In Wu, J., Chanson,
S.T., Gao, Q., eds.: Formal Methods for Protocol Engineering and Distributed
Systems, FORTE/PSTV, Beijing, China, Kluwer (1999) 225–240

18

14. Groce, A., Peled, D., Yannakakis, M.: Adaptive model checking. In Katoen, J.P.,
Stevens, P., eds.: Proc. TACAS ’02, 8th Int. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems. Volume 2280 of Lecture Notes in Computer
Science., Springer Verlag (2002) 357–370

15. Berg, T., Jonsson, B., Raffelt, H.: Regular inference for state machines with pa-
rameters. In Baresi, L., Heckel, R., eds.: FASE. Volume 3922 of Lecture Notes in
Computer Science., Springer (2006) 107–121

16. Wolper, P.: Expressing interesting properties of programs in propositional temporal
logic (extended abstract). In: Proc. 13th ACM Symp. on Principles of Programming
Languages. (1986) 184–193

17. Jonsson, B., Parrow, J.: Deciding bisimulation equivalences for a class of non-
finite-state programs. Information and Computation 107 (1993) 272–302

18. Niese, O.: An integrated approach to testing complex systems. Technical report,
Dortmund University (2003) Doctoral thesis.

19. Cobleigh, J., Giannakopoulou, D., Pasareanu, C.: Learning assumptions for compo-
sitional verification. In: Proc. TACAS ’03, 9th Int. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems. Volume 2619 of Lecture Notes in
Computer Science., Springer Verlag (2003) 331–346

20. Ammons, G., Bodik, R., Larus, J.: Mining specificatoins. In: Proc. 29th ACM
Symp. on Principles of Programming Languages. (2002) 4–16

21. Li, K., Groz, R., Shahbaz, M.: Integration testing of distributed components based
on learning parameterized I/O models. In Najm, E., Pradat-Peyre, J.F., Donzeau-
Gouge, V., eds.: FORTE. Volume 4229 of Lecture Notes in Computer Science.
(2006) 436–450

22. Shahbaz, M., Li, K., Groz, R.: Learning and integration of parameterized com-
ponents through testing. In Petrenko, A., Veanes, M., Tretmans, J., Grieskamp,
W., eds.: TestCom/FATES. Volume 4581 of Lecture Notes in Computer Science.,
Springer (2007) 319–334

23. Kohavi, Z.: Switching and Finite Automata Theory: Computer Science Series.
McGraw-Hill Higher Education (1990)

19

