
Regular Inference for State Machines with

Parameters ⋆

Therese Berg1, Bengt Jonsson1, Harald Raffelt2

1 Department of Computer Systems, Uppsala University, Sweden
{thereseb, bengt}@it.uu.se

2 Chair of Programming Systems and Compiler Construction, University of
Dortmund, Germany

harald.raffelt@cs.uni-dortmund.de

Abstract. Techniques for inferring a regular language, in the form of a
finite automaton, from a sufficiently large sample of accepted and nonac-
cepted input words, have been employed to construct models of software
and hardware systems, for use, e.g., in test case generation. We intend
to adapt these techniques to construct state machine models of entities
of communication protocols. The alphabet of such state machines can be
very large, since a symbol typically consists of a protocol data unit type
with a number of parameters, each of which can assume many values.
In typical algorithms for regular inference, the number of needed input
words grows with the size of the alphabet and the size of the minimal
DFA accepting the language. We therefore modify such an algorithm
(Angluin’s algorithm) so that its complexity grows not with the size of
the alphabet, but only with the size of a certain symbolic representation
of the DFA. The main new idea is to infer, for each state, a partitioning
of input symbols into equivalence classes, under the hypothesis that all
input symbols in an equivalence class have the same effect on the state
machine. Whenever such a hypothesis is disproved, equivalence classes
are refined. We show that our modification retains the good properties of
Angluin’s original algorithm, but that its complexity grows with the size
of our symbolic DFA representation rather than with the size of the al-
phabet. We have implemented the algorithm; experiments on synthesized
examples are consistent with these complexity results.

1 Introduction

Model-based techniques for verification and validation of reactive systems, such
as model checking and model-based test generation [BJK+04] have witnessed
drastic advances in the last decades. They depend on the availability of a model,
specifying the intended behavior of a system or component, which typically is
developed during specification and design. However, in practice often no formal
specification is available, or becomes outdated as the system evolves over time.

⋆ Supported in part by the Swedish Research Council, and by the FP6 Network of
Excellence ARTIST2

In, e.g., the telecommunication area, revision cycles are extremely short, and at
the same time the short revision cycles necessitate extensive testing and verifica-
tion. Therefore, there are many cases where the only means to attain correspon-
dence between model and system component is to construct a model directly
from the component. Such models can be constructed by static analysis tech-
niques using its source code, as in software verification (e.g., [BR02,CDH+00,HJMS02,Hol00]).
However, many system components, including peripheral hardware components,
library modules, or third-party components do not allow static analysis of source
code, implying that models must be constructed from observations of their ex-
ternal behavior.

The construction of models from observations of component behavior can
be performed using techniques for regular inference. Such techniques have been
used, e.g., to create models of environment constraints with respect to which
a component should be verified, for regression testing to create a specification
and a test suite [HHNS02,HNS03], to perform model checking without access
to code or to formal models [GPY02,PVY99], for program analysis [ABL02],
and for formal specification and verification [CGP03]. For finite-state reactive
systems, the regular inference problem means to infer a regular language (in
the form of a deterministic finite automaton) from the answers to a finite set of
membership queries, each of which asks whether a certain word is accepted by
the system component under test (SUT) or not. There are several techniques
(e.g., [Ang87,BDG97,Dup96,Gol67,KV94,RS93,TB73]) which use essentially the
same basic principles. Given “enough” membership queries, the constructed au-
tomaton will be a correct model of the SUT. Angluin [Ang87] and others intro-
duce equivalence queries which check whether the regular inference procedure is
completed; if not they are answered by a counterexample on which the current
hypothesis and the SUT disagree.

We intend to use regular inference to construct models of communication
protocol entities. Such entities typically communicate by messages that consists
of a protocol data unit (PDU) type with a number of parameters, each of which
can assume several values. The alphabet of such models is thus typically very
large. Since existing algorithms for regular inference use a number of queries,
which grows polynomially with the size of the alphabet, they are not well suited
for this situation. If some PDU parameters are irrelevant or almost never used,
the algorithm should not be disturbed by their presence.

In this paper, we modify an algorithm for inferring a regular language, so
that it is better adapted for inferring system components with large alphabets
that are built from a small set of action types, each of which has a number of
parameters. Most of these algorithms are based on similar principles: we choose
Angluin’s algorithm [Ang87] since it is well known, and since we have an existing
implementation for this algorithm [RSB05]. The problem of inferring state ma-
chines where messages have arbitrary parameters appears to be very challenging.
As a first step, we will in this paper assume that all parameters are booleans,
and that a SUT can be modeled as an automaton, in which each transition is
labeled by a PDU type and a guard over its parameters. We assume that guards

are conjunctions over positive and negated parameter values. Furthermore, we
will not consider the problem of inferring parameters of possible output data,
but only how input parameters affect the state changes of a state machine. Ideas
for how to extend these rather restrictive limitations are sketched in the last
section of the paper.

Algorithms for regular inference must represent the inferred automaton in
terms of externally observable elements. A state is represented by a set [u] of
input words u such that the automaton after reading u reaches this state. For
each input symbol a, the transition from [u] for input a is constructed by deter-
mining which state is reached after reading ua. In the parameterized case, input
symbols are of the form α(d1, . . . , dn), where α is an action type and d1, . . . , dn

is a tuple of boolean parameter values. We could naively use Angluin’s algorithm
to find the state reached after each of these 2n different input symbols. Instead,
we will strive to save work by assuming that from each automaton state, many
of the input symbols have the same effect on the SUT, and can be regarded as
equivalent. We can then construct a symbolic automaton representation, where
the effect of each set of equivalent input symbols is represented by a transition
from this state, labeled by a guard, i.e., a boolean expression over the param-
eters, which characterizes the equivalence class. In cases where the number of
equivalence classes is small, we would like to perform the inference with less work
(as measured by the number of membership queries) than by a naive application
of Angluin’s algorithm.

Our inference algorithm maintains, for each inferred state, a partitioning of
subsequent input symbols into assumed equivalence classes. Each class is rep-
resented by a small set of representative input symbols that (as far as we have
observed) have the same effect on the SUT. If later, new information is obtained
which contradicts this assumption, the equivalence class is split, thus also split-
ting transitions and generating more refined guards. The guard that labels a
transition is obtained by a search procedure to identify precisely the effect of
parameter values, inspired by work on learning of conjunctions, e.g., [KV94, Ch.
1.3].

In order to develop a consistent algorithm to do the above, we present in this
paper two significant extensions of Angluin’s algorithm:

1. We generalize Angluin’s algorithm so that it can infer a “partially defined”
automaton, which from each state defines the effect of a set of representative
input symbols. The representative symbols are in general only a subset of
all input symbols.

2. We define a mechanism for inferring guards of a parameterized system from
the symbols in an underlying partially defined automaton, by replacing the
representative symbols by guards that characterize the transitions repre-
sented by each symbol. Extra queries may need to be performed to determine
guards more precisely.

Our resulting inference algorithm is intended to infer parameterized systems
where guards of transitions use only a small subset of all parameters of a par-
ticular action type. We establish an upper bound on the number of posed mem-

bership queries, which is exponential in the number of parameters that appear
in guards. In contrast, using Angluin’s original algorithm requires a number of
membership queries which is exponential in the total number of parameters of
input symbols. On the other hand, the number of equivalence queries may grow
in our case, since we add possibilities to construct hypothesized automata based
on less information than in the original algorithm. We have performed a set of
experiments on synthesized examples, which confirm this picture.

Organization. The paper is organized as follows. In the next section, we re-
view Angluin’s algorithm for inferring regular sets, and present a modification
which can cope with the situation that the queries investigate different sets of
suffixes for different prefixes. In Section 3, we present parameterized systems,
and the technique to learn “partially defined” automata, from which guards of
transitions are inferred. We prove that our algorithm retains good properties
of Angluin’s original algorithm, and establish upper bounds on the number of
performed queries. Section 4 describes how we have implemented the ideas of
the preceding section, and Section 5 presents the outcome of experiments on
synthesized examples. Conclusions are presented in Section 6.

2 Inference of Finite Automata

In this section, we review the ideas underlying Angluin’s algorithm, and present
our generalization.

Let Σ be a finite alphabet of symbols. A deterministic finite automaton

(DFA) over Σ is a structure M = (Q, δ, q0, F) where Q is a non-empty finite set
of states, q0 ∈ Q is the initial state, δ : Q × Σ → Q is the transition function,
and F ⊆ Q is the set of accepting states. The transition function is extended
from input symbols to words of input symbols in the standard way, by defining

δ(q, ε) = q
δ(q, ua) = δ(δ(q, u), a)

An input word u is accepted iff δ(q0, u) ∈ F . The language accepted by M,
denoted by L(M), is the set of accepted input words.

Angluin’s algorithm is designed to infer a (minimized) DFA M from a set
of queries, each of which reveals whether a certain word is accepted or not. The
algorithm is formulated in a setting, where a so called Learner, who initially
knows nothing about M, is trying to infer M by asking queries, which are of
two kinds.

– A membership query consists in asking whether a word w ∈ Σ∗ is in L(M).
– An equivalence query consists in asking whether a hypothesized DFA H is

correct, i.e., whether L(H) = L(M). The Oracle will answer yes if H is
correct, or else supply a counterexample, which is a word u that is either in
L(M) \ L(H) or in L(H) \ L(M).

The typical behavior of a Learner is to start by asking a sequence of membership
queries, and gradually build a hypothesized DFA H using the obtained answers.
When the Learner feels that she has built a “stable” hypothesis H, she makes
an equivalence query to find out whether H is equivalent to M. If the result is
successful, the Learner has succeeded, otherwise she uses the returned counterex-
ample to revise H and perform subsequent membership queries until converging
at a new hypothesized DFA, etc.

Let us represent the information gained by the Learner at any point during
the learning process, as a partial mapping Obs from Σ∗ to {+,−}, where +
stands for accepted and − for rejected. The domain Dom(Obs) of Obs is the set of
words for which membership queries have been performed, or which the Oracle

has given as counterexamples in equivalence queries. An inference algorithm
should prescribe how to transform Obs into a DFA H = (Q, δ, q0, F), which is
conformant with Obs , in the sense that any word u ∈ Dom(Obs) is accepted by
H if Obs(u) = + and rejected by H if Obs(u) = −. In general, there are many
such automata, and the problem to find a smallest (in number of states) such
automaton is NP-complete [Gol78]. Angluin and others circumvent this problem
by prescribing conditions on Dom(Obs), under which it is “easy” to find a unique
smallest automaton. These conditions regard each word in Dom(Obs) as the
concatenation of a prefix and a suffix. The idea is that prefixes are candidates
for representing states of the hypothesized automaton, whereas suffixes are used
to distinguish the states.

Angluin [Ang87] supports this prefix-suffix view by representing Obs in terms
of an observation table T , which is a partial function from a prefix-closed set
Dom(T) ⊆ Σ∗ of prefixes. For each u ∈ Dom(T), T (u) is a partial function
from a set Dom(T (u)) ⊆ Σ∗ of suffixes to {+,−}. It is required that ε ∈
Dom(T (u)) for each u ∈ Dom(T). We write Entries(T) to denote {(u, v) : u ∈
Dom(T) and v ∈ Dom(T (u))}. An observation table T represents the partial
mapping Obs if uv ∈ Dom(Obs) and Obs(uv) = T (u)(v) whenever (u, v) ∈
Entries(T).

Define the short prefixes of an observation table T , denoted Sp(T), to be
the set of words u ∈ Dom(T) such that ua ∈ Dom(T) for some a ∈ Σ. An
observation table T is complete if ua ∈ Dom(T) for all u ∈ Sp(T) and a ∈ Σ; it
is suffix-closed if (u, av) ∈ Entries(T) where u ∈ Sp(T) and a ∈ Σ implies that
(ua, v) ∈ Entries(T). For u, u′ ∈ Dom(T), let u ≈T u′ denote that T (u)(v) =
T (u′)(v) whenever v ∈ (Dom(T (u)) ∩ Dom(T (u′))). The table T partitioned

if ≈T is an equivalence relation on Dom(T (u)). A partitioned table is closed

if whenever (u, v) ∈ Entries(T) there is a u′ ∈ Sp(T) with u ≈T u′ and v ∈
Dom(T (u′)); it is consistent if ua ≈T u′a whenever ua, u′a ∈ Dom(T) and
u ≈T u′.

Angluin showed how to construct a unique minimal automaton from a com-
plete, closed, and consistent observation table in the case that Dom(T (u)) is the
same for all u ∈ Dom(T). Our goal in this section is to generalize this construc-
tion to the case where the set Dom(T (u)) of suffixes may differ significantly for
different prefixes u ∈ Dom(T).

Definition 1. Let T be a partitioned, complete, closed, and consistent observa-

tion table. Define the DFA T / ≈T as (Q, δ, q0, F), where

– Q = Dom(T)/ ≈T , i.e., Q is the set of equivalence classes of ≈T ,
– δ([u], a) = [ua] for u ∈ Sp(T),
– q0 = [ε],
– F = {[u] : T (u)(ε) = +} ⊓⊔

Note how closedness and completeness ensures that we can define a transition
for each equivalence class and symbol in Σ, and how consistency ensures that
such transitions have a unique target equivalence class.

We are now ready to state a general theorem that gives constraints on any
FSM that is conformant with an observation function.

Theorem 1 (Characterization Theorem). Let T be a partitioned, complete,

closed, and consistent observation table which represents Obs. If T is suffix-

closed, then the DFA T / ≈T is the minimal automaton conformant with Obs.

Angluin’s algorithm uses a specialization of the conditions in Theorem 1,
where Dom(T (u)) is the same for all u ∈ Dom(T).

3 Inference of Parameterized Systems

In this section, we consider how to adapt the techniques of the previous section to
a setting where symbols in the alphabet are messages with parameters, e.g., as in
a typical communication protocol. Since the problem of inferring state machines
where messages have arbitrary parameters appears to be very challenging, we will
here assume that all parameters are booleans, and that a SUT can be modeled
as an automaton, in which each transition is labeled by a PDU type and a guard
over its parameters. We assume that guards are conjunctions over positive and
negated parameter values. Furthermore, we will not consider the problem of
inferring parameters of possible output data, but only how input parameters
affect the state changes of a state machine.

Let Act be a finite set of actions, each of which has a nonnegative arity. Let
ΣAct be the set of symbols of form α(d1, . . . , dn), where α is an action of arity n,
and d1, . . . , dn are booleans. We will use 0 and 1 to denote the boolean values
false and true, respectively.

We assume a set of formal parameters, ranged over by p, p1, p2, A param-

eterized action is a term of form α(p1, . . . , pn), where α is an action α of arity n,
and p1, . . . , pn are formal parameters. A guard for α(p1, . . . , pn) is a conjunction
whose conjuncts are of form pi or ¬pi with pi ∈ {p1, . . . , pn}. We write p for
p1, . . . , pn and d for d1, . . . , dn. A guarded action is a pair (α(p), g), where α(p)
is a parameterized action, and g is a guard for α(p). A guarded action (α(p), g)
denotes the set [[(α(p), g)]] = {α(d) : g[d/p]} of symbols, whose parameters
satisfy g.

Definition 2 (Parameterized system). Let Act be a finite set of actions. A

parameterized system over Act is a tuple P = (Q,−→, q0, F), where

///.-,()*+��������
SLIR(p1,...,p7), ¬(p4∧p5)

����
��

��
��

SLIR(p1,...,p7), p4∧p5

��?
??

??
??

? ED
ATIR(p1,...,p12), true

BC
oo

/.-,()*+��������ATIR(p1,...,p12), true//

SLIR(p1,...,p7), true
��?

??
??

??
?

/.-,()*+��������
SLIR(p1,...,p7), true

ATIR(p1,...,p12), true{� ��
��

��
��

��
��

��
��

/.-,()*+

SLIR(p1,...,p7), true

ATIR(p1,...,p12), true

U]

Fig. 1. Example of a parameterized system

– Q is a finite set of states,

– −→ is a finite set of transitions. Each transition is a tuple 〈q, α(p), g, q′〉,
where q, q′ ∈ Q are states, and (α(p), g) is a guarded action,

– q0 ∈ Q is the initial state, and

– F ⊆ Q is a set of accepting states,

which is completely specified and deterministic, i.e., for each state q and sym-

bol α(d), there is exactly one transition 〈q, α(p), g, q′〉 from q such that α(d) ∈
[[(α(p), g)]]. ⊓⊔

We write q
α(p),g
−→ q′ to denote that 〈q, α(p), g, q′〉 ∈ −→. A parameterized

system is expanded if whenever q
α(p),g′

−→ q′ and q
α(p),g′′

−→ q′′, and in addition pi or
¬pi is a conjunct of g′, then either pi or ¬pi must be a conjunct of g′′. In other
words, a parameterized system is expanded if all transitions from a state for
some action test the same set of parameters. In Fig. ?? a fragment of a protocol
provided by Mobile Arts AB [?] is given as an example of a parameterized system.

A parameterized system P = (Q,−→, q0, F) over Act denotes the DFA
MP = (Q, δ, q0, F) over ΣAct, where δ is defined by

δ(q, α(d)) = q′ whenever q
α(p),g
−→ q′ and α(d) ∈ [[(α(p), g)]].

Note that δ is well-defined, since P is completely specified and deterministic.
We will adapt Angluin’s algorithm to inference of parameterized systems, in

a situation where each symbol typically has many parameters, but for which the
number of outgoing transitions from each state is small compared to the number
of symbols in ΣAct. Ideally, the effort needed to learn a parameterized system P
should be in proportion to the size of its description as a parameterized system,
and not to its number of states and |ΣAct|, as is the case for Angluin’s algorithm.

To accomplish this, we make two extensions to Angluin’s algorithm. First,
we must abandon the requirement that the constructed observation table T be
complete, since then Dom(T) is at least |ΣAct| times larger than the number of

states of the constructed automaton. Instead of requiring that T be complete,
Dom(T) will for each u ∈ Sp(T) contain a set of representative continuations
uα(d), where α(d) is taken from a subset of ΣAct which in general depends on
u. The ambition is that for each transition of the SUT, labeled α(p), g, from the
state represented by u, the table contains at least one continuation uα(d) for a
representative symbol α(d) with α(d) ∈ [[(α(p), g)]].

Second, in order to construct a parameterized system from an incomplete
observation table, we present a technique to construct guards from representative
symbols. This implies asking additional queries in order to determine guards as
precisely as possible. Of course, we do not know a priori how many transitions
leave a particular state, or how the guards partition symbols into equivalence
classes. Therefore we start with a coarse default partitioning into equivalence
classes, which is refined “by need”. Whenever two words in the same equivalence
class generate different reactions by the SUT, we split the equivalence class by
introducing more guards.

In order to maintain a current hypothesis about guards, we augment the
observation table T by a labeling function γ, which to each prefix ua ∈ Dom(T)
assigns a guarded action γu(a). The idea is that the constructed parameterized
system, after having processed the input word u, will process the input symbol
a using a transition labeled by γu(a). We make the natural requirements that
a ∈ [[γu(a)]], and that the labeling function should suggest guards that make
the resulting automaton completely specified and deterministic, i.e., for each
u ∈ Sp(T), we have

–
⋃

ua∈Dom(T)

[[γu(a)]] = ΣAct, and

– ua, ua′ ∈ Dom(T) implies either [[γu(a)]] = [[γu(a′)]] or [[γu(a)]]∩[[γu(a′)]] = ∅.

The addition of a labeling function makes it natural to strengthen the notion of
consistency, to allow a unique parameterized system to be constructed from an
observation table with a labeling function.

Definition 3. A labeling function γ for an observation table T is guard-consistent
if for any ua, u′a′ ∈ Dom(T) such that u ≈T u′ and [[γu(a)]] ∩ [[γu′(a′)]] 6= ∅, we

have ua ≈T u′a′.

Intuitively, whereas consistency states that extensions ua and u′a in Dom(T) of
equivalent prefixes u and u′ with the same symbol a should also be equivalent,
guard-consistency requires that two symbols a, a′, whose labeling functions over-

lap should have equivalent extensions in Dom(T). Note that guard-consistency
as a special case implies that ua ≈T ua′ whenever ua, ua′ ∈ Dom(T) and
[[γu(a)]] = [[γu(a′)]].

We now have defined enough concepts to be able to define how to construct
a parameterized system from an observation table with a labeling function.

Definition 4. Let Act be a finite set of actions. Let T be a partitioned, closed,

and consistent observation table, and let γ be a guard-consistent labeling function

for T . Define the parameterized system 〈T , γ〉/ ≈T as (Q,−→, q0, F), where

– Q = Dom(T)/ ≈T ,

– [u]
α(p),g
−→ [ua] whenever ua ∈ Dom(T) and γu(a) = (α(p), g), and u is the

principal prefix in [u],
– q0 = [ε], and

– F = {[u] : T (u)(ε) = +}.

where for each equivalence class [u] we have designated a unique principal prefix

u′ ∈ [u] with u′ ∈ Sp(T). ⊓⊔

Note that guard-consistency guarantees that different choices of principal pre-
fixes result in equivalent parameterized systems.

In general, there are many different guard-consistent labeling functions for a
given observation table. We therefore define an additional criterion which con-
strains how conjuncts may occur in guards of a labeling function. In a table T ,
define a witnessing pair for a prefix u ∈ Sp(T), action α, and index i, to be a

pair of prefixes uα(d), uα(d
′
) ∈ Dom(T) such that

– uα(d) 6≈T uα(d
′
), and

– d = (d1, . . . , di, . . . , dn) and d
′

= (d1, . . . , d
′
i, . . . , dn) differ only in the ith

parameter.

Definition 5. A labeling function γ for T is well-witnessed if whenever γu(a) =
(α(p), g) then

– whenever pi or ¬pi is a conjunct in g, then T contains a witnessing pair for

u, α, and i.
– there is a conjunct pj or ¬pj of g such that T contains a witnessing pair

uα(d), uα(d
′
) for u, α, and j, such that α(d) ∈ [[(α(p), g)]]. ⊓⊔

Intuitively, the first requirement states that each conjunct of a guard g should
be motivated by a witnessing pair in T , which however need not contain a prefix
that satisfies g. The second requirement states that g should be satisfied by the
last symbol of at least one prefix in a witnessing pair.

We are now ready to state a theorem which relates a parameterized system
〈T , γ〉/ ≈T constructed from an observation table T , and the internal structure
of the SUT.

We first adapt Theorem 1 to be sure that 〈T , γ〉/ ≈T agrees with the obser-
vations.

Theorem 2. Let T be a partitioned, closed, and consistent observation table,

and let γ be an ≈T -compatible and guard-consistent labeling function for T . If

T is suffix-closed, then the parameterized system 〈T , γ〉/ ≈T is conformant with

T .

Proof. The theorem follows by adapting Theorem 1 to incomplete observation
tables, and the requirement that a ∈ [[γu(a)]] for all ua ∈ Dom(T). ⊓⊔

A more informative theorem, which can be seen as an analogue of Theorem
1 in [Ang87], is as follows,.

Theorem 3. Let T be a partitioned, closed, consistent, and suffix-closed obser-

vation table, and let γ be a guard-consistent and well-witnessed labeling function

for T . Let 〈T , γ〉/ ≈T be (Q,−→, q0, F) with n states. Let P = (R,−→′, r0, G)
be any expanded parameterized system which is conformant with T . Then P has

at least n states and there is a surjective mapping h from R to Q such that

– h(r0) = q0,
– r ∈ G iff h(r) ∈ F ,

– if P has exactly n states then, whenever h(r) = q and q
α(p),g
−→ q′, there are

g′, r′ such that r
α(p),g′

−→ r′ with h(r′) = q′ and g′ =⇒ g.

This implies that if P has n states then 〈T , γ〉/ ≈T has at most as many tran-

sitions as P.

Optimization The process of obtaining a well-witnessed labeling function may
need a number of additional queries, which cause Dom(T) to be extended. The
requirement that ≈T be an equivalence relation on Dom(T) may then necessitate
even more queries, which are not necessary for making γ well-witnessed. To allow
to save queries, we allow prefixes in Dom(T) to be classified as either essential

or auxiliary. We now say that an observation table is partitioned if

– For each ua ∈ Dom(T), there is an essential ua′ ∈ Dom(T) with γu(a′) =
γu(a),

– ε is an essential prefix, and
– ≈T is an equivalence relation on essential prefixes in Dom(T).

4 An Algorithm for Inference of Parameterized Systems

In this section, we present an algorithm for inferring parameterized systems,
based on the concepts introduced in Section 3.

The basic idea of our algorithm is to perform membership queries until we
have a suffix-closed, partitioned, closed, and consistent observation table with a
guard-consistent and well-witnessed labeling function. We can then construct a
conjecture and pose an equivalence query. As long as the table does not satisfy
some condition mentioned in Theorem 3, this is handled as follows.

– If T is not suffix-closed, i.e., there is a (u, av) ∈ Entries(T) where u ∈
Sp(T), such that (ua, v) 6∈ Entries(T), then add (ua, v) to Entries(T) (letting
T (ua)(v) = T (u)(av)).

– If T is not partitioned, i.e., ≈T is not an equivalence relation, then there are
u, u′, u′′ ∈ Dom(T) such that u ≈T u′, u ≈T u′′ but T (u′)(v) 6= T (u′′)(v)
for some v. In this case, ask a membership query for uv, whose result is
entered as T (u)(v) to determine whether u should be equivalent to u′ or u′′.

– If T is not closed, then for some ua ∈ Dom(T) we have ua 6≈T u′ for all
u′ ∈ Sp(T). We then add ua to Sp(T) by adding, for each α ∈ Act, some
word of form uaα(d) to Dom(T), and let γua(α(d)) = (α, true). Priority

given to parameters d
′

for which α(d
′
)v ∈ Dom(T (ua)) for some v, since

suffix-closedness then requires that uaα(d
′
) ∈ Dom(T).

– If T is not consistent, then we have two entries (ua, v) and (u′a, v) in
Entries(T) with T (ua)(v) 6= T (u′a)(v) but u ≈T u′. Then add (u, av) and
(u′, av) to Entries(T) and enter the results from T (ua)(v) and T (u′a)(v),
respectively.

The table must also be equipped with a labeling function γ, which is main-
tained during the algorithm. Initially, for each u ∈ Sp(T) and each action α,
we choose some values d for the parameters of α, and let uα(d) ∈ Dom(T)
with γu(α(d)) = (α, true). Whenever we add a prefix uα(d) to Dom(T) the
labeling function is updated in one of two ways. If there is not yet a prefix

uα(d
′
) ∈ Dom(T) for any d

′
we let γu(α(d)) = (α, true), otherwise we let

γu(α(d)) = γu(α(d
′
)), where α(d

′
) is the existing symbol such that α(d) ∈

[[

γu(α(d
′
))

]]

.

If Dom(T) contains only one prefix uα(d) for each u and α, then γ is well-

witnessed. However, if another prefix uα(d
′
) is entered, for which uα(d) 6≈T

uα(d
′
), this destroys the guard-consistency. We then have to refine the labeling

function γ, and possibly also the partitioning into equivalence classes.

If γ is not guard-consistent, this may be because there are u, a, and a′

such that γu(a) = γu(a′) but ua 6≈T ua′. Let γu(a) be (α(p), g). In this case,
we must split the guard g so that a and a′ are assigned disjoint guards. In
order to find an appropriate parameter for the splitting, and to keep γ well-
witnessed, we find (e.g., by binary search) two tuples, d = (d1, . . . , 1, . . . , dn)

and d
′
= (d1, . . . , 0, . . . , dn), of parameter values of α, with α(d), α(d

′
) ∈ [[γu(a)]],

which differ only in some parameter (with index, say, i), such that T (uα(d))(v) 6=

T (uα(d
′
))(v) for some v. We then add (uα(d), v) and (uα(d

′
), v) to Entries(T),

and update the labeling function so that all ua′′ ∈ [[γu(a)]] now labeled by the
guard g ∧ pi or g ∧ ¬pi.

A second source of guard-inconsistency is that we can have two equivalent
prefixes in Sp(T) which have different partitionings of the next symbols, induced
by the labeling function. It must then always be the case that there exist u, u′, a,
and a′ such that ua, u′a′ ∈ Dom(T), u ≈T u′, and a′ ∈ [[γu(a)]] but T (ua)(v) 6=
T (u′a′)(v) for some v. A membership query for ua′v should clarify the situation,
either giving rise to a guard-inconsistency, or causing u 6≈T u′ (and continuing
processing it as an inconsistency).

When we have a partitioned, suffix-closed, consistent, and closed table with
a well-witnessed and guard-consistent labeling function, we can construct a con-
jecture as described in Definition 4. The conjecture is provided to the oracle in
an equivalence query and the oracle in turn either gives an affirmative answer or
a counter-example. In the first case, the algorithm terminates and outputs the
correct model. In the second case, the oracle returns a counter-example, i.e., a
word u such that Obs(u) = + but the provided automaton does not accept u
(or vice versa). As in the standard algorithm of Angluin, we enter all prefixes of
u into Dom(T). This will subsequently cause either an inconsistency and hence
a ”new” state, or a guard-inconsistency and hence a “new” transition.

Algorithm Query complexity We estimate the complexity of our algorithm in
terms of a minimal expanded parameterized system which accepts exactly the
language as the SUT. Let n be its number of states, let m be the number of
transitions, let |Act| be the number of actions in Act, let |ΣAct| be the number of
symbols in ΣAct, and let c be the length of the longest counter-example received
from the oracle.

The expected bottle-neck in practice for an inference algorithm is the number
of membership and equivalence queries, since queries often involve comparatively
slow communication with an external device. Let us first estimate the number
of equivalence queries. An equivalence query can either give rise to

– an inconsistency which results in a new state; this can occur at most n times,
or

– a guard-inconsistency which results in splitting a guard; this can occur at
most m − n|Act| times.

Hence the algorithm performs at most n + m − n|Act| equivalence queries.
Let us then estimate the number of membership queries. The number of

membership queries required are dependent on the number of prefixes in Dom(T)
and the maximum number of suffixes in any Dom(T (u)). Each Dom(T (u))
contains at most n suffixes, since each time we add a new suffix to Dom(T (u))
we separate at least a pair of prefixes into different equivalence classes. The
number of prefixes in Dom(T) is at most

– one for each equivalence class; totally n, plus
– one for each state and action, plus an extra essential pair of prefixes as

witness for each transition, in total n|Act| + 2m, plus
– prefixes of counterexamples, in total c(n + m − n|Act|).

Hence the number of membership queries performed by the algorithm is O(cmn)
(since n|Act| ≤ m). We can contrast this with a naive application of Angluins
algorithm, which in the worst case requires O(cn2|ΣAct|) membership queries.
Thus, whereas a naive use of Angluins algorithm uses a number of membership
queries which grows linearly with |ΣAct|, i.e., exponentially in the arity of actions,
our algorithm grows exponentially only with the number of parameters of an
action that is used in guards of transitions. It should be remarked that Angluin’s
treatment of counterexamples is poorly optimized, resulting in the factor c in
the worst-case bound. Rivest and Shapire [RS93] have presented techniques for
replacing the factor c by log c, which should apply also to our algorithm.

5 Experimental Results

We are interested in examining how the performance of the inference algorithm
for parameterized systems depends on the number of parameters that occur in
guards in the transitions of the system and how it compares with a naive ap-
plication of Angluin’s algorithm. Let us first define a measure for this. Let the
parameter complexity for a state q and action α of a parameterized system, be the

Fig. 2. Experimental results on random generated parameterized systems with 50
states and 5 parameters

total number of different parameters used in guards on transitions from q labeled
α(p). We want to investigate how the parameter complexity effects the number
of membership and equivalence queries required by the algorithm. For this pur-
pose, we have implemented our inference algorithm for parameterized systems.
The implementation is in C++ as an extension of the LearnLib tool [RSB05],
developed at Dortmund University.

We measure performance on randomly generated parameterized systems and
a small model of an instance of a protocol provided by Mobile Arts AB (see
Fig. ??). The protocol was first modeled in LOTOS and then transformed into a
DFA by the CAESAR/ALDEBARAN Development Package [?]. The protocol is
a small fragment of the Network Presence Center (NPC) product of the company.
The NPC is a middle-ware product to allow Mobile Network Operators to provide
various presence information from the GSM network. The parameterized system
model of the protocol has 4 states, one action with arity 12 and another with arity
7. The first action has on average parameter complexity 0 and the second 0.5. In
the randomly generated systems we have used actions with arity 5, and generated
automata in which each state-action pair has the same parameter complexity. We
have varied the parameter complexity between 1 and 5. The systems has then
been inferred both by our algorithm and by Angluin’s algorithm. The results
of the experiments are summarized in Figure 1, where the left diagram shows
the number of membership queries, and the right diagram shows the number of
equivalence queries.

The left diagram shows that the number of membership queries for our algo-
rithm grows exponentially with the parameter complexity of the system, whereas
it is independent of parameter complexity for Angluin’s original algorithm. For
a parameter complexity of less than 3, our algorithm performs better, but when
parameter complexity increases, the overhead of our algorithm makes it clearly
worse than Angluin’s. The right diagram shows that our algorithm always per-
forms more equivalence queries than Angluin’s.

Applying Angluin’s algorithm to Mobile Arts’ protocol fragment gives rise to
76000 membership queries and 3 equivalence queries, while our algorithm only

requires 21 membership queries and 4 equivalence queries. The reason for this
difference is the relatively low parameter complexity in the overall system in
comparison to the high arity of its actions.

The higher number of equivalence queries for our algorithm is an expected
consequence of the observation that our algorithm allows to construct equiv-
alence queries that are based on less complete information than Angluin’s al-
gorithm. In particular, we allow equivalence queries even if the refinement of
equivalence classes of symbols is not completed. For higher parameter complex-
ity (4 or 5), the difference in number of equivalence queries is significant. We
believe that this explains the sharp growth of membership queries for parameter
complexities 4 and 5, since a large number of equivalence queries gives rise to an
explosion in membership queries that are caused by prefixes of counterexamples.

6 Conclusions

In this paper, we have adapted techniques for inference of finite automata from
sets of observations, in order that they perform better for state machines whose
symbols are generated from a small set of actions, each of which has a set of
parameters. Our algorithm tries to find representative observations, from which
we infer guards of transitions by techniques for inferring boolean expressions.
Thus, our work indicates a way to combine techniques for inferring properties of
data types with regular inference techniques for inferring reactive behavior. Our
algorithm requires less observations in the case that only a subset of parameters
are used to determine the behavior of the machine at each transition. Future
work includes to improve the handling of counterexamples in our tool, and to
evaluate our techniques on a realistic communication protocol module.

Since our framwork limits us to only handeling inputs but not outputs, we
suggest possible solutions. One approach is to infer a Mealy machine like Steffen
et al. [?] but with our framework of handeling parameterized input actions. The
other approach is to use our framework but encode the input and output into
parameterized actions of a parameterized system. This will of course blow up
the alphabet, but the dependences between input and output will be recorded
in boolean formulas which may lead to very compact models.

Acknowledgement At last we would like to thank Bernhard Steffen for helpful
hints and discussion.

References

1. Broy, M., Jonsson, B., Katoen, J.P., Leucker, M., Pretschner, A., eds.: Model-Based
Testing of Reactive Systems. Volume 3472 of LNCS. Springer Verlag (2004)

2. Ball, T., Rajamani, S.: The SLAM project: Debugging system software via static
analysis. In: Proc. 29th ACM Symp. on Principles of Programming Languages.
(2002) 1–3

3. Corbett, J., Dwyer, M., Hatcliff, J., Laubach, S., Pasareanu, C., Robby, Zheng, H.:
Bandera: Extracting finite-state models from java source code. In: Proc. 22nd Int.
Conf. on Software Engineering. (2000)

4. Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Proc.
29th ACM Symp. on Principles of Programming Languages. (2002) 58–70

5. Holzmann, G.: Logic verification of ANSI-C code with SPIN. In Havelund, K.,
Penix, J., Visser, W., eds.: SPIN Model Checking and Software Verification: Proc.
7th Int. SPIN Workshop. Volume 1885 of Lecture Notes in Computer Science.,
Stanford, CA, Springer Verlag (2000) 131–147

6. Hagerer, A., Hungar, H., Niese, O., Steffen, B.: Model generation by moderated
regular extrapolation. In Kutsche, R.D., Weber, H., eds.: Proc. FASE ’02, 5th

Int. Conf. on Fundamental Approaches to Software Engineering. Volume 2306 of
Lecture Notes in Computer Science., Springer Verlag (2002) 80–95

7. Hungar, H., Niese, O., Steffen, B.: Domain-specific optimization in automata learn-
ing. In: Proc. 15th Int. Conf. on Computer Aided Verification. (2003)

8. Groce, A., Peled, D., Yannakakis, M.: Adaptive model checking. In Katoen, J.P.,
Stevens, P., eds.: Proc. TACAS ’02, 8th Int. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems. Volume 2280 of Lecture Notes in Computer
Science., Springer Verlag (2002) 357–370

9. Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. In Wu, J., Chanson,
S.T., Gao, Q., eds.: Formal Methods for Protocol Engineering and Distributed
Systems, FORTE/PSTV, Beijing, China, Kluwer (1999) 225–240

10. Ammons, G., Bodik, R., Larus, J.: Mining specificatoins. In: Proc. 29th ACM
Symp. on Principles of Programming Languages. (2002) 4–16

11. Cobleigh, J., Giannakopoulou, D., Pasareanu, C.: Learning assumptions for compo-
sitional verification. In: Proc. TACAS ’03, 9th Int. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems. Volume 2619 of Lecture Notes in
Computer Science., Springer Verlag (2003) 331–346

12. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75 (1987) 87–106

13. Balcázar, J., Daz, J., Gavaldá, R.: Algorithms for learning finite automata from
queries: A unified view. In: Advances in Algorithms, Languages, and Complexity.
Kluwer (1997) 53–72

14. Dupont, P.: Incremental regular inference. In Miclet, L., de la Higuera, C., eds.:
ICGI. Volume 1147 of Lecture Notes in Computer Science., Springer (1996) 222–
237

15. Gold, E.M.: Language identification in the limit. Information and Control 10

(1967) 447–474
16. Kearns, M., Vazirani, U.: An Introduction to Computational Learning Theory.

MIT Press (1994)
17. Rivest, R., Schapire, R.: Inference of finite automata using homing sequences.

Information and Computation 103 (1993) 299–347
18. Trakhtenbrot, B., Barzdin, J.: Finite automata: behaviour and synthesis. North-

Holland (1973)
19. Raffelt, H., Steffen, B., Berg, T.: Learnlib: a library for automata learning and

experimentation. In: FMICS ’05: Proceedings of the 10th international workshop
on Formal methods for industrial critical systems, New York, NY, USA, ACM
Press (2005) 62–71

20. Gold, E.M.: Complexity of automaton identification from given data. Information
and Control 37 (1978) 302–320

21. Blom, J., Jonsson, B.: Automated test generation for industrial erlang applications.
In: Proc. 2003 ACM SIGPLAN workshop on Erlang, Uppsala, Sweden (2003) 8–14

22. Garavel, H., Lang, F., Mateescu, R.: An overview of cadp 2001 (2002) Newsletter.
23. Steffen, B., Margaria, T., Raffelt, H., Niese, O.: Efficient test-based model gen-

eration of legacy systems. In: HLDVT’04: Proc. of the 9th IEEE Int. Workshop
on High Level Design Validation and Test, Sonoma (CA), USA, IEEE Computer
Society Press (2004) 95–100

