Assume-Guarantee Reasoning
for Safe Component Behaviours

Chris Chilton!, Bengt Jonsson?, and Marta Kwiatkowska!

! Department of Computer Science, University of Oxford, UK
2 Department of Information Technology, Uppsala University, Sweden

Abstract. We formulate a sound and complete assume-guarantee frame-
work for reasoning compositionally about safety properties of component
behaviours. The specification of a component, which constrains the tem-
poral ordering of input and output interactions with the environment,
is expressed in terms of two prefix-closed sets of traces: an assumption
and guarantee. The framework supports dynamic reasoning about com-
ponents and specifications, and includes rules for parallel composition,
logical conjunction corresponding to independent development, and quo-
tient for incremental synthesis. Practical applicability of the framework
is demonstrated by considering a simple printing example.

Keywords: assume-guarantee, specification theory, components, com-
positionality, parallel, conjunction, quotient.

1 Introduction

Component-based design methodologies enable both design- and run-time as-
sembly of software systems from heterogeneous components, thus facilitating
component reuse, incremental development and independent implementability.
To improve the reliability and predictability of such systems, specification the-
ories have been proposed that permit the mixing of specifications and imple-
mentations, and allow for the construction of new components from existing
ones by means of compositional operators [1U213]. A specification should make
explicit the assumptions that a component can make about the environment,
and the corresponding guarantees that it will provide about its own behaviour.
This allows for the use of compositional assume-guarantee (AG) reasoning, in
order to combat issues of complexity and state space explosion during system
development and verification.

In earlier work [4], we introduced a component-based specification theory, in
which components communicate by synchronisation of I/O actions, with the un-
derstanding that inputs are controlled by the environment, while outputs (which
are non-blocking) are under the control of the component. The component-model
is conceptually similar to the interface automata of de Alfaro and Henzinger [5],
except that our refinement is based on classical sets of traces, as opposed to alter-
nating simulation, and that we allow explicit specification of inconsistent traces,
which can model underspecification and errors, etc. With both trace-based and

2 C. Chilton, B. Jonsson, and M. Kwiatkowska

operational representations for components, a distinguishing feature of our the-
ory is the inclusion of conjunction and quotient operators (which generalise those
of [2l6]) for supporting independent and incremental development, respectively.
Logical disjunction and hiding can also be added. The theory enjoys strong al-
gebraic properties with all the operators being compositional under refinement,
and we prove full abstraction with respect to a simple testing framework.

In [4] and [5], the assumptions and guarantees of components are merged
into one behavioural representation. In many cases, this avoids duplication of
common information, although there are situations in which it is desirable to
manipulate the assumptions and guarantees separately. For instance, we may
want to express a simple guarantee (such as “no failure will occur”) without
having to weave it into a complex assumption. Another advantage of separation
is specification reuse, in that the same guarantees (or assumptions) can be used
for several related interfaces, each representing different versions of a component.

Contributions. In this paper, we present a complete specification theory for
reasoning about AG specifications of components (as modelled in [4]). Assump-
tions and guarantees are prefix-closed sets of traces, meaning our framework
facilitates reasoning about safety behaviours, and differs from (arguably) more
complex approaches based on modal specifications and alternating simulation.
Building upon the theory in [4], we define the operators of parallel, conjunc-
tion and quotient directly on AG specifications (the last being the first such
definition), and prove their compositionality. By treating AG specifications as
first-class citizens, the theory supports flexible development and verification of
component-based systems using AG principles. A component can be charac-
terised by its weakest AG specification, and, in the opposite direction, we can
infer the least refined component satisfying a given specification. From this, a
notion of refinement corresponding to implementation containment is defined.
In relating implementations with AG specifications by means of satisfaction, we
formulate a collection of sound and complete AG reasoning rules for the preser-
vation of safety properties under the operations and refinement preorder of the
specification theory. These rules are inspired by the Compositionality Principle
of [TI§] for parallel composition, which we generalise to the operations of con-
junction and quotient. The rules allow us to infer properties of compositions
for both AG specifications and components, thus enabling designers to deduce
whether it is safe to substitute a component, for example one synthesised at
run-time by means of the quotient operator, with another.

Related Work. Compositional AG reasoning has been extensively studied in
the literature, where traditionally the work was concerned with compositional
reasoning for processes, components and properties expressed in temporal log-
ics [9UIONTT]. A variety of rule formats have been proposed, although Maier
demonstrates through a set-theoretic setting in [12] that compositional circular
AG rules for parallel composition (corresponding to intersection) cannot both
be sound and complete. This seems to contradict the work of Namjoshi and Tre-

Assume-Guarantee Reasoning for Safe Component Behaviours 3

fler [13], although the discrepancy is attributed to the fact that the sound and
complete circular rule presented in [I3] is non-compositional.

Compositional reasoning about AG specifications in the form of AG pairs,
similar to what we consider in this paper, is discussed in [7] for the generic setting
of state-based processes. The authors formulate a Compositionality Principle for
parallel composition, and observe that this is sound for safety properties. A logi-
cal formulation for specifications is then discussed in [§], where intuitionistic and
linear logic approaches are put forward. The main difference with our approach
is that we consider an action-based component model and have a richer set of
composition operators, including conjunction and quotient. We also prove com-
pleteness, by relying on the convention that an output is controlled by at most
one component, which can be used to break circularity.

More recent proposals focus on compositional verification for interface theo-
ries [T415], namely interface and I/O automata, which are closest to our work.
In [I4], Emmi et al. extend a learning-based compositional AG method to inter-
face automata. They only consider the much more limited asymmetric rules for
safety properties, which are shown to be both sound and complete. The rules are
supplied for the original subset of operators and relations defined in [5], namely
compatibility, parallel composition and refinement based on alternating simula-
tion. Thus, no consideration is given to conjunction or quotient. Other notable
work concerning compositional reasoning for interface theories is the AG frame-
work defined by Larsen et al. in [I5] for I/O automata, where assumptions and
guarantees are themselves specified as I/O automata. The authors consider a
parallel composition operator on AG specifications that is the weakest specifi-
cation for composed components respecting independent implementability, for
which they present a sound and complete rule. Our work allows a more gen-
eral component model that does not require input-enabledness, and allows for
specifications to have non-identical interfaces to their implementations. We go
beyond [I5] by defining conjunction and quotient operations directly on AG
specifications, thus providing a significantly richer basis for AG based reasoning
and development, and we do not require input-enabledness of guarantees.

A compositional specification theory based on modal specifications has been
developed in [3], which includes all the operations we consider in this paper,
but for systems without I/O distinction. Larsen et al. consider a cross between
modal specifications and interface automata [I], where refinement is given in
terms of alternating simulation/modal refinement (which is stronger than our
trace containment), and no operations for conjunction and quotient are given.
Surveying [16], Bauer et al. provide a generic construction for obtaining a con-
tract framework based on AG pairs from a component-based specification theory.
The abstract ideas share similarity with our framework, and it is interesting to
note how parallel composition of contracts is defined in terms of the conjunction
and quotient operators of the specification theory. Our work differs in that we
define both of these operators directly on contracts. A definition of conjunction
on contracts is provided in [I7], but this is for a simplified contract framework,
as witnessed by the definition of parallel composition on contracts.

4 C. Chilton, B. Jonsson, and M. Kwiatkowska

Outline. In Section[2] we summarise the compositional specification theory of [4],
which serves as a basis for our AG reasoning framework. Section [3] introduces
the main definitions of the AG framework, and presents a number of sound
and complete compositional rules for the operators of the specification theory.
An application of our framework is illustrated in Section [d] while Section
concludes our work and suggests possible extensions. Proofs of our results are
made available as the technical report [18].

2 Compositional Specification Theory

In this section, we briefly survey the essential features of our compositional
specification theory presented in [4]. In that paper, we present two notations for
modelling components: a trace-based formalism and an operational representa-
tion. Here we focus on the trace-based models, since operational models can be
mapped to semantically equivalent trace-based ones.

A component comes equipped with an interface, together with a set of be-
haviours over the interface. The interface is represented by a set of input actions
and a set of output actions, which are necessarily disjoint, while the behaviour
is characterised by sets of traces.

Definition 1 (Components). A component P is a tuple (AL, AQ, Tp, Fp) in
which Agp and ./470D are disjoint sets referred to as inputs and outputs respectively
(the union of which is denoted by Ap), Tp C A} is a non-empty set of permis-
sible traces, and Fp C A} is a set of inconsistent traces. The trace sets must
satisfy the constraints:

1. Fp CTp

2. Ift e Tp and i € AL, then ti € Tp
3. Tp is prefix closed

4. Ift€ Fp and t' € A}, then tt' € Fp.

The permissible traces contain all possible interaction sequences between the
component and the environment; they are thus receptive to all inputs, as these
are under the control of the environment. If on some interaction sequence an
error arises in the component, or the environment issues a non-enabled input,
the trace is said to be inconsistent. We adopt the convention that any inconsistent
trace is suffix closed, meaning that, once the component becomes inconsistent,
it behaves similarly to the process CHAOS in CSP.

From hereon let P, Q and R be components with signatures (AL, Ag, Tp, Fp),
(AL, AG, Tq, Fo) and (A%, AR, Tr, Fr) respectively.

Notation. Let A, B and C be sets of actions. For a trace ¢, write t | A for the
projection of ¢ onto A. Now for T C A*, write T [Bfor {t | B:t€ T}, TH B
for {teB*:t| AT}, T Bfore+ (T B)(e+.A!), T 1 B for T(B)(AUB)*,
T te Bfor TU(T 1 B), T for A*\ T, and pre(T) for the largest prefix-closed set
contained in T.

Assume-Guarantee Reasoning for Safe Component Behaviours 5

Refinement. In the specification theory, refinement corresponds to safe-substitutivity.
This means that Q is a refinement of P if Q can be used safely in any environ-
ment that is safe for P. An environment is safe for a component if any interaction
between the two cannot be extended by a sequence of output actions under the
control of the component such that the resulting trace is inconsistent. We will
thus need to consider the safe representation of a component, obtained by prop-
agating inconsistencies backwards over outputs.

Definition 2 (Safe component). Let P be a component. The most general
safe representation for P is a component E(P) = <A§,,Ag,Tg(7y), Fepy), where
Tg(p) = TpUFg(p) and Fg(p) = {tt/ S Ai}} :t€Tp and " € (Ag)*'tt" S Fp}.

We can now give the formal definition of refinement. Intuitively, @ must be
willing to accept any input that P can accept, but it must produce no more
outputs than P, otherwise we could not be certain how the environment would
respond to these additional outputs.

Definition 3 (Refinement). For components P and Q, Q is said to be a re-
finement of P, written Q T,y P, iff:

1. AL C AL

2. AG C A

3. Tecg) € Tepy UTepy 1 (A5 \ Ab)
4. Fe(q) S Feepy UTe(p) T (Ag \ Ap).

The set Tg(py T (A5 \Ap) represents the extension of P’s interface to include
all inputs in .AIQ \ .A{;. As these inputs are not ordinarily accepted by P, they
are treated as bad inputs, hence the suffix closure with arbitrary behaviour.

Parallel Composition. The parallel composition of two components is obtained as
the cross-product by synchronising on common actions and interleaving on inde-
pendent actions. To support broadcasting, we make the assumption that inputs
and outputs synchronise to produce outputs. Communication mismatches aris-
ing through non-input enabledness automatically appear as inconsistent traces
in the product, on account of our component formulation. As the outputs of
a component are controlled locally, we assume that the output actions of the
components to be composed are disjoint.

Definition 4 (Parallel composition). Let P and Q be components such that
AZNAZ = 0. Then P || Q is the component <A7I;.HQ7A7O,HQ,TPHQ,FPHQ>, where:

= Apjg = (Ap UAG) \ (ABUAQ)
— ARjjg = ABUAG
= Fpo = [(Tp 1 Apjio) N (Fo 1t Apjjo)]Ap o U

6 C. Chilton, B. Jonsson, and M. Kwiatkowska

Informally, a trace is permissible in P || Q if its projection onto Ap is a
trace of P and its projection onto Ag is a trace of Q. A trace is inconsistent if
it has a prefix whose projection onto the alphabet of one of the components is
inconsistent and the projection onto the alphabet of the other component is a
permissible trace of that component.

Conjunction. The conjunction of components P and @ is the coarsest component
that will work safely in any environment that P or Q can work safely in. It can be
thought of as finding a common implementation for a number of specifications.
Thus, conjunction is essentially the meet operator on the refinement preorder.
Consequently, the conjunction of two components is only defined when the union
of their inputs is disjoint from the union of their outputs.

Definition 5 (Conjunction). Let P and Q be components such that AL, U A§
and AQ U Ag are disjoint. Then P A Q is the component <A§;AQ,A2AQ,TPAQ,
Fpao), where:

- A%/\Q = Aé U ‘Aé

— ABg = AR NAQG

= Tppg = [(TpUTp T (AG\ AR)) N (ToUTo T (Ap \ AL)) NAS g
— FPpro=[(FpUTp 1 (AG\ Ap)) N (FoUTo 1 (Ap \ AG))] N Ap -

Intuitively, after any trace of P A Q, the conjunction must accept any input
offered by either P or Q, but can only issue an output if both P and Q are
willing to offer it. Once P becomes inconsistent, or an input is seen that is not
an input of P, the conjunction behaves like Q (and vice-versa).

Quotient. In [4], we introduced a quotient operator acting on components. Given
a component R, together with a component P implementing part of R, the
quotient R/P yields the coarsest component for the remaining part of R to be
implemented. Thus, the quotient satisfies the property: there exists Q such that
Pl QCimp Rt P || (R/P) Cimp R and Q Ty (R/P). Whether the quotient
exists depends on the extent to which P is a sub-component of R.

For the development in this paper, we will not use quotient on components,
and refer to [4]. Instead, we will define a quotient operator that acts on AG spec-
ifications. Thus, the quotient of two AG specifications yields an AG specification
characterising a set of component implementations.

3 Assume-Guarantee Framework for Safety Properties

To support reasoning about components, we introduce the concept of an AG
specification, which consists of two prefix-closed sets of traces referred to as the
assumption and guarantee. The assumption specifies the environment’s allowable
interaction sequences, while the guarantee is a constraint on the component’s

Assume-Guarantee Reasoning for Safe Component Behaviours 7

behaviour. As assumptions and guarantees are prefix-closed, our theory ensures
that components preserve (not necessarily regular) safety propertiesﬂ

Definition 6 (AG specification). An AG specification S is a tuple (A%, A2,
Rs,Gs), in which AL and AL are disjoint sets, referred to as the inputs and
outputs respectively, and Rs and Gs are prefix closed subsets of (Afg U Ag)*,
referred to as the assumption and guarantee respectively, such thatt € Rs and
t' € (AQ)* implies tt' € Rs.

Since outputs are under the control of a component, we insist that assump-
tions are closed under output-extensions. On the other hand, we need not insist
that the guarantee is closed under input-extensions, since the assumption can
select inputs under which the guarantee is given.

Given an AG specification S, we want to be able to say whether a component
P satisfies S. Informally, P satisfies S if for any interaction between P and the
environment characterised by a trace ¢, if t € Rg, then ¢ € Gs and ¢ cannot
become inconsistent in P without further stimulation from the environment.
Components can thus be thought of as implementations of AG specifications.

Before defining satisfaction, we need to introduce a notion of compatibility
between AG specifications and components, meaning that they do not disagree
on what are inputs or outputs.

Definition 7 (Compatibility). Let P be a component, and let S and T be
AG-specifications. Then P is compatible with S, written P ~ S, iff AL N AQ =
0= AQ N AL. Similarly, S is compatible with T, written S ~ T, iff AL NAG =
0= AZ N AL

We can now give the formal definition for satisfaction of an AG specification
by a component.

Definition 8 (AG satisfaction). A component P satisfies the AG specification
S, written P = S, iff:

S1. P~S

52. AL C AL

53. A C AY o
S4. RsNTp CGsNFp.

By output-extension closure of assumptions, condition [S4 is equivalent to
checking Rs NTp C GsN Fg(py, which involves the most general safe representa-
tion £(P) of P (see Deﬁnition. The following lemma shows that this definition
of satisfaction is preserved under the component-based refinement corresponding
to safe-substitutivity, subject to compatibility.

Lemma 1. Let P and Q be components, and let S be an AG specification. If
PES, QLiny P and Q~ S, then Q |= S.

3 Model-checking components against AG specifications would force us to restrict the
properties we can encode and check. In this setting, we would naturally restrict to
the regular safety properties, which can be encoded by finite-state automata.

8 C. Chilton, B. Jonsson, and M. Kwiatkowska

3.1 Refinement

There is a natural hierarchy on AG specifications respecting the satisfaction
rule defined in Definition 8 From this we can define a refinement relation on
AG specifications that corresponds to implementation containment. But first,
we introduce the shorthand: violations(X) £ {t € A% : ' € (AL)* -t €
RxNGx }A}

Definition 9 (AG refinement). Let S and T be AG specifications. S is said
to be a refinement of T, written S T T, iff:

R1. SIN T s

R2. A-CA

R3. A2 C AD

R4. violations(7) N A% C violations(S)
R5. RN Ay C Rs Uviolations(S).

It is our intention that & C 7 iff the implementations of S are contained
within the implementations of T (subject to compatibility). Conditions R1-R3
are the bare minimum to uphold this principle. For condition[R4} any component
having a trace t € violations(7) N A% cannot be an implementation of 7T, so it
should not be an implementation of S. For this to be the case, the component
must violate the guarantee on S, i.e., ¢ € violations(S). Condition [R5] deals with
inconsistent traces. If a component has an inconsistent trace t € R+ N Ajg, then
this cannot be an implementation of 7. Consequently, the component must not
be an implementation of S, so either ¢ must violate the guarantee of S, i.e.,
t € violations(S), or ¢t must be in Rg, so that the component cannot satisfy S.

Lemma 2. Refinement respects implementation containment:
SCT < {(P:PESandP~T}C{P:PET}

In [15], Larsen et al. give a sound and complete characterisation of their
refinement relation (which corresponds to implementation containment, as for
us) by means of conformance tests. The definition assumes equality of interfaces,
so does not need to deal with issues of compatibility or the complexities of both
covariant and contravariant inclusion of inputs and outputs respectively (i.e.,
conditions R1-R3). Thus, their definition largely corresponds to condition
Condition [RH] is not necessary in that setting, as implementation models are
required to be input-enabled.

Refinement can be shown to be a preorder, provided that we add the minor
technical condition that compatibility of components is maintained, as the next
lemma shows.

Lemma 3 (Weak transitivity). For AG specifications S, T andU, if ST T,
TCU and S~ U, then ST U.

As an aside, component-based refinement T;p,, is a preorder because, in
refining a component P to a component Q, it is possible to transform some
of P’s outputs into inputs of Q, as this preserves safe-substitutivity. However,
this transformation of action types does not make sense with AG specifications,
which talk explicitly about the behaviour of the environment.

Assume-Guarantee Reasoning for Safe Component Behaviours 9

3.2 Inferring Components from AG Specifications

Given a specification for a component, we require a way for developers to con-
struct an actual component that satisfies the requirements of the specification.
In the following definition, we show how to infer the least refined component
that satisfies a given specification.

Definition 10 (Inferred component). Let S be an AG specification. Then the
least refined implementation of S is the component Z(S) = (AL, AY, Tr(s), Fr(s)),
defined only when € € Tr(s), where:

— TI(S) =pre({t e RsNGs:Vt' € (Aé)* -t € Rs U gshHu FI(S)
— Frs)={tit' :t e RsNGs, i € A; and ti ¢ Rs}U{t € A% : e & Rs}.

The following lemma shows that the obtained component model really is
least refined with respect to the refinement preorder Ty, on implementations.

Lemma 4. Let S be an AG specification, and let P be a component. Then:

— € & Tr(s) implies S is non-implementable;
— e € T(s) implies Z(S) = S; and
- PES iff PCinp Z(S).

3.3 Characteristic AG Specification of a Component

One may be interested in the most general AG specification that satisfies a com-
ponent, which we refer to as the characteristic AG specification of the component.
This can be found by examining the component’s safe traces.

Definition 11 (Characteristic AG specification). The characteristic AG
specification for the component P is an AG specification AG(P) = (AL, A,
RagP),Gagp)), where R agipy = Ap \ Fepy and Gagpy = Tp \ Fe(p)-

The largest assumption safe for component P is the set of all non-inconsistent
traces, while the guarantee is the set of traces of £(P) that are non-inconsistent.
As the following lemma demonstrates, the characteristic AG specification satis-
fies the desired properties.

Lemma 5. Let P be a component and let S be an AG specification. Then:

— P EAG(P); and
-PESff AG(P)CS.

The final point in the previous lemma shows that satisfaction of a specifi-
cation by a component is equivalent to checking whether the characteristic AG
specification of the component is a refinement of the specification. This means
that implementability of specifications built up compositionally follows immedi-
ately from compositionality results on AG specifications, as we will see in the
subsequent sections.

We are now in a position to present sound and complete AG rules for inferring
properties of composite systems from the properties of their sub-components.

10 C. Chilton, B. Jonsson, and M. Kwiatkowska

3.4 Parallel Composition

The AG rule for parallel composition is based on the well-established theorem
of Abadi and Lamport [7], which has appeared in several forms [T9120121]. In-
tuitively, the guarantee of any component must not be allowed to violate the
assumptions of the other components. Such reasoning seems circular, but the
circularity can be broken up in our setting as a safety property cannot be simul-
taneously violated by two or more components. This is due to an output being
under the control of at most one component.

Notation. To assist in our definition, we introduce the following shorthands:

~ R(Sp,S0) £ (Rsp T Asp|ise) N (Rso T Aspiise)
— G(Sp,So) £ (Gsp 1 Asp|ise) N (Gse T Aspise)
- GT(8p,80) £ (Gsp T Asp|ise) N (Gso 11 Aspise)-

Definition 12. Let Sp and Sg be AG specifications such that Agp N Agg = 0.
If Sp and Sg are both implementable, then Sp || Sg is an AG specification

<Aép\\sgvAgPHsQ’RspHSQ,QspHSQ) defined by:

- A‘Ispnsg = (A5, U Afsg) \ (A, U Agg)

n 'Agpllsg - ‘Agp U ‘Agg

— Rsplise © AEPHSQ is the largest prefiz closed set satisfying
Rspliso(AS,|155) NG (Sp.Sa) € R(Sp, So)

— Gsp|ISo = Rsplise NG(Sp,So)-

If at least one of Sp or Sg is non-implementable, then Sp || Sg = <A‘ISP||SQ7
o
ASPHSQ’ :gpll&'sg’@>

Sp || Sg yields the strongest specification satisfiable by the parallel com-
position of any two components that satisfy Sp and Sg. The specification only
guarantees what can be assured by both Sp and Sg, thus it is the strongest com-
position. The assumption is the largest collection of environmental behaviours
that cannot violate either of the guarantees Gs,, or QSQ, and moreover does not
permit a component implementing one of the specifications to violate the other
specification’s assumption. Ignoring differences in alphabets, this can loosely be
phrased as RS”PHSQ NGs, € Rs, and RSPHSQ NGs, € Rsp, which is akin
to the presentation in [7]. However, as implementations are not required to be
input-enabled, this must be reformulated as Rs, s, NG " (Sp,So) € R(Sp,Sq).

The set GT(Sp, Sg) extends G(Sp,Sg) by a single input on each of Gs,, and
Gs,, and also includes e. This has the effect of ensuring that, if t € G7(Sp,Sg)N
R(Sp,Sg) and ta € GT(Sp,So), then whatever the action type of a, wlog
t | As, € Rsp, NGs, or ta | As, € Rs, NGs,. Thus, any implementation
of Sp must have suppressed an output at some stage along the trace ta [As,,
implying the parallel composition of any two implementations of Sp and Sg will
suppress an output along ta. Thus, Rs,|s, contains only traces within Gs,| s,
and traces not reachable by any pair of implementations of Sp and Sg.

Assume-Guarantee Reasoning for Safe Component Behaviours 11

Subject to suitable constraints on the alphabets of AG specifications, it can
be shown that the parallel composition operator on AG specifications is composi-
tional under the AG refinement relation, as the following theorem demonstrates.

Theorem 1. Let Sp, Sp, Sg and S; be AG specifications such that .Agp N
AgQ =0,8 || Sg ~ Sp || So, .AI, ﬂAO - Agp ﬂAgQ, AO/ ﬂAI, -
AZ, NAS, and Ag, mAI/ NAL 5o c As, ﬁASQ IfS, C Sp andSQ C SQ,
then Sp || Sg E 87) || So-

The condition Agp O.Agg = () ensures that the parallel composition of the AG
specifications is defined, while Sy, || Sg ~ Sp || Sg means Sp, || Sg and Sp || Sg
are comparable under refinement. The remaining three conditions are standard
for compositionality of parallel composition. From this compositionality result,
it is easy to give a sound and complete AG rule.

Theorem 2. Let P and Q be components, and let Sp, Sg and S be AG speci-
fications such that P || Q ~ S, Ap NAZ C A% ﬁASQ, AZNAL C A ﬂAéQ
and AL NAL OAS 150 € Aép ﬁASQ. Then the following AG rule is both sound
and complete

PESp QESo Spl|l[SeES
PllQES

PARALLEL

3.5 Conjunction

In this section we define a conjunctive operator on AG specifications for combin-
ing independently developed requirements. From this we show that the operator
is both compositional and corresponds to the meet operation on the refinement
relation. This allows us to formulate a sound and complete AG rule.

The conjunction of AG specifications Sp and Sg is only defined when Agp U
AL o is disjoint from .Agp UAg o+ in which case we say Sp and Sg are composable.
The composability constraint is necessary, as otherwise it is not possible to find
an interface that can refine both Sp and Sg.

Definition 13. Let Sp and Sg be AG specifications composable for conjunc-
tion. Then Sp ASg is an AG specification <“Aé7>/\sg7 Agp/\sg, RsprSo>Gspnse)
defined by:

- "4«]973/\89 = A{SP UA{S‘Q

- Agp/\SQ = Agp N Agg

- RSP/\SQ = (RSP URSQ) rj"“:‘;‘az/\é‘g

— Gspasg 15 the intersection of the following sets:
° RSP/\SQ N (gSp U gSQ)
d pre(Rs,, U gS’P) Te (‘Aég \A{SP)
i pre(RSQ u gSQ) Té (Aép \A{SQ)

12 C. Chilton, B. Jonsson, and M. Kwiatkowska

The assumption Rs,s, is constrained to be within at least one of Rs,, or
Rsq- On the other hand, the guarantee Gs,as, must be within at least one of
Gs, or Gs,, and must ensure that, if the assumption for one of the specifications
is satisfied, then the corresponding guarantee cannot have been violated.

The next two theorems show that our definition of conjunction corresponds to
the meet operator on the refinement relation, and is compositional under refine-
ment. Consequently, the set of implementations for Sp A Sg is the intersection
of the implementation sets for Sp and Sg.

Theorem 3. Let Sp and Sg be AG specifications such that Sp and Sg are
composable for conjunction. Then:

- SpASgC Sp
- Sp ANSg C So
— SR ESp and Sg C Sg implies Sg £ Sp A Sg.

Theorem 4. Let Sp, Sg, Sp and Sy be AG specifications such that Sp and
Sg are composable for conjunction, Sp ~ Sg and Sg ~ Sp. If Sp E Sp and
S/Q C Sg, then S;; A S/Q CSpASg.

From these strong algebraic properties, we can formulate an AG rule for
conjunction that is both sound and complete.

Theorem 5. Let P and Q be components composable for conjunction, and let
Sp and Sg be AG specifications such that P ~ Sg, @ ~ Sp and PN Q ~ S.
Then the following AG rule is both sound and complete:

PESp QFSg SpASQLES
PAQES

CONJUNCTION

3.6 Quotient

The AG rule for parallel composition in Theorem [2] makes use of the composition
Sp || Sg. To support incremental development, we need a way of decomposing
the composition to find Sg given Sp. We can do this using a quotient operator.

Definition 14. Let Sp and Syy be AG specifications. Then the quotient Sy, /Sp
is an AG specification <Aéw/5p7Agw/Sp’RSW/SP7gSW/S'P>’ defined only when
Agp C .Agw, where AéW/SP = A{Sw \Ag,,, Agw/sp = Agw \Agp and:

— If Sp is implementable, and € € Rs,, implies € € Rs,, then:

b RSW/'SP = [RSW N (gSP n ASW)(AgW)*] rASW/'S’P
® Gs,,/5p = Rsy/sp N(X [As,, /sp), where X is the largest prefiz closed

set satisfying X(Aép)* NRs,, C pre(Gs,, UGs, It As,,)N

pre((Rsp 1 Asy) UGs, 11 Asy)-
— If Sp is implementable and € € Rs,, N Rsy, then Rs,, /s, = Agw/sp and

Usy/sp = 0.
— If Sp is non-implementable, then Rs,, /s, = Gsyy /50 = 0.

Assume-Guarantee Reasoning for Safe Component Behaviours 13

Although not immediately obvious, the assumption in the previous definition
is closed under output-extensions. Before explaining the definition, we introduce
the following theorem, which shows that the quotient operator on AG specifica-
tions yields the weakest decomposition of the parallel composition.

Theorem 6. Let Sp and Syy be AG specifications. Then there exists an AG
specification Sg such that Sp || Sg E Sw iff the following properties hold:

— The quotient Sy /Sp is defined

= Sp || (Sw/Sp) E Sw
— So E Si/Sp.

To make sense of the definition for quotient (in the difficult case of Sp being
implementable and € € Rg,, implies € € Rs,,), it is necessary to consider the
final two results in Theorem @ For these, we need to show that: (i) Rs,, C
Rsp|(Sw/sp); and (ii) Rs,, N Gs,, C violations(Sp || (Sw/Sp)). Clause (i)
amounts to showing Rs,, NG T (Sp, Sw/Sp) C R(Sp,Sw/Sp), i.e., the condition
for parallel composition. Thus, the assumption Rs,, /s, is the smallest output-
closed set such that t € Rs,, and t € Gs,, 11 As,, implies t € R, /5, I Asyy-
The cases of t € Rs,, t As,, or t € s, /s 1T As,, are handled by Gs,,, /s, -

Considering the guarantee Gs,, /s, , it is obvious that it need only be con-
tained within the assumption R, /s, . Moreover, it is safe to have t € Gs,,, /s, 11
Asy if t € Gsp 11 As,, or t € Rsp fhas, As,y; this is equivalent to requiring
t € pre((Rsp 1 As,,)UGs, 11 As,y,). For requirement (i), if ¢ € Gs,,, /5, T Asyy»
then it must be the case that ¢ € Gs,,, implies ¢ € Gs,, ft As,,, . This is equivalent
to requiring ¢ € pre(Gs,, UGs, ft As,,). Piecing these conditions together yields
a definition of quotient that is correct by construction.

Theorem 7. Let Sp and Syy be AG specifications such that P ranges over com-
ponents having the same interface as Sp, and Q is a component having the same
interface as Sy /Sp. If Sw/Sp is defined (i.e., Agp C Agw), then the following
AG rule is sound and complete:

VP - P = Sp implies P || Q E Sw
QFESw/Sp
The restriction on P and Sp having the same interface, and Q and Syy/Sp

having the same interface, is necessary, because the parallel operator is only
compositional under certain restrictions on the interfaces (cf Theorem [I]).

QUOTIENT

3.7 Decomposing Parallel Composition

The following corollary shows how we can revise the AG rule for parallel compo-
sition so that it makes use of quotient on AG specifications when we know the
global specification S. This is useful for system development, as we will often
have the specification of a global system, rather than the specifications of the
systems to be composed.

14 C. Chilton, B. Jonsson, and M. Kwiatkowska

Corollary 1. Let P and Q be components such that .A%; N AIQ =0, and let Sp,
So and S be AG specifications. If Agp ﬂAgQ =0,P|lQ~S, ALNAG C
Aép N Agg and A2 N A C Agp N Aég, then the following rule is both sound
and complete:

PESp QFESg SoLS/Sp
PllQES

PARALLEL-DECOMPOSE

This rule, based on Theorem [2| differs in having the premise So C S/Sp
in place of Sp || Sg C S. This substitution is permitted by the results of
Theorem @ The condition A{; N AIQ = () is necessary in order to show that
Sp || So C Sp || (§/Sp), given the constraints on parallel compositionality, and
the fact that Aép and .Afs /Sp A€ always disjoint.

4 A Printing Example

We illustrate our assume-guarantee framework on a simple example of component
based design for a system concerned with printing a document. The system as
a whole is composed of a job scheduler, a printer controller and the physical
printer itself. Intuitively, the scheduler decides when a print job can start, and
expects to be informed when the job has finished. The controller, on the other
hand, waits for the start signal from the scheduler, after which it instructs the
printer to print the document, and awaits confirmation from the printer that the
document has printed. At this stage, the controller will signal to the scheduler
that the job has finished. The printer accepts a print command, after which it
will start to print the document, and will signify when the document is printed.

We iteratively derive a design by successively applying AG rules and con-
structions. We start by making use of two specifications for the combined effect
of the scheduler and printer controller:

1. Specl: If the number of jobs sent to print is equal to or one greater than the
number of jobs printed, then the number of job starts must be equal to or
one greater than the number of requests sent to print.

2. Spec2: If the number of jobs sent to print is equal to or one greater than the
number of jobs printed, then a job must be printed before it can be finished,
and no two jobs can be consecutively finished without a document being
printed in between.

Specl and Spec2 can be represented by the AG specifications (Rspec; Gspec)
and (Rspec; Gspec2) respectively, where the assumptions and guarantees are de-
picted in Figure[I] For simplicity, we represent sets of traces by means of finite
automata, and annotate states with an F' to indicate that a trace becomes in-
consistent. The combined effect of Specl and Spec? is given by the conjunctive
specification Specl A Spec2 = (Rspec, Tspecinspec2), the guarantee of which is
presented in Figure [2]

Assume-Guarantee Reasoning for Safe Component Behaviours 15

721Spe:c gSpecl gSpec2
print! print! start! printed?
8 printed? 8 8 8 print! 8 finish!
start! start! start! finish! finish! start! start!
finish! finish! finish! printed? printed? print! print!
print! printed?
error?

Fig. 1. Assumption and guarantees for Specl and Spec2

N
gSpecl/\SpecZ
N
start!
start! /N print! start! %t! .‘
inish! inish! inish! inish! inish!
inish! inish! inish! inish! inish)
start! print! start! print! .‘
print!
printed? P
J
printed?
J
printed?

Fig. 2. The guarantee for Specl A Spec2

printed?
] } print! - N start!

start!

inish! printed? L . .
fm@‘ P . finish! finish! finish! finish!
print! printed?
printed?

print!

start! start!

inted?
printe printed?

printed?

printed?

Fig. 3. The most general implementation of Specl A Spec2

16 C. Chilton, B. Jonsson, and M. Kwiatkowska

Rsched Gsched
start? start?
finish? finish?

Fig. 4. Specification of a scheduling constraint Sched

R (SpeciASpec2) /Sched

start! start! start!
print! print! print!
finish! finish! finish!

G (Spec1ASpec2) /Sched

start!

printed?

start!

start! start! start!
print! print! print!
finish! finish! finish!

Fig. 5. Specification for (Specl A Spec2)/Sched

To demonstrate compositional AG reasoning, by Definition we can find
implementations Z(Specl) and Z(Spec2) of Specl and Spec2 respectively, which
by Theorem [5|allows us to derive Z(Specl) AZ(Spec2) |= Specl A Spec2. Accord-
ing to Lemma 4] this means that Z(Specl) A Z(Spec2) Cip,p Z(Specl A Spec2).
Now by Theorem [3] we know Spec1ASpec2 C Specl, so from Lemma[2| we obtain
Z(Specl A Spec2) = Specl, and from Lemma [d] we derive Z(Specl A Spec2) Cipp
Z(Specl). By similar reasoning it can be shown that Z(Specl A Spec2) Ty
Z(Spec2), hence by Theorem 2 of [4] we acquire Z(Specl A Spec2) Ty, Z(Specl)A
Z(Spec2). Mutual refinement of components in our framework corresponds to
equality of models, so Z(Specl A Spec2) = Z(Specl) A Z(Spec2). Such an imple-
mentation is shown in Figure |3} Note how this component is unwilling to print
after encountering two start requests not separated by a job being printed. This
is because Rspec can issue an error after such an occurrence, but this is not ac-

Assume-Guarantee Reasoning for Safe Component Behaviours 17

cepted by Gspecinspec2- Moreover, this implementation is able to start and print
an unbounded number of jobs without ever having to finish one of them.

We now propose an alternative derivation based on quotient, by making use
of a constraint specification Sched = (Rsched; Gsched) that requires start and
finish to alternate (shown in Figure . We wish to find an implementation for
the printer controller, let it be called Controller, such that Controller is an imple-
mentation of Specl A Spec2 subject to the constraints imposed by Sched. This
is equivalent to requiring Controller = (Specl A Spec2)/Sched. The specification
(Specl A Spec2)/Sched is exhibited in Figure |5} and the most general implemen-
tation is obtained from Gspeciaspec2)/sched DY appending all non-enabled inputs
as inconsistent traces. In contrast to Z(Specl A Spec2), the constraints imposed
by Sched on Specl A Spec2 means that any candidate implementation for Con-
troller will ensure that there can be at most one outstanding job that has not
finished.

5 Conclusion

We have presented a complete specification theory for reasoning about safety
properties of component behaviours with an explicit separation of assumptions
from guarantees. Our theory supports refinement based on traces, which relates
specifications by implementation containment. We define compositional oper-
ations of parallel composition, as well as — for the first time in this setting
— conjunction and quotient, directly on AG specifications. We give sound and
complete AG reasoning rules for the three operators, which preserve safety and
enable the reasoning about, e.g., safe substitutivity of components synthesised
at run-time. The theory can be extended with disjunction and hiding, as well
as liveness through the introduction of quiescence. The AG rules can also be
fully automated, as they are based on simple set-theoretic operations and do not
require the learning of assumptions. The refinement is linear-time, and hence
amenable to automata-theoretic approaches.

Acknowledgments. The authors are supported by EU FP7 project CON-
NECT and ERC Advanced Grant VERIWARE.

References

1. Larsen, K.G., Nyman, U., Wasowski, A.: Modal I/O automata for interface and
product line theories. In Nicola, R.D., ed.: ESOP. Volume 4421 of LNCS., Springer
(2007) 64-79

2. Doyen, L., Henzinger, T.A., Jobstmann, B., Petrov, T.: Interface theories with
component reuse. In: Proc. 8h ACM international conference on Embedded soft-
ware. EMSOFT 08, ACM (2008) 79-88

3. Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.: A
modal interface theory for component-based design. Fundam. Inform. 108 (2011)
119-149

18

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

C. Chilton, B. Jonsson, and M. Kwiatkowska

Chen, T., Chilton, C., Jonsson, B., Kwiatkowska, M.: A Compositional Specifica-
tion Theory for Component Behaviours. In Seidl, H., ed.: ESOP’12. Volume 7211
of LNCS., Springer (2012) 145-165

de Alfaro, L., Henzinger, T.A.: Interface automata. SIGSOFT Softw. Eng. Notes
26 (2001) 109-120

Bhaduri, P., Ramesh, S.: Interface synthesis and protocol conversion. Form. Asp.
Comput. 20 (2008) 205-224

Abadi, M., Lamport, L.: Composing specifications. ACM Transactions on Pro-
gramming Languages and Systems 15 (1993) 73-132

Abadi, M., Plotkin, G.: A logical view of composition. Theoretical Computer
Science 114 (1993) 3-30

Pnueli, A.: Logics and models of concurrent systems. Springer (1985) 123-144

. Clarke, E., Long, D., McMillan, K.: Compositional model checking. In: Proc. 4th

Annual Symposium on Logic in computer science, IEEE Press (1989) 353-362
Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans-
actions on Programming Languages and Systems 16 (1991)

Maier, P.: A set-theoretic framework for assume-guarantee reasoning. In Orejas,
F., Spirakis, P.G., Leeuwen, J., eds.: ICALP’01, LNCS 2076. (2001) 821-834
Namjoshi, K.S., Trefler, R.J.: On the completeness of compositional reasoning
methods. ACM Trans. Comput. Logic 11 (2010) 16:1-16:22

Emmi, M., Giannakopoulou, D., Pasareanu, C.: Assume-Guarantee Verification
for Interface Automata. In Cuellar, J., Maibaum, T., Sere, K., eds.: FM 2008:
Formal Methods. Volume 5014 of LNCS. Springer (2008) 116-131

Larsen, K.G., Nyman, U., Wasowski, A.: Interface input/output automata. In:
FM 2006. Volume 4085 of LNCS., Springer (2006) 82-97

Bauer, S., David, A., Hennicker, R., Larsen, K., Legay, A., Nyman, U., Wasowski,
A.: Moving from specifications to contracts in component-based design. In Lara,
J., Zisman, A., eds.: FASE’12. Volume 7212 of LNCS. Springer (2012) 43-58
Delahaye, B., Caillaud, B., Legay, A.: Probabilistic contracts: a compositional
reasoning methodology for the design of systems with stochastic and/or non-
deterministic aspects. FMSD 38 (2011) 1-32

Chilton, C., Jonsson, B., Kwiatkowska, M.: Assume-Guarantee Reasoning for Safe
Component Behaviours. Technical Report CS-RR-12-07, Department of Computer
Science, University of Oxford (2012)

Collette, P.: Application of the composition principle to Unity-like specifications.
In: TAPSOFT’93, LNCS 668, Springer-Verlag (1993) 230-242

Abadi, M., Lamport, L.: Conjoining specifications. ACM Transactions on Pro-
gramming Languages and Systems 17 (1995) 507-534

Jonsson, B., Tsay, Y.K.: Assumption/guarantee specifications in linear-time tem-
poral logic. Theoretical Computer Science 167 (1996) 47-72

Assume-Guarantee Reasoning for Safe Component Behaviours 19

A Proofs of Assume-Guarantee Reasoning for Safe
Component Behaviours

A.1 Refinement
Proof of Lemma 1

We show that Rs NTg C Gs QFQ, given Tg(Q) - Tg(p) 1 .AIQ, Fg(Q) - Fg(p) 1T
AL, and P |= S implies Rs N Tp C Gs ﬁ%. Let t €e RsNTg. Now t € T
implies t € Tg(py T .AIQ. But in fact, t € Tg(p) as AL C AL C ALt € A% and
Q ~ S implies AIQ N A9 = (). Therefore, either t € Tp or t € Fepy.

Begin by supposing the former. Then ¢t € Rs N Tp implies t € Gs N %.
As t € Fgpy (and moreover t € Fgipy T AL) it follows that t ¢ Fgg) by
Feo) C Fepy T AIQ. Hence t € Gs N Fg as required.

Now suppose that t € Fe(py. Then either ¢ = ¢, or there is some prefix i of
t with i € AL such that ¢’ ¢ Fg(p) while ti € Fg(py. The former cannot hold
because this would violate Rs NTp C Gs N %. The latter also contradicts

Rs NTp C Gs N Fg(py, since t'i € Tp. Therefore this case cannot occur.

Proof of Lemma [2]

For the only if direction, note that the alphabets trivially work out. Now suppose
that P =S and S C T. Let t € Ry N Tp and suppose that either t € Fp or
t € Gr. If the former holds, then as P |= S, it follows that ¢t € Rs Uviolations(S)
by condition However, this means P £ S. If the latter holds, then ¢ €
violations(7) N A%, hence t € violations(S) by meaning P £ S.

For the if direction, first suppose that condition [R4] is not satisfied on a
trace t. Then (A%, A2, T,0) is an implementation of S, but not of T, where
T ={t' : t' < t}(AL)*. Now suppose is not satisfied on a trace t, then a
violating component is (AL, AS, T U F, F), where F = {tt' : t' € A%}.

Proof of Lemma [3]

Transitivity of C essentially follows from transitivity of C.

A.2 Inferring Components from AG Specifications
Proof of Lemma [4]

For the first claim, note that if € ¢ T7(s), then there exists ¢ € (AL)* such that
t € Rs NGs. As every implementation must have ¢ in its T-set, it follows that
S has no implementations.

For the second claim of Z(S) E S, we need to show that Rs N Trs) €

Gs N Fz(s). Let t € Rs N'Tz(s). Then by the definition of T7(s) it follows that
t € Gs and t ¢ Fz(s) as required.

20 C. Chilton, B. Jonsson, and M. Kwiatkowska

For the third claim, the if direction follows by the previous claim and Lemmal[T]
For the only if direction, we need to show that Tep)y C Tezs)) T A{;. and
Fepy C Fezisy T A{,. Proceed by induction on the length of the trace t € Tg(p)
and t € Fg(p).

— If € € Tg(p), then suppose for a contradiction that e & T¢(z(s)). This means
that S is non-implementable, which is contradictory.

— If € € Fg(py, then as P = S, it follows that ¢ ¢ Rs. Hence € € Fg(z(s)) as
required.

— Ift € Te(py and t = t'a, then by the induction hypothesis we know that ¢’ €
Tezsy T AL. Suppose for a contradiction that t'a ¢ Tezsy T AL. Then
a € Ag, which implies t'a € Rs N Gs by output-enabledness of assumptions.
However, this contradicts P = S.

—If t € Fgpy and t = t'a, then as P = S, we have t ¢ Rs. Note that
if ' € Feepy, then we trivially get t'a € Fezsy) T AL by the induction
hypothesis and upwards closure of F-sets. So suppose t' ¢ Fg(p), in which
case a € Aé. It follows that t'a € Tz(s), hence t'a € Rs N Gs, contradicting
tZRs.

A.3 Characteristic AG Specification of a Component
Proof of Lemma [5]

For the first claim, let ¢ € R 4g(p)yNTp. Then ast € R ag(p), it follows t € Fg(p).
Given t € Tp, it thus follows ¢ € Gag(p) N Fg(p) as required.

For the second claim, the if direction follows by the previous claim and
Lemma [2| For the only if direction, first suppose ¢ € violations(S) N A%. Then
there exists ¢ a prefix of ¢ and t” € (AL)* such that ¢t € Rs N Gs. How-
ever, as P = S, it follows t't” ¢ Tp and so t't” ¢ Fp. Consequently, ¢'t" €
R ag(p) N Gag(p), meaning t € violations(AG(P)). Now suppose t € Rs N Ap.
Then as P |= S, it follows that ¢t ¢ Tp or t € Feepy. If t ¢ Tp and t € Fepy,
then there exists a prefix ¢’ of ¢ such that ¢ € Tp N Fg(p), but this contradicts
P = S. Otherwise, if t € Fg(p), then t € R 4g(p) as required.

A.4 Parallel Composition

Begin by noting that from the constraints .A‘IS.;’ ﬁAg,Q - Aép ﬂAgQ, Ag;) ﬂAé/Q c
Ag. N A§,, Sp E Sp and S, C S we can derive (AZ. N .AI,Q) \ Ag% = () and
o I o _
(As, NAs,) \AS/Q =0
Before presenting the proofs of the main theorems, we introduce a number
of lemmas that will be of use in the proofs.

Lemma 6. The set As,|iso, N AS;,HS'Q subjected to the constraints of parallel
composition is equal to ((Aép U Aég) \AgP”SQ) U Ag;) U Ag,g.

Assume-Guarantee Reasoning for Safe Component Behaviours 21

Proof.

a € Aspise N Asyisy,
€ (Asps0 U AG150) N (A 15, UAS, jis7,)
€ (A{SPHSQ n Afs;,u%) U (A‘Ispusg n Ag;,HS/Q) U
(AS, 150 VS j1s,) U (G, 150 N A, 15,
€ {by Sp I| Sg ~ Sp || Sa}
(A{SPHSQ N A{s;,us&) U (Agpusg N Agg,us’g)
€ {by Sp C Sp and S5 || So}
Ay 150 U AS, s,

€ ((A§, UAS,) \AgPHSQ) U Agg, U Agfg-

Lemma 7. Let t € (As,|isq N AS;,HS’Q)* such that the action sets satisfy the
constraints for parallel composition. Then t | .As% € QS;, impliest | As, € Q‘g?/,.

Proof. By induction on the length of the trace t, assumingt | .AS;’ € Gsy,- When
t = ¢, the result is immediate. So take t = t'a. Then by the induction hypothesis,
we know that t' | As;, € Gs;, implies t' | As,, € Gs;,. Now consider the possibil-
ities for the action a with respect to Lemmal[fl Suppose for a contradiction that

aEAsp \Ag%.

— Ifac Aép \A?pHSQ’ then a € Aép C AI% C As;,, which is contradictory.
— Ifac€ Aég \AngSQ’ then either a € .A‘Ig;) ora ¢ As;,. The former contra-
dicts the assumption, so suppose the latter. Then the result will fail only if

a € Agp, but this is ruled out by a € Agg \AngSQ.

— Ifa€e Ag%, then the assumption is violated.
—Ifae .AO/Q, then the result will fail if a ¢ As;, and a € As,. This means
that a € Agp, as Aé«p C AL, |, but this contradicts the assumption that
P
o o _ ; o O
ASP ﬂASQ = @, given AS/Q g ASQ'

Lemma 8. Let t € (As,|isq N AS%HS’Q)* such that the action sets satisfy the
constraints for parallel composition. Then t | As, € Rs, implies t | ./45;’ S
Rsp-

Proof. By induction on the length of the trace t, assumingt | As, € Rs,. When
t = ¢, the result is immediate. So take t = t'a. Then by the induction hypothesis,
we know that t' | As, € Rs, impliest' [As;, € Rs,. This can only be violated
ifa & Asp and a € Ag;,, which in turn means a € Af% \Agp, Now consider the

possibilities for the action a with respect to Lemmalﬁ (given t € (Ag, HS’Q)*)'
P

22 C. Chilton, B. Jonsson, and M. Kwiatkowska

— Ifac A%p \"4%;”397 then this contradicts thf fact tizat a EI.AI% \Aépj.

— Ifae Ag, \ A, s, then this contradicts A A NA ., NAs, 5o € Asp N
AL

— Ifac Ag;;, then this contradicts that fact that .AO,Q N .AI,Q is empty.

- Ifac .AO,Q, then this contradicts the assumption .Aé;, N Ag,g C A5 N Ag@.

Proof of Theorem [i]

We need to show that Rs,|s, € [Rs%”‘gfg U (RS;HS’Q N gS&:HS’Q)Ag;,HS'Q] T
AS, 150 a0d Rspiise N Tspiise Tsplisy T A sqr given that (1) Re, C
[Rsy, U (Rsp, NGsy,) A, 11 AS,» (2) Rsg € [Rs, U(Rs, NGs,) As, | T AS,,,
(3) Rsp, NGs, C QS;) T Agp and (4) Rso NGsy € QS/Q T Agg Note that the
alphabets trivially work out. So first show ¢t € Rs,||s, implies t € [RS%HS’Q U

(Rsy s, N gS;IIS’Q)ATS%HS’Q] 0 AngSg by induction on the length of trace t.

Case t = €. Note € € Rs, s, implies that ¢ € Rs, and € € Rs,. Therefore
€ € Rs;, and € € Rsy, by (1) and (2). Now suppose € ¢ Rsp sy - Then there is
a smallest trace t'o € (‘Ag%ll S,Q)* such that ¢'o does not satisfy the condition on
Ry ||y, - Therefore, t'o € Gt (Sp,S5)- Note that t'o is also a trace in (Agp“SQ)*.
Without loss of generality, suppose that o € Ag%. Then by output-enabledness
of Rsy,, it must be the case that t'o [As;, € Rs;,, hence t'o | Asy, € Rsy,-

By output extension of assumptions, o0 € R, s, 50 by the condition on
Rsp||Sos We know either t'o ¢ GT(Sp,Sg), or t'o € GT(Sp,Sg) and t'o €
R(Sp,Sg). The former cannot hold, for suppose it does. Then there is a prefix
t"a of t'o such that t” € GT(Sp,Sg) while t"a ¢ G (Sp,Sg). Without loss
of generality suppose that t"a | As, ¢ ggp. If a € Agp, then by output-
enabledness of assumptions, we have t"a [As, € Rs,. Therefore, by (3), we
see t"a [As, & Gsy, 1 Ag, which by the contrapositive of Lemma EI implies
t"a | As;, & Gs;, T .Agp. Hence t"a ¢ G*(Sp,SG), which is contradictory.
Instead, if a € Aép, then t"a | As, ¢ Q;P means t" | As, & Gs,, while
t" | As, € Rs,. By the same reasoning as previously, we therefore see t"a |
As;, ¢ Gsi, T Agp meaning t"a ¢ G*(Sp, Sg), which is contradictory.

So as t'o € R(Sp,Sq), we have t'o | As, € Rs,, which by Lemma [§] tells
us t'o | .AS/Q € Rs,- From (2) we can see that t'o | ASIQ € Rs, T Agg given
t'o | AS/Q € QS/Q. But in fact t'o | AS/Q € Rsy, as tis a trace over A%)HS,Q, which
means that if there is some action in AY o \Ag/g then it must also be in Af%,
yet this contradicts one of the parallel composition constraints. The fact that
to | ASIQ € RS/Q is contradictory, which means t'o cannot violate the condition
on RS’;)HSIQ

Case t = t'o with o € Ang so+ By the induction hypothesis in the worst case
we have t' € RS’IPHSIQ' If o € AgPHSQ \“Ag;:HS'Q’ then clearly t'o € RS;DHS/Q T

Assume-Guarantee Reasoning for Safe Component Behaviours 23

o : o ! -
ASPHSQ' However, if o € AS%IIS/Q’ then t'o € Rsy sy by output-enabledness of

/ - * O
RSH\S’Q- Hence t'o € [RS;,HS’Q U (RS%HS’Q ﬂgS;’HS/Q).AS;)HS/Q] T'ASPIISQ'

Case t = t'i with i € AL . Note that i € AL, ., . So by the induction
SpllSe AR
: / . o)

hypothesis, we know that t’ € [RS;,HS’Q U(RS;,HS’Q ﬁgg‘/PHSIQ)Az%”S,Q} T ‘ASPIISQ'
The difficult case is when ¢’ € RS%HS’Q ﬂ(_}gw Sy Now suppose for a contradiction

/- o) : " o
that t'i € Rsr s, T Ag,|s,- Then there exists a trace t” € (A %IIS’Q)*’ such
that ¢'it” does not satisfy the condition on Rsy || s7,- By the same reasoning as
in the case when t = €, we see t'it” € G (Sp,Sg) implies t'it” € G7(Sp,So).
Thus t'it"” € R(Sp,Sg), meaning t'it” | As, € Rs, and t'it" | As, € Rs,- By
Lemma it follows that t'it” [As;, € Rs, and t'it” [As; € Rs,. Now as t'it"
is a common trace of Sp || Sg and Sy || Sg, it follows by (1) and (2) together
with t'it” € G (Sp,Sp) that t'it” [As;, € Rs;, and t'it" [Asy, € Rsy,. Hence
t'it" € R(Sp,Sg), which is contradictory. Therefore t'i € Rsp sy -

Now for the second claim show ¢ € Rs,|isq N Ysp|so implies ¢ € Gsrjs, T
AgPH So by induction on the length of the trace t.

Case ¢ = €. This case cannot occur, by definition of Gs, s, -

Case t =t'o with o € Ag’PHSQ' If t' € Rsp||so NGsp||se, then the result holds
by the induction hypothesis. So suppose t' € Rg,|so N Gsp(isy, and without
loss of generality, t'o | As, & Gs,. If 0 € AZ , then t'o | As, € Rs, by
output-enabledness of assumptions. So by (3), we see t'o | As, € @ T Agp.
By taking a suitable prefix of t'o and using the contrapositive of Lemma [7] we
see t'o € gSé;IIS’Q T AgPHSQ‘ Instead, if o € Agg and t'o [As, € Gs,, then by
similar reasoning t'o € gS;DIIS’Q T AngSQ. If t'o € Agg and t'o [As, € Gs,,
then t'o € G (Sp, Sg), meaning t'o € R(Sp,Sg), given t'o € Rs,||so- Then by
(3) on Sp, we can derive t'o € gs;,||s’g T 'Agpll So using similar reasoning.

Case t = t'i with i € A&ISPHSQ' For the difficult case assume ' € Rs,|iso N

Gsp||So- Then necessarily t'i € G (Sp,Sg), which by i € Rg,|s,, means

t'i € R(Sp,Sg). Without loss of generality, suppose i | As, & Gs,.. Then by

(3), wesee t'i | As,, € Gsy, 1 Agp. By taking a suitable prefix of ¢z and using
i . Pl o)

the contrapositive of Lemma [7] we see t'i € gsH,S/Q T ASPHSQ.

Proof of Theorem [2]

Soundness. By Lemma [5| we know that AG(P) C Sp and AG(Q) C So.
Moreover, by the conditions of Theorem [2] we know by Theorem [1|that AG(P) ||
AG(Q) T Sp || Sg. As P || @ ~ S, we know by Lemma hat AG(P) ||
AG(Q) C S. If we can show that AG(P || Q) C AG(P) || AG(Q), then we are
done as AG(P || Q) C S by Lemma [3| given that the alphabets of AG(P || Q)

24 C. Chilton, B. Jonsson, and M. Kwiatkowska

coincide with those of AG(P) || AG(Q). We therefore show (the stronger claim)
that Rag(pylage) € Ruagp|o) as well as Ragp)|lag(o) N Yagr)lace) ©
Gag(p||Q)- So proceed by showing that t € R ag(p)|jag(g) implies t € R ag(p||0)
by induction on the length of the trace ¢.

Case t = e. Suppose for a contradiction that € & R 4g(p|0)- Then € & Tp)jo \
Fe(pjjg)- It’s necessarily the case that e € Tp||g, so there exists t' € (AgHQ)*
such that either ¢ | Ap € Fp and ¢/ | Ag € Tg, or ' | Ap € Tp and
t' [Ag € Fo. If t' = ¢, then either € € R 4g(p) or € € R ag(0), meaning that
€ € Rag(p)|.46(Q), Which is contradictory. Therefore, it follows that there is a
smallest trace ta a prefix of ¢’ such that exactly one of " [Ap & Fe(py and
t"a | Ap € Feepy, or t” | Ag & Fg(g) and t"a | Ag € Fg(g) holds (this is
because an output is under the control of at most one component). Without
loss of generality, suppose this holds for P. Then we know a € A{,, meaning
t"a | Ap € Ragp), while t"a [Ap € QIQ(P) and t"a [Ag € Gag(o) (the latter
holds since t" | Ap € Tg \ Fg(g)). Therefore, the condition for R 4g(p)||.4¢(0)
is violated on t"a in AG(P) || AG(Q), meaning ¢ & R 4g(p)||.Ag(Q), Which is
contradictory.

Case t = t'o with o € A7O’IIQ' Let t'o € Rag(p)lag(0)- By the induction
hypothesis, we know that t' € R 4g(p||0). Therefore t'o € R 4g(p||) by output-
enabledness of assumptions.

Case t = t'i with i € AéIIQ' By the induction hypothesis we know that ¢ €
R ag(p||0)- Suppose for a contradiction that t'i € R 4g(p|j0). Then t' € Tpjjg \
Fg(PHQ)’ while 7 ¢ TPHQ \ FE(PHQ)' Therefore t'i € Fg(pHQ), so either: (1)
t'i | Ap € Fgpy; (il) t'i | Ag € Fg(gy; or (iii) there exists a trace t"a € (Ag”Q)*
such that t"a [Ap € Tp and t"a | Ag € Tg, while either t” | Ap & Fg(py and
t"a | Ap € Fgpy, or t" | Ag & Fegy and t"a | Ag € Fg(g). Cases (i)
and (ii) cannot hold, as this would mean that t"a | Ap & Ragp) or t"a |
Ao & Rug(o), itself implying t"a | Ap ¢ QIQ(P) or t"a | Ag & QIQ(Q),
given t'i € R ag(p)|lag(Q)- However, this means that either " [Ap & Gag(p)
or t" | Ag & Gag(g), from which we can conclude t” | Ap & Tp \ Fg(p) or
t" [Ag € To \ Fg(o). This is contradictory. Case (iii) also cannot hold as this
would violate the condition for R 4g(p)||.4g(0), meaning t'i € R sg(p)|j4ac(0) by
the same reasoning as in the case when t = e.

Now show that t € RAQ(P)HAQ(Q) N gAg(p)HAg(Q) implies t € gAg(pHQ) by
induction on the length of the trace ¢.

Case t = e. This case cannot occur by definition of Gg(p)||4g(0)-

Case t = t'o with o € A7O’|IQ' The difficult case is when t' € Gg(py||4g(0)-
Without loss of generality, suppose o € Agp. Now if t'o [Ap & Gag(p), then

Assume-Guarantee Reasoning for Safe Component Behaviours 25

because t'o € R 4g(p) by output-enabledness of assumptions, it follows t'o ¢ Tp,
meaning t'o & Tp||o. Hence t'0 & Gag(p|). Instead, if t'0 & G4g(g), then t'o €
g;g(g), hence t'o € R(AG(P), AG(Q)), which means t'o & Tg. Consequently,

t'o & Tp| g, SO t'o & g_Ag(pHQ).

Case t = t'i with i € 'AéIIQ‘ For the difficult case, let t' € R ag(p)|j4ag(0) N
gAg(p)HAg(Q). Then certainly t/i (S g+ (.AQ(P), AQ(Q)), hence t/i S R(AQ(P), AQ(Q))
But without loss of generality, t'i | Ap & Guag(p). Therefore t'i [Ap & Tp.
Meaning t'i & Tp|q. Hence t'i & G ag(p||0)-

Completeness. Take Sp = AG(P) and Sg = AG(Q). Then we need to show
AQ(P) || AQ(Q) E AQ(P || Q), by demonstrating RAQ(PHQ) g RAQ(P)HAQ(Q)

and RAg(pHQ) N gAg(pHQ) - gAg(p)HAg(Q). Proceed by showing te RAg(prQ)
implies t € R ag(p)||4g(0) by induction on the length of the trace .

Case t = e. Suppose for a contradiction that € € R 4g(p)|14g(0)- Then either: (i)
€ € Ragepy; (ii) € € R ag(gy; or (iii) It'o € (AgIIQ)* such that t'o [Ap € QIQ(P),
t'o | Ag € gjg(g), and either t'o [Ap & Rag(p) or t'o [Ag & Rag(o)- Begin
by considering (i). If € &€ R4g(p), then € € Fg(p), so € € Fgp|0), meaning
€ ¢ Rag(p||0), which is contradictory. Similarly for (ii), so consider case (iii).
Suppose t'o is the smallest such trace satisfying the property, and without loss
of generality assume t'o [Ap & Ragp). Then t' | Ap € Ragp) N Gagp)
implies t' [Ap € Tp \ Fgp). As t'o | Ap & Ragp), it follows that o € AL,
hence t'o | Ap € Fe(py. From t'o [Ag € Q;{g(g) and either o ¢ Ag or o € Ag,
it follows that t'o [Ag € Gag(g), meaning t'o | Ag € Tg \ Fg(g). Hence
t'o € Fg(p||0), and so € € Fg(p|), which contradicts € € R 4g(p||0)-

Case t = t'o with o € “47O’||Q' By the induction hypothesis, we know that

t' € Rag(p)|lag(o)- Therefore t'o € R ag(pyag(o) by output-enabledness of
assumptions.

Case t = i with i € AJ,,. By the induction hypothesis we know that ¢’ €
R Ag(P)||4g(Q)- Suppose for a contradiction that t'i € R 4g(p)||.4g(0)- From i €
Rag(p||0), We know either: (i) t'i € Tppj|g \ Fg(p|j0); or (ii) there exists a prefix
t"o0 of ' such that t” € Tp|jg \ Fe(p||g) while t"0 & Tp) o.

Begin by supposing (i) holds. Then t'i [Ap € Tp \ Fg(py and t'i | Ag €
To\ Fe¢(g). Hence t'i | Ap € R agp)NGagp) and t'i | Ag € R ag(e)NGuag(o)-
Therefore, there exists a /0 € (AgHQ)* such that ¢'it"”o violates the condition
on R 4g(p)||4¢(Q), While #it" does not. So without loss of generality, suppose
t'it"o | Ap & Ragp)- Then o € AL, meaning t'it"o | Ap € Fg(py, itself
implying t'it"o € Feep|g) given t'it"o [Ag € Tg \ Fg(g). Consequently t'i €
Fe(p|)0), hence t'i € R 4g(p||), Which is contradictory.

26 C. Chilton, B. Jonsson, and M. Kwiatkowska

For case (ii), without loss of generality suppose that o € AQ. Then t"o | Ap ¢
Tp. Hence t"o | Ap & Gag(p), which means that neither ¢'i or any extension of
t'i can violate the condition on R 4g(p)||.ag(), as t”o is a strict prefix of /4.

Now show ¢ € Ragrio) N gAg(pHQ) implies t € g_Ag(p)HAg(Q) by induction on
the length of the trace t.

Case t = e. This case cannot occur by the definitions of R 4g(p||0) and G ag(p||0)-

Case t = t'o with o € AgHQ' Let t'o € Rag(p|j0) N Gag(p||0), and suppose
(for the difficult case) that ¢ € Gag(p|0). Then wlog, o € AP, meaning ¢’ |
Ap € Tp, while t'o | Ap ¢ Tp. Consequently, t'o [Ap & Gag(p). Hence
t'o € Gag(p)||ag(Q)-

Case t = t'i with i € A%HQ' Let t'i € Rag(p|j@) N Gag(p||Q); and suppose
(for the difficult case) that t' € Gag(p|j@)- Then t'i € Fe(p|g), so wlog there
is a trace t"i’ € (Ag”Q)* and i/ € AL such that ¢ | Ap € Tp \ Fepy, t"i |
Ap € Fg(p) and t'i | Ap € To \ Fg(Q). Then t"i € g*(AQ(P),AQ(Q)), while

t"i | Ap & Ragp)- Therefore, t'i & R Ag(P)|1AG(Q), hence t'i € QAg(p)HAg(Q) as
required.

A.5 Conjunction
Proof of Theorem [3|

We first show that Sp ASg T Sp. Note that the alphabets trivially work out. So
show that: (i) Rs, C [Rspase U (Rspase N QSPASQ)AT%ASQ] 0 Agp; and (ii)
Rsp NGs, C m T Agp. For (i), let t € Rs,. Then clearly t € Rsonso T
AZ_. For (i), let t € Rs, N Gs,. Then t & pre(Rs, UGs,) T A§,, hence
t € Gspase, implying t € Gsons, TAG, .

Note that Sp A Sg C Sg follows by similar reasoning. So now show that
Sr E Sp and Sg C Sg implies Sg © SpASq. For this, we require: (i) Rsynrso €
[Rsr U (Rsr N Gsr)AS,] T AE,?PASQ; and (ii) Rsprse N Gsprse € Gsp T
AZ nsq- For (i), let t € Rspaso- Thent € R, NAS, ps, 07t € Rsg NAS s, -
Suppose the former, then from Sz C Sp we derive t € [Rs, U(Rs, NGsy)As,| T
AG, but as t € A% s it follows that ¢ € [Rs, U(Rsr NGsr)AS, | T AS, 15
as required. For (ii), let ¢ € Rspnso N Gspase- Then without loss of generality
t € Rsp N A%, ns,- I t € Gs,, then from Sp E Sp we obtain ¢ € Gs,, T AZ,
in turn implying t € Gs, 1 Agp/\sg given t € A3 \s,- If t € Gs,, then from

t € Gspnses it follows t & pre(Rs, UGs,) T Aép. Consequently there is a prefix
t" of ¢ such that t' € Rs, N Gs,, which by Sg T Sg implies ' € Gs,, T Agg.
This means ¢ € Gs, T AZ As o as required.

Assume-Guarantee Reasoning for Safe Component Behaviours 27

Proof of Theorem [4
We need to show that: (i) Rspase © [RS;,/\S’Q U (RS;/\S’Q N QS;?AS/Q)AZ;)AS,Q} T
AG, psoi and (i) Rspase NGspase € Gspnsy T AG ase-

First show (i) by taking ¢ € Rspase- Then wlog t € Rs, NAS, \s, - From
Rs;, E Rsp, we derive t € [R‘g;) U(Rs% mgs%)Ag;)] T Agp. Given the restriction
of t to Asprse, it follows that ¢ € [ng, U (Rs% N QS;)) Z‘;,] T Agp/\SQ' By
consideration of the alphabet constraints, it’s easy to see that if ¢ € Rsy, T
AgpASQ7 then t € Rg;,/\sfg T Ag’P/\SQ' Alternatively, if ¢ € ('Rg;, N QS;,)A‘*;;) 1
Agp ASo- then there is some prefix ¢’ of ¢ such that ' € Rs; NGsy, . But then ¢’ €
At*SP/\SQ implies t' € RS;,/\S’Q ﬂggéj/\s/g. Hence t € (RS;,AS’Q ﬂgg_lp/\s/Q)A:g;’/\s/Q T

‘Ag—p /\SQ .

For (ii), let t € Rspnso N Uspase- Then without loss of generality, ¢ €
Rsp N Ag‘p/\SQ' If t ¢ Gs,, then from Rs, NGs, C Qg% T Ag, it follows that
t' € Gs, 1 Ag,. Now from t € Rs,, and Rs,, C [Rs;, U(Rs, NGsy) ST A,
it follows that ¢ & pre(Rs;, U Gs,) 1 Agp/\SQ7 meaning ¢ € Gs, nsy, T AgPASQ.
Instead, if t € Gs,,, then from t € Gs, rs,, it follows that ¢ & pre(Rs, U Gs,
Aép. Hence there is a prefix ¢’ of ¢ such that t’ € Rs, NGs, . From conditions [R4
and [R5/ on S5 C Sg it follows t € Gs, sy, T A 1o,

Proof of Theorem [5]

For soundness, suppose that P = Sp, Q E Sg and Sp A Sg C S. Then by
Lemma [5| we know AG(P) C Sp and AG(Q) C Sg. Based on the definition of
conjunction, we know P A Q Ty, P and PAQ Ly Q. So by Lemmas [T and
we derive AG(P A Q) C AG(P) and AG(P A Q) C AG(Q). By transitivity of
refinement (Lemma[3), we obtain AG(P A Q) T Sp and AG(P A Q) T Sg. Now
by Theorem [3| we see AG(P A Q) E Sp A Sg. Hence P A Q = S by Lemma
given PA Q ~ S.

Now for completeness, assume PAQ = S. Then AG(PA Q) C S, P = AG(P)
and Q E AG(Q). Tt can easily be shown that AG(P) A AG(Q) C AG(P A Q),
which by transitivity of refinement allows us to derive AG(P) A AG(Q) C S. To
show AG(P) A AG(Q) C AG(P A Q), suppose T = AG(P) A AG(Q). Then from
Theorem [3] it follows that 7 = AG(P) and T = AG(Q). Hence from Lemma [4]it
follows T Cipmp P and T Cipnp Q. Now from Theorem 2 of [4], it follows T Ty
PAQ, hence T = AG(P A Q). Consequently AG(P) A AG(Q) C AG(P A Q) by
Lemma

A.6 Quotient

Lemma 9. Lett € Ag = be any trace satisfying the propertyt € Gt (Sp,Sw/Sp)
impliest € R(Sp,Sw/Sp). Then for anyt’' € (.Agw)* we have tt' € G (Sp, Sw/Sp)
implies tt' € R(Sp,Sw/Sp).

28 C. Chilton, B. Jonsson, and M. Kwiatkowska

Proof. By induction on the length of the trace t'. If t' = ¢, then the result holds
trivially. So suppose t' = t"o, with t'' satisfying the property. If o € .Agp, then
by output enabledness of assumptions we know that t'o | As, € Rs,. Now
t' [As,y/sp € Rsy/sp implies t' € Rs,, N (Gsp 1Mas, As,,)(AZ)*. From
t'o € Rs,, and t'o € Gs, ftas, As,y, it follows that t'o | As,, /s, € Rs,y/sp
as required. Hence t'o € R(Sp,Sw/Sp). Instead, if o € Agw/sp, then t'o |
Asy/sp € Gsyy/sp- Hence t'o € R, s, and because t'o € Gsp 1M as, Asy:
it follows that t'o € Rsy, fas, As,, meaning t'o | As, € Rs,. Hence, t'o €
R(Sp,Sw/Sp).

Proof of Theorem

For the first claim, if Sp || Sg T Sy, then AZ s = A UAZ, C AZ , which
implies .Agp C Agw. If there is no Sg such that Sp || Sg T Syy, then it follows
that Agp z Agw, because we can take Sg = (AéW,AgW \Agp,AgW, @), which
having no implementations implies Sp || Sg = ((A§,, U A§,) \Ag'P”SQ’ .Agp U
Agw7 ZPHSQ,(ZD. Now conditions R2, and clearly hold, so either Sp ||
Sg # Syy or AngSQ Z Agw, both of which imply Agp Z Agw.

For the second claim, we show the difficult case of when Sp is implementable
and € € Rg,, implies € € Rg,. For this, we need to show that: (i) t € Rs,,
implies ¢ € R, ||(Sy/5p); and (ii) ¢ € violations(Syy) implies ¢ € violations(Sp ||
(Sw/Sp)) (i.e., the conditions of refinement). Note that claim (i) is stronger
than actually required in order to show refinement. Proceed by induction on the
length of the trace t.

Case t = e. We need to show that € € G (Sp, Sy /Sp) implies € € R(Sp, Sw/Sp),
and also that any output extension ¢’ of € satisfies the property t' € G (Sp, Sy /Sp)
implies t' € R(Sp,Sw/Sp). The latter follows by showing the former and ap-
plying Lemma @ For the former, as € € Rs,, it follows € € Rs,, /s,, and as

€ € Rs, we know € € R(Sp,Sw/Sp).

Case t = t'o with o € .Agw. By the induction hypothesis on ¢/, we know that
t' € Rsp||(Sw/Sp)- Now by output-closure of Rs,|((sy,/5p), We trivially derive

t'0 € Rspl|(Sw/Sp)-

Case t = t'i with ¢ € Aéw. By the induction hypothesis on ¢/, we know that
t' € Rsp||(Sw/sp)- The most difficult case is when t'i € G*(Sp, Syy/Sp). By the
alphabetisation of Sy, /Sp, it follows that either i € Agp ori € Agw /Sp For
the former, we derive t'i [As,, /s, € Gs,,/sp, hence t'i [Ag,, /s, € Rs,,/sp-
Moreover, because t'i € Gs,, 14s, As,y, it follows that t'i € Rs, flas, As,-
Thus ¢'i € R(Sp,Sw/Sp) and by Lemma [J] any output extension satisfies the
required property.

Instead, if i € Aéw/Sp’ then t'i € Gs, Tas, As,,, which taken in conjunc-

tion with t'i € Rs,,, implies t'i | As,, /s, € Rs,,/sp- As ' € Rsp, ft As,,

Assume-Guarantee Reasoning for Safe Component Behaviours 29

and ¢ ¢ As,, we derive t'i € Rs, It As,,. Hence, t'i € R(Sp,Sw/Sp) and by
Lemma |§| any output extension of ¢'i satisfies the condition on Rs,||(s,,/5p)-
Therefore, t'i € R, ||(Sy/Sp)-

For (ii), let ¢ € violations(Syy), and suppose for a contradiction that ¢ ¢
violations(Sp || (Sw/Sp)). Then there exists a prefix ¢’ of ¢ and ¢t € (A%)*
such that ¢'t"” € Rs,,, NGs,, . Moreover, it must hold that ¢t € RSp||(Spw/Sp) OF
t't" € Gsp|(sw/sp)- Certainly the latter cannot hold, as t't" € Gs,, /s, It As,,
implies #'t"” € Gs,,,, which is contradictory. By the former, it follows that there
is a prefix t" of t't” such that t"" € G (Sp, Sw/Sp) while t""" & R(Sp, Sw/Sp),
but by definition of Gs,, /s, this is also contradictory.

For the third claim, we need to show that Syy/Sp is least-refined, that is: (i)
Rsy/sp NAs, © Rsg U violations(Sg); and (ii) violations(Sw/Sp) N A, C
violations(Sg). So proceed by induction on the length of a trace ¢ contained
within the left hand side.

Case t = e. For (i), as € € Rs,, /s, We know that € € Rs,, . Now suppose for
a contradiction that € ¢ Rs,. Then € ¢ R(Sp,Sg), meaning € € Rs,||s,- This
contradicts Sp || Sg E Sy, hence € € Rs, as required.

For (ii), suppose € € violations(Syy/Sp). Then there exists a minimal ¢’ €
(Aéw)* such that ¢ € R, /s, NGs,, /s, - Consequently, there exists t” € (Aép)*
such that t't" € Rs,, and either t't” € (Gs, 1T As,,) N Rs, It As,,, or t't"” €
Gs,y N (Gsp T As,y,)-

from e ¢ QSW/SP, it follows € ¢ Rs, or € € Gs,, N Gs,,. The first of these
cannot hold by definedness of Sy, /Sp. By the second, we see from Rs,, NGs,, C
GspliSo U --- that € € G| s,- Hence € € Gs,,, given € € Gs,, and € € R, |15,
for Sp H SQ E Sw.

Case t = t'o with o € A% . For (i), by the induction hypothesis in the
Sw/Sp

worst case we know that ¢ € Rs, and 0 € As,. But as Sg ~ (Sw/Sp), we

know o € Ag o hence t'o € Rs, by output-closure of assumptions.

For (ii), the difficult case is when ' € Gs,, /s, N Gs, and o € Agg, hence
t'o € (Asy/sp NAsg)*. As t'o € Gs,,/sp, it follows that t'o & pre(Gs,, U
gSP ﬂ\Asp ASV\)) T-ASW/SP or tlo ¢ pre((RSP ﬂAsP ASw) U gS'p TTASP ASV\)) [
As,y/sp- So there exists t”o € Ag =~ such that t'o = t"o | As,,/s,, t"0 €
Rsyy, and either "o € (Gsp ftas, Asw) NGs,, or t7o € (G Mg, Asy)N
Rsp Tas, Asy-

For the former, t"0 ¢ Gs,,, implies t"0 € Gs,|jso UAS, |15 (AQ, \AgPHSQ)(ASWU
Asp|lso)" given Sp || Sg E Syy. But as t"o | As,, /s, = t"0 | As,, it follows
that "0 € Gs,|so- Now t"0 [As, € Gs,, implies that t'o € Gs,, given that
t" € Gsp|iso from t' € Gs, . For the latter case, suppose t'o € Gs,. Then from
t"o € G (Sp,Sg) and t"o € R(Sp,So), it follows t"0 & Rs,||so- Ast’o € Rs,,
and Sp || Sg C Sy, it follows that there is a strict prefix ¢’ of ¢”o such that

30 C. Chilton, B. Jonsson, and M. Kwiatkowska

t" e RSPHSQ N gSPllsg' But clearly ¢ | As, € Gs, and "] ASQ € Gso,
which is contradictory.

Case t = t'i with ¢ € Aéw/sp. In the case of (i), from t'i € Rs,, /s, it
follows that there exists t"i € Ry, N (Gsp 1Tas, Asw)(AS,,)* such that ¢"i |
As,, /s, = t'i. Moreover, by the induction hypothesis (in the difficult case)
we know t' € Rs, N Gs,. Hence it must hold that ¢’ € G(Sp,Sg) and t"i €
g+(873,SQ). Now from Rs,, C [RS‘PHSQ U (RSPHSQ N gSPHSQ)ATS‘pHSQ} T ‘Agw’
t"i € Rs,, and t" € G(Sp,Sg) it follows that t"i € Rg,|s,- Hence t"i €
R(Sp,Sg), meaning t'i € Rs, as required, given t"i [As, = t'i.

For (ii), the difficult case is when t' € Ggs,, /s, N Gs, and i € A{;Q, hence
t'i € (Asy/sp NAsy)*. As t'i & Gs,, /sy, it follows that t'i & pre(Gs,, U
gSP 'ﬂ\As77 ASw) [ASW/SP or tll g pre((RSP TT.ASP ASV\;) U gSp TT.ASP ASw) [
As,y/sp- So there exists t"i € Ay ~such that t'i = t"i | As,,/s,, t"1 €
Rsyy, and either t"i € (Gsp ftas, Asw) N Gs, or ti € (G 1Tas, Asy) N
R Tas, Asy-

Now suppose for a contradiction that t'i € Gs,. Then for the former case, as
t'i e Rs,, NGs,,, it follows t'i € QSPHSQ U AZ‘PHSQ (Agw \‘AngSQ)(‘ASPHSQ U
Asy)" But as t"i [Ag,, /s, = t"i [As,, it follows that t"i € Gg,.||s,- But this
is contradictory, as t"i [As, € Gs, and t"i [As, € Gs,. For the latter case,
as t'i € Rs,, /s, and i € .A‘ISW/SP it actually holds that t"i € (Gs, Tas, Asw)-
Hence t"i € G(Sp,Sg) and because t"i ¢ R(Sp,Sg), it follows t"i & Rs,||so-
Ast"i € Rs,, and Sp || Sg C Sy, it follows that there is a strict prefix of "4
in Rs,|iso N Ysp||se, but this is obviously contradictory.

Proof of Theorem

For soundness, as Sp is implementable, it follows that Z(Sp) | Sp. There-
fore Z(Sp) || @ & Sw. Moreover, AG(Z(Sp)) C Sp and AG(Q) C AG(Q), so
AG(Z(Sp)) || AG(Q) E Sp || AG(Q)

First suppose

The parallel composition rule satisfies independent implementability. The
rule for quotient respects this property, given that quotient is the adjoint of
parallel composition with respect to the refinement preorder.

A.7 Decomposing Parallel Composition
Proof of Corollary

As §/Sp is defined, from Sg C §/Sp we can obtain Sp || Sg E Sp || (§/Sp)
by Theorem [} Now by Theorem [6] we see Sp || So T S. Hence by Theorem
it follows P || Q = S.

	Assume-Guarantee Reasoning for Safe Component Behaviours

