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Abstract. Stepwise refinement is a method for systematically transforming a high-level program into an
efficiently executable one. A sequence of successively refined programs can also serve as a correctness proof,
which makes different mechanisms in the program explicit. We present rules for refinement of multi-threaded
shared-variable concurrent programs. We apply our rules to the problem of verifying linearizability of con-
current objects, that are accessed by an unbounded number of concurrent threads. Linearizability is an
established correctness criterion for concurrent objects, which states that the effect of each method exe-
cution can be considered to occur atomically at some point in time between its invocation and response.
We show how linearizability can be expressed in terms of our refinement relation, and present rules for
establishing this refinement relation between programs by a sequence of local transformations of method
bodies. Contributions include strengthenings of previous techniques for atomicity refinement, as well as an
absorption rule, which is particularly suitable for reasoning about concurrent algorithms that implement
atomic operations. We illustrate the application of the refinement rules by proving linearizability of Treiber’s
concurrent stack algorithm and Michael and Scott’s concurrent queue algorithm.
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1. Introduction

Stepwise refinement is an important method for systematic construction of sequential and concurrent pro-
grams: a high-level program is transformed into an efficiently executable one through a sequence of correctness
preserving refinement steps. Such a sequence of successively refined programs can also serve as a clarifying
proof of correctness, provided that different mechanisms of the program are introduced in a way that makes
their rôles in the final program explicit [LT87, Jon94].

The refinement calculus is a formalization of the stepwise refinement approach. It was pioneered by Back
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and by Morgan [Bac88, Mor90] for sequential programs, and has since then been further developed for several
contexts, including that of parallel and concurrent programs (e.g., [BS89, CM88]). The refinement calculus
provides a collection of generally applicable laws or rules for refining a program by replacing a statement by
another one, while preserving correctness. Each rule typically embodies some principle, which clarifies the
rôle of the replacing statement in the program.

In this paper, we present rules for refinement of concurrent programs, in which an unbounded number
of threads interact via shared variables. We are particularly interested in using these rules for programs in
which concurrent threads interact by fine-grained synchronization mechanisms, such as fine-grained locking or
atomic test-and-set primitives (such as compare-and-swap). Such programs can be found, e.g., in concurrency
libraries, such as the Intel Threading Building Blocks or the java.util.concurrent package. The fine-
grained synchronization makes such programs notoriously hard to get correct, as witnessed by bugs found
in published algorithms (e.g., [DDG+04, MS95]).

We will primarily use our rules to refine methods that access the shared state in a multi-threaded
program. We therefore define a correctness criterion which is based on sequences of call and return actions
on a program’s methods. This criterion deviates from the refinement calculus as presented in, e.g., [Bac88,
Mor90, Bac89], where the correctness criterion is based on total correctness for sequential programs. An
important concern when refining concurrent programs is that of atomicity. Typically, high-level abstract
programs employ large atomic statements, which are often refined by combinations of smaller atomic actions.
An important purpose of our rules is therefore to establish that a (possibly compound) atomic statement is
correctly refined by a non-atomic sequence of statements. Such rules both help to establish correctness, and
to clarify how a program’s fine-grained synchronization mechanisms respect correctness.

As an application of our framework, we use it for constructing proofs of linearizability for concurrent
objects, which implement data structures that can be concurrently accessed by many threads. Algorithms
for concurrent objects typically employ fine-grained synchronization. It is important to show that they
correctly implement an easily understandable specification. The standard correctness criterion is that of
linearizability [HW90], which intuitively states that each operation of the concurrent object can be viewed
as being performed atomically at some point between its invocation and return. This criterion allows users
of the concurrent object to understand its behavior in terms of large atomic actions, without considering the
fine-grained synchronization in its implementation.

One of our contributions is to express the criterion of linearizability in terms of our refinement relation.
Intuitively, a program is linearizable if it refines a specification which consist of the same program, in which
each operation (except for its invocation and return actions) is performed atomically at some point between
invocation and return. This way to state the correctness of a concurrent object has the advantage that it is
not necessary to provide a separately constructed specification: the specification is simply the atomic version
of the concurrent object.

The problem of refining atomic actions in a concurrent program has been considered in the context of the
refinement calculus by Back [Bac89], using techniques based on commutativity developed by Lipton [Lip75].
Our framework includes an adaptation of the rules from [Bac89], but also contributes new rules that are
significantly more powerful. One contribution is a strengthening of the atomicity refinement rule [Bac89],
which allows new forms of loops in the refining sequence of statements. Another contribution is a so-called
absorption rule, which establishes that a sequence, consisting of an assignment and a following test, correctly
refines the atomic combination of these statements. The absorption rule can be seen as a simple formulation
of the ideas behind removal of so-called pure loops by Wang and Stoller [WS05]. As a result, we have
developed new and powerful techniques for proving linearizability of concurrent objects. We illustrate these
techniques by application to two well-known algorithms for concurrent objects from the literature: Treiber’s
stack [Tre86] and the concurrent queue by Michael and Scott [MS96]. In order to show how our refinement
rules can be used for correctness proofs, we show in detail how linearizability can be proven through a
sequence of small and simple refinement steps, which explain the mechanisms that underlie these algorithms.
We conjecture that it would be possible to build an automated framework that generates refinement proofs,
such as the ones shown in this paper. A main bottleneck is that application of refinement rules may depend
on assertions over the program state; such assertions have to be derived by a sufficiently powerful program
analysis. For singly linked lists, as in [Tre86, MS96], there are powerful techniques, e.g., [BR06], which in
principle are able to perform the needed reasoning about heap structures.

Related Work Back [Bac89] has presented a technique for refining atomic actions in a concurrent program
in the context of a refinement calculus, using techniques based on commutativity, originally developed by
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Lipton [Lip75]. Similar criteria for refining atomic actions have also been developed in several other contexts
(e.g., [Lam90]). Our work includes a more powerful version of this technique, which allows loops in the
refining sequence of statements.

Several previous works have presented techniques for establishing that parts of a program can be consid-
ered as being executed atomically. Freund and Qadeer [FQ04] uses type inference techniques to find atomic
sections in a program. The approach is automatic, but too weak to prove correctness of algorithms as con-
sidered in this paper. The techniques in the work by Wang and Stoller [WS05] are more powerful, and
include techniques specifically designed for programs that synchronize using Compare-and-Swap statements,
which are similar in spirit to our cancellation and absorption rules. To simplify the reasoning they employ
slightly different basic synchronization primitives (using Load Linked/Store Conditional (LL/SC) instead of
Compare and Swap (CAS)), which makes reasoning substantially simpler.

Elmas et al. [EQS+10] show how techniques for atomicity refinement (based on commutation) can be used
to simplify linearizability proofs. Proofs in their framework can be checked by an automatic prover, but rely
on substantial manual guidance (e.g., introduction of new auxiliary variables). Groves [Gro08, Gro09] use
techniques based on atomicity refinement (using commutation) and establishment of simulation relations
to verify linearizability of concurrent objects. The approach relies heavily on non-automated operational
reasoning, and appears not to be suitable for automated verification.

Organization of Paper The paper is organized as follows. In the next section, we introduce our program
model, intended to represent the behavior of concurrent objects, and introduce our refinement relation. In
Section 3, we show how linearizability can be defined in terms of our refinement relation. In Section 4, we
present rules for establishing refinement between programs by transformation of particular statements. We
apply the presented framework to Treiber’s stack in Section 5, and to Michael and Scott’s concurrent queue
in Section 6. Section 7 contains conclusions and directions for further work.

2. Model of Concurrent Objects

We consider concurrent systems consisting of a collection of sequential threads that interact by invoking oper-
ations on shared concurrent objects. In this section, we introduce a program model, intended for representing
the behavior of concurrent objects.

Define a program P as consisting of a set of global variables, and a set of methods. A method consists of
a set of local variables, including a set of input parameters, and a method body. Local and global variables
may reference cells in a shared heap. A method body is a compound sequential statement built from atomic
commands using standard control flow constructs. Method execution is terminated by executing a return
command, which may return a value.

When representing the behavior of a concurrent object in our program model, global variables and the
shared heap are used to maintain the persistent state of the object. Methods can be invoked by concurrently
executing threads at arbitrary points in time. The global variables can be accessed by all threads, whereas
local variables can be accessed only by the thread which is invoking the corresponding method.

In this paper, we assume that (global and local) variables are either data variables, which assume values
from an infinite domain, denoted by D, or pointer variables, which contain references to heap cells. We
specialize the presentation for the examples in Sections 5 and 6, and assume that each heap cell has two
fields: a data field which contains a data value in D, and a next field which contains a reference to a heap
cell or null . In addition, fields can also contain the value ⊥ (undefined). The initial value of a variable or
field is ⊥ (undefined).

Atomic commands include assignments between data variables, pointer variables, or fields of cells pointed
to by a pointer variable. The command new(x) creates a new cell on the heap, and assigns a reference to that
cell to the pointer variable x. We assume a memory management mechanism, which automatically collects
garbage, and also ensures that a newly created cell is fresh, i.e., has not been used before program; this avoids
the so-called ABA problem (e.g., [MS96]). The assume command {{g}} blocks execution of the thread when
the guard g (a boolean expression) evaluates to false, and is executed without any effect when g evaluates
to true. The compare-and-swap command CAS(x, y, z) is an atomic command, which first tests whether x
and y have the same value; if so, it assigns the value of z to x and returns true; if not, it leaves the value of
x unchanged and returns false. Note that the values of two pointer variables are equal only if they reference
the same cell (i.e., contain the same “address”). The atomic construct [[ S ]] lets the compound statement S
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struct Node {
Data data;
Node ∗ next

}

void Push(Data d) {
Node ∗ t, ∗x;
new(x);
x.data := d;
do {
t := S;
x.next := t

} while ¬CAS(S, t, x);
return

}

void Init() {
Node S;
S := null ;
}

Data Pop() {
Node ∗ t, ∗x;
do {
t := S;
if (t = null)

return empty;
x := t.next
} while ¬CAS(S, t, x);
return t.data

}

Fig. 1. Treiber’s concurrent stack.

be executed atomically if this is possible, otherwise the statement [[ S ]] blocks (e.g., if S contains an assume
command that would block execution from the current configuration). The return command terminates
execution of a method, and may also return a value. We represent the execution of a return command by
assigning the return value to the local variable retval, which is assumed to be an implicit local variable of
each method. In the initial local state, the value of retval is undefined.

An example of a program occurs in Figure 1, which models Treiber’s concurrent stack algorithm [Tre86].
The algorithm represents a stack by a linked list, with the top pointed to by a global variable S. Initially, the
stack is empty, i.e., the value of S is null . The stack can be accessed by an arbitrary number of concurrent
invocations of Push and Pop methods. An invocation of the Push method inserts a data value at the top.
This is done by first creating a new cell, pointed to by x, whose data field contains the value to be inserted.
Thereafter, the method enters a retry loop, in which it remains as long as the compare-and-swap command
is unsuccessful, typically because other concurrent threads modify the value of S between the assignment to
t and the compare-and-swap command. When the compare-and-swap command succeeds, the local variable
t is assigned the value of the global variable S, and the next field of the cell pointed to by x is assigned the
cell pointed to by t. Finally, the cell is inserted into the stack by the atomic compare-and-swap operation
CAS(S, t, x). An invocation of Pop returns empty if the stack is empty, or else removes and returns the data
value at the top of the stack. This is done in a retry loop, analogous to that in the Push method.

A precise semantics of a program can be given in terms of a transition system. Define a heap as a triple
〈M,Next, V al〉, where M is a finite set of cells, where Next : M 7→ (M ∪{null ,⊥}) maps each cell to either
a cell in M , the value null , or ⊥ (undefined), and where V al : M 7→ (D ∪ {⊥}) maps each memory cell to a
data value in D or to ⊥. A valuation maps each data variable to a data value in D or to ⊥, and each pointer
variable to either a cell in M , the value null , or ⊥. Define a local configuration as a pair 〈π, σ〉, where π is
a control location in some method, and σ is a valuation of the local variables of that method (including the
input parameters and the variable retval). Define a thread configuration Π as a mapping from a set Dom(Π) of
thread identifiers (which represent the currently active method invocations) to local configurations. Define a
global configuration as a triple γ = 〈H,Σ,Π〉, where H is a heap, Σ is a valuation of the global variables, and
Π is a thread configuration. The initial global configuration is the configuration that results after execution
of the Init method from a configuration consisting of an empty heap with no cells, undefined initial values
of global variables, and an empty set of active threads.

The dynamic behavior of a program is represented by a set of labeled transitions. We omit a detailed
account of each command, and just assume that the meaning of commands and atomic statements is given
in terms of computation steps of a thread. Each computation step represents the execution of a command
or atomic statement, which changes the local configuration of the thread, possibly updating the heap and
global variables. An observable label is a term of form invoke[i](m, d) or return[i](m, d), where i is a thread
identifier, where m is a method name, and d is the value of the input or return parameter associated with
the invocation or response. We omit the obvious modifications to allow for constant or missing return values
(such as empty) and methods without input parameters.
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A transition is a triple of form γ
l−→ γ′, where γ and γ′ are global configurations and l is a label, which

is either an observable label or τ . A transition of a program can be of one of the following forms.

• A transition of form 〈H,Σ,Π〉 τ−→ 〈H ′,Σ′,Π′〉 represents a computation step of a thread i in Dom(Π).
The global configuration is updated from 〈H,Σ,Π〉 to 〈H ′,Σ′,Π′〉 to reflect the change to the global
configuration in the natural way.

• A transition of form 〈H,Σ,Π〉 invoke[i](m,d)−→ 〈H,Σ,Π′〉 represents an invocation of a method m with input
parameter value d, where i is a thread identifier which is not in Dom(Π), and where Π′ is obtained from
Π by adding i to its domain, and mapping i to the initial local state of m.

• A transition of form 〈H,Σ,Π〉 return[i](m,d)−→ 〈H,Σ,Π′〉 represents a return of a method m with return
value d. The transition can be performed when i is in Dom(Π) and Π(i)(retval) = d. Then the new thread
configuration Π′ is obtained from Π by removing i from its domain.

A computation of a program is a finite sequence of form γ0
l1−→ γ1

l2−→ · · · ln−→ γn, such that

γ0 is the initial global configuration, and such that γi−1
li−→ γi is a transition for i = 1, . . . , n. A trace of a

program is the sequence of observable labels in a computation of the program, i.e., the sequence of invoke
and return labels. We use T (P) to denote the set of traces of the program P.

Refinement From the point of view of threads that invoke operations on an object, the behavior of an object
is characterized by the possible sequences of invocations and responses, i.e., by its traces. We therefore define
refinement between programs in terms of traces.

Definition 2.1. Let P1 and P2 be two programs with the same method signatures (i.e., names, input
parameters, and possible return values). Then P2 is refined by P1 if T (P1) ⊆ T (P2). �

In other words, P2 is refined by P1 if for each computation of P1, there is a computation of P2 with the
same sequence of invoke and return labels. This definition of refinement reflects the view that the interface
of a concurrent object consists in the sequences of invocations and responses that are possible. Note that the
refinement relation does not consider requirements on termination of method calls. For instance, a program
whose methods do not terminate may refine a program whose methods always terminate. As will be shown
in Section 3, this view turns out to be sufficient to characterize linearizability.

3. Linearizability

In this section, we show how the refinement relation between programs can express the concept of lineariz-
ability [HW90]. Linearizability is a key correctness property for concurrent objects, which states that it
should always be possible to view operations on concurrent objects as though they occur atomically, in some
sequential order. To quote from [HW90]:
Linearizability provides the illusion that each operation applied by concurrent processes takes effect instantaneously at some
point between its invocation and its response.

This point between invocation and response of an operation is commonly referred to as the linearization
point.

We can define linearizability in terms of sequences of invoke and return labels, i.e., traces, as defined just
before Definition 2.1. Let us consider such traces in more detail. The sequence of labels in a trace contains
a sequence of invokes. Each invoke label is either followed by a later matching return label, or not. In the
former case, we say that the invoke is matched, in the latter case we say that it is pending. A computation is
called atomic if it contains no unmatched invoke labels, and if for each operation, the transitions associated
with this operation occur as follows: first an invocation of the operation, thereafter an arbitrary sequence
of transitions of other threads, thereafter all non-observable computation steps of its body (including the
assignment of return value to the variable retval) without interference of computations steps by other threads,
thereafter transitions of other threads, and finally the return. Thus, in an atomic computation, each method
body is executed as a single atomic computation step at some point in time between invocation and return.
A trace is atomic if it is the sequence of observable labels in an atomic computation. According to [HW90],
a trace is linearizable if it can be transformed into an atomic trace by first appending a sequence of return
labels for some of its unmatched invoke labels, and thereafter removing the unmatched invoke labels.
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The above discussion can be summarized into the below characterization of linearizability. For a program
P, let atomic{P} denote the program in which each method body S is replaced by [[ S ]].

Definition 3.1. A program P is linearizable if and only if atomic{P} is refined by P ut

This proposition captures the intuition that P is linearizable if in each computation, each operation appears to
be performed atomically at some point between its invocation and its response. Note that the definition does
not require progress. For instance, a program in which no operation ever returns is trivially linearizable. This
is consistent with the definition in [HW90]. Of course, it is of interest to establish that operations eventually
return, according to some notion of progress, but this is not within the scope of the current paper.

4. Rules for Establishing Refinement between Programs

In this section, we present rules for refining a program by replacing some of its statements. We use P[S]
to denote a program which contains an occurrence of the statement S, and P[T ] to denote the result of
replacing that occurrence by T . Rules provide constraints that guarantee that the replacement is correct,
i.e., that P[S] is refined by P[T ]. Rules should preferably be local in the sense that a replacement is correct
regardless of the enclosing program, or depend on some easily checkable properties of the enclosing program.

Definition 4.1. Let S and T be two statements, and P[·] be a program context in which · denotes a “place
holder” in some method body, which can be filled by a statement. Define S vP[·] T to mean that P[S] is
refined by P[T ]. Define S v T to mean that S vP[·] T for any program context P[·]. ut

It follows that v is a congruence with respect to the constructors for forming compound statements (sequen-
tial composition, iteration, etc.). We use S ≡ T to denote that S v T and T v S. In the following, we will
use the notation v also for vP[·], since the program context will in most cases be clear.

Definition 4.1 does not provide concrete guidance for reasoning about the validity of refinement rules.
We therefore present sufficient conditions for v in terms of sequences of computation steps. For a statement
S, let πS0 be the initial control location of S. For two heaps H and H ′ and a thread identifier i, let H 'i H ′
denote that H and H ′ agree on all cells that can be reached from threads other than i.

Proposition 4.2. Let S and T be statements that are associated with the same sets of local and global
variables. Then S v T if the following two conditions are satisfied.

1. Whenever 〈H0,Σ0,Π
T
0 〉

l1−→ · · · ln−→ 〈H,Σ,Π〉 is a finite sequence of transitions of some program
with ΠT

0 (i) = 〈πT0 , σ0〉, in which i performs a sequence of computation steps of T ,

there is a finite sequence of transitions 〈H0,Σ0,Π
S
0 〉

l1−→ · · · ln−→ 〈H ′,Σ,Π′〉 with the same
sequence of observable labels, where ΠS

0 (i) = ΠT
0 [i 7→ 〈πS0 , σ0〉] (i.e., the only difference between ΠS

0 and
ΠT

0 is the initial control location of i), in which i performs a sequence of computation steps of S, such
that H 'i H ′ and Π′(i′) = Π(i′) for all i′ 6= i.

2. Whenever Π(i) in the above sequence of transitions is at the end of T then 〈H ′,Σ,Π′〉 can be chosen so
that Π′(i) is at the end of S, so that the valuation of local variables of i is the same in Π′ and Π, and so
that H ′ = H. ut

The proposition can be justified from Definition 2.1, by considering the structure of computations. If the
criterion above is satisfied, then a sequence of transitions in which the computation steps of i are from T
can be replaced by sequence of transitions in which the computation steps of i are from S.

The criterion in Proposition 4.2 can be used to motivate the rules for refinement that will be presented
subsequently. We first need some preliminary definitions.

• For a local pointer variable x, let the assertion local(x) denote that the cell referenced by x cannot be
reached (by a chain of pointers or next fields) from any other thread than that in which x is local. Such
assertions will be used to let accesses of form x.next and x.data be treated in the same way as accesses
to local variables.

• A local occurrence is either an occurrence of a field access (of form x.next or x.data), where the variable
x occurs in an immediately preceding assume command of form {{local(x)}}, or an occurrence of a local
variable.
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• A local variable x is dead after a statement S in a method body if the next occurrence of x (if any) in
the same method body performs an assignment to x.

• A field (of form x.next or x.data) is dead after a statement S in a method body if S; {{local(x)}} v S,
i.e., local(x) holds after S, and the next occurrence (if any) of the field in the same method body is a
local occurrence which performs an assignment to it.

• A non-conflicting access is either an access to a local variable, or a field access (of form x.field) which is
either (1) a local occurrence, or (2) a read access such that any write access in the program to a field
named field (of form y.field) is a local occurrence.

• Let C and C ′ be commands or atomic statements (note that commands are by definition atomic). We say

that C ′ commutes right with C if for any sequence of two transitions 〈H0,Σ0,Π0〉
τ−→ 〈H1,Σ1,Π1〉

τ−→
〈H2,Σ2,Π2〉, where a thread i′ performs C ′ in the first one, and a different thread i performs C in

the second one, then there is another sequence of two transitions 〈H0,Σ0,Π0〉
τ−→ 〈H ′1,Σ′1,Π′1〉

τ−→
〈H2,Σ2,Π2〉, where thread i performs C in the first one, and thread i′ performs C ′ in the second one,
and the two sequence begin and end in the same global configurations. We say that C ′ commutes left
with C if the swap between C ′ and C can be performed in the other direction. A sufficient criterion for a
command C ′ to commute left and right with any other command is that C ′ only contains non-conflicting
accesses.

• For commands or atomic statements C and C ′ in a program, we say that C ′ weakly commutes right with

C if for any sequence of two transitions 〈H0,Σ0,Π0〉
τ−→ 〈H1,Σ1,Π1〉

τ−→ 〈H2,Σ2,Π2〉, where a thread i′

performs C ′ in the first one, and a different thread i performs C in the second one, then there is another

sequence of two transitions 〈H0,Σ0,Π0〉
τ−→ 〈H ′1,Σ′1,Π′1〉

τ−→ 〈H2,Σ2,Π2〉, where thread i performs an
atomic statement S in the first one, and thread i′ an atomic statement S′ in the second one, and the two
sequence begin and end in the same global configurations, where the statements S and S′ can be chosen
in one of the following ways.

– If C ′ is contained in a statement of form do C ′, then S′ can be chosen as [[ do C ′ ]], otherwise S′ is
C ′.

– If C is contained in a statement of form do C, then S can be chosen as [[ do C ]],

– If C is contained in a statement of form do C ′′ ;C, then S can be chosen as [[ do C ′′ ;C ]].

– If none of the two previous cases apply, then S is C.

As an example, let x be a global variable, let C ′ be the command x++ , and let C be the command
[[ {{even(x)}};x++ ]] which increments x only if it is even. Then C ′ does not commute right with C, since
if x is 5 (say), then C ′ can be performed before C, but not vice versa (since C blocks when x is 5). On
the other hand, there is a situation in which C ′ weakly commutes right with C. Namely, if C occurs in
the statement do x++ ; C, and C ′ occurs in the statement do C ′, then performing C ′ before C yields
the same result as performing [[ do x++ ; C ]] (following the third case in the above definition, with C ′

as C ′′ and performing one iteration in the loop) before [[ do C ′ ]] (following the first case in the above
definition, with zero iterations of the loop).

• We say that C ′ weakly commutes left with C in the analogous manner.

To make rules more widely applicable, the control structure of each method will first be transformed into
an equivalent one that uses the control structures either− or, which nondeterministically selects a branch,
and do S, which performs an arbitrary number (zero or more) of repetitions of the statement S. The
transformation will also put relevant control-flow tests into assume commands of form {{g}}. For a non-nested
loop, the transformed method will contain a loop of form do S, where S contains only the non-exiting parts
of the loop, followed by a selection between the different ways in which the loop can be exited, using the
either− or control structure. As an example, a control structure of form

S
4
= do {S1; if (b1)return e;S2}while (b2)

will be transformed into the following control structure.

T
4
= do {S1; {{¬b1}};S2{{b2}}}; either {S1; {{b1}}; return e}or{S1; {{¬b1}};S2{{¬b2}}}

We have S ≡ T , since S and T can perform the same sequences of computation steps.
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We are now ready to present the rules that will be used. Since we will use the refinement relation v to
start from a concrete program, and prove, by a sequence of gradual refinement steps, that it refines an easily
understood specification, we will present the rules with the refining statement to the left of the w relation.

Skip The statement skip can be introduced and removed arbitrarily, i.e., S; skip ≡ S for any statement S.

Thread-Local Refinement If for any computation step 〈H0,Σ0,Π
T
0 〉

τ−→ 〈H,Σ,Π〉 of [[ T ]] performed

by thread i, there is a computation step 〈H0,Σ0,Π
S
0 〉

τ−→ 〈H,Σ,Π′〉 of [[ S ]] performed by thread i,
where the only difference is the initial and final control locations of i, then [[ T ]] w [[ S ]]. That is,
inside atomic statements, the criteria for refinement between statements need not consider interference
from concurrent threads. How to refine sequential statements is well-understood, and techniques can
be adapted from, e.g., [Bac88, Mor90]. In the subsequent examples, we will use rather straight-forward
rules, mostly propagation of assertions. We will often not distinguish between obviously equivalent atomic
statements, and, e.g., identify [[ S; {{g}}; {{g′}} ]] with [[ S; {{g ∧ g′}} ]].

Annotations Assume commands of the form {{g}}, where g is a boolean expression over local variables,
are introduced in order to introduce information that is necessary for applying other rules. They can be
introduced and propagated as follows.

• The rule {{g}} w skip trivially holds for any boolean expression g, implying that an assume command
{{g}} can always be introduced when refining a statement.

• If g is guaranteed to be true after any terminating execution of statement S (which can be interleaved
with statements of concurrent threads), then S w S; {{g}}. As a special case, if any terminating
execution of S from a state satisfying pre will establish post, then {{pre}};S w {{pre}};S; {{post}}.

• If S assigns only to local occurrences, and any terminating execution of S (which can be interleaved
with concurrent threads) that reaches a state satisfying post is guaranteed to satisfy pre prior to the
execution of S, then S; {{post}} w {{pre}};S; {{post}}.

• If g only contains non-conflicting accesses, then [[ S; {{g}} ]]; [[ T ]] w [[ S; {{g}} ]]; [[ {{g}};T ]], and
[[ S ]]; [[ {{g}};T ]] w [[ S; {{g}} ]]; [[ {{g}};T ]]. That is, local assertions {{g}} can be propagated
between atomic statements.

Locality Annotations Assertions of form local(x) are introduced by new(x) w new(x); {{local(x)}}.
Furthermore, if S does not contain any occurrence of x, then {{local(x)}};S w {{local(x)}};S; {{local(x)}}.
In this way, assertions of form local(x) can be propagated through method bodies.

Cancellation The Cancellation rule states that S;T w T if any variable or field of a heap cell which
is updated by S is a local occurrence in S and dead after S. The justification for the rule is that the
computation steps performed by S have no effect on other threads or the continuation T . This rule can
be used to remove loops that have no lasting effect on the configuration. This rule can be seen as a simple
formulation of the ideas behind removal of so-called pure loops by Wang and Stoller [WS05].

Absorption If v is a local variable and e is any (possibly global) expression which does not contain an
occurrence of v, then

v := e; [[ {{v = e}};S ]] w [[ v := e; {{v = e}};S ]]

The intuitive justification for the Absorption rule is that a computation of v := e; [[ {{v = e}};S ]], in
which other threads intervene between the assignment v := e and the atomic statement, can be simulated
by a computation in which the assignment is redone just before the test {{v = exp}}: since the test will
be successful, the reassignment has no effect. Thereafter the first assignment will be redundant, and can
be dropped. The Absorption rule can also be derived using the Cancellation rule, as follows.

v := e; [[ {{v = e}};S ]] w v := e; [[ v := e; {{v = e}};S ]] w [[ v := e; {{v = e}};S ]]

Atomicity Refinement Let S and T be statements and A be a command or atomic statement, and let
the statement T be guaranteed to terminate. Then S;A;T w [[ S;A;T ]] if

(1) all atomic statements in S commute right with all atomic statements in the program, and

(2) all atomic statements in T commute left with all atomic statements in the program.

The justification for this rule is that, because of commutativity, a sequence of transitions in which
commands in S are interleaved with commands of concurrent threads can be simulated by a sequence
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of transitions in which first all the commands of the concurrent threads are performed followed by an
execution of S. By an analogous argument, the statement T can be executed before potentially interleaving
threads (and since it is guaranteed to terminate) without affecting the sequence of observable labels or
the resulting configuration. In summary, any computation in which S;A;T is executed non-atomically
has the same visible effect as a computation in which S;A;T is executed without interleaving by other
threads; hence it can be made atomic.
The above technique for refining atomic statements in a concurrent context was introduced into the refine-
ment calculus by Back [Bac89], and builds on ideas of commutation originally defined by Lipton [Lip75].

Strengthened Atomicity Refinement In this paper, we additionally present a strengthening of the atom-
icity refinement rule, for the case that the program contains statements of form do C, where C is a
command or atomic statement. This strengthening allows requirements (1) and (2) above to be weakened
by requiring only weak commutativity instead of commutativity.
This strengthening can be justified as follows. If C ′ weakly commutes right, then a sequence of transitions
where a thread i′ performs m repetitions of C ′ interleaved with commands of other threads, can be
simulated by a sequence in which the interleaving commands are moved to the left of the commands
C ′. This simulating sequence may have a different number of contiguous repetitions of C ′, and may also
insert or remove an arbitrary number of commands of interleaving threads. However, the change still
results in a sequence of transitions of the program, since C ′ occurs inside a statement of form do C ′.
Analogous arguments justify the addition or removal of commands in the interleaving threads.
As an example, let x, C ′, and C be as in the example following the definition of weak commutativity.
Then we can use the strengthened atomicity refinement rule to establish that do C ′ ; C w [[ do C ′ ; C ]],
i.e., that

do x++ ; [[ {{even(x)}};x++ ]] w [[ do x++ ; [[ {{even(x)}};x++ ]] ]] .

Following the definition of weak commutativity, we established that C ′ commutes weakly right with C
and with itself.
At the end of Section 6, we apply the strengthened atomicity refinement rule in the proof of linearizability
of Michael and Scott’s concurrent queue.

Global Invariants For the application of some rules, we may need to first establish an invariant over the
global variables and the heap. Such an invariant is established in the standard way, by checking that
(1) it holds upon initialization of the program, and (2) that any command or atomic statement which
modifies a global variable or a heap cell maintains the invariant.

5. Application to Treiber’s Concurrent Stack

In this section, we illustrate how our framework and the refinement rules in Section 4 can be used to establish
linearizability of Treiber’s concurrent stack [Tre86]. A description of this algorithm appeared in Figure 1.
For the proof of refinement, we will first transforms its control structure, as explained in Section 4. We
represent a successful CAS(x, y, z) statement as [[ {{x = y}};x := z ]], and an unsuccessful CAS(x, y, z)
statement as {{x 6= y}}. The resulting methods are shown in Figure 2. As a first step, we insert annotations
of form {{local(x)}} into the Push method. Such annotations are inserted between all pairs of commands that
follow the new(x) command (this conforms to the rule for introducing annotations of form {{local(x)}}) and
precede the next-to-last line [[ {{S = t}};S := x ]] (it is not possible to propagate the annotation past this
statement, since it exposes the cell pointed to by x). For space reasons, we do not display the result.

The annotation using {{local(x)}} allows to conclude that

• accesses of form x.next in the Push method are non-conflicting, since they occur after the assertion
{{local(x)}}, and that

• accesses of form t.next in the Pop method are non-conflicting, since they are read accesses, and the
accesses of form x.next in the Push method occur after the assertion {{local(x)}}.

We are now ready to present a proof of linearizability of the program as a sequence of refinement steps. We
consider each method separately.

The Push method The relation w between the Push method and its atomic version can be established
through a sequence of applications of the refinement rules. We assume that the assertions of form {{local(x)}}
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void Push(Data d) {
Node ∗ t, ∗x;
new(x);
x.data := d;
do {
t := S;
x.next := t;
{{S 6= t}}

};
t := S;
x.next := t;
[[ {{S = t}};S := x ]];
return

}

Data Pop() {
Node ∗ t, ∗x;
do {
t := S;
{{t 6= null}};
x := t.next ;
{{S 6= t}}

};
either {
t := S;
{{t = null}};
return empty

} or {
t := S;
{{t 6= null}};
x := t.next ;
[[ {{S = t}};S := x ]];
return t.data

}

Fig. 2. Treiber’s concurrent stack with transformed control structure.

have been inserted, as just explained. We can now perform the following sequence of steps.

new(x);
x.data := d;
do{
t := S;
x.next := t;
{{S 6= t}}

};
t := S;
x.next := t;
[[ {{S = t}};
S := x ]];

return;

w

new(x);
x.data := d;
t := S;
x.next := t;
[[ {{S = t}};
S := x ]];

return;
w

new(x);
x.data := d;
t := S;
[[ {{S = t}};
x.next := t;
{{S = t}};
S := x;

return ]];

w

new(x);
x.data := d;
[[ t := S;
{{S = t}};
x.next := t;
{{S = t}};
S := x;

return ]];

w

[[ new(x);
x.data := d;
t := S;
{{S = t}};
x.next := t;
{{S = t}};
S := x;

return ]];

w

[[ new(x);
x.data := d;

do{
t := S;
x.next := t;
{{S 6= t}}
};
t := S;
x.next := t;
{{S = t}};
S := x;

return ]];

We motivate each of the steps in turn.

1. The do statement is removed using the Cancellation rule. This is justified by observing that both t and
x.next are dead after the do statement.

2. First the scope of the atomic command is enlarged using the rule for atomicity refinement: the return
command is local, and the command x.next := t is also local (remember that local(x) is implicitly
asserted). Thereafter, the assume command {{S = t}} is propagated to the beginning of the atomic
statement, exploiting the fact that it is inside an atomic statement.

3. Using the Absorption rule, the assignment t := S can be performed together with the atomic section.
Note how the just inserted assertion {{S = t}} is exploited to make the rule applicable.

4. The scope of the atomic section is enlarged with the two first commands, which are purely local.

5. The do statement is reinserted. This step is trivially correct, since the inserted statement can only add
executions

By composing these refinement relations, it is established that the Push method refines its atomic version.

The Pop method Let us now consider the Pop method, as shown in Figure 2. Similarly as for the Push
method, we first observe that the first do statement, i.e.,

do{t := S; {{t 6= null}};x := t.next ; {{S 6= t}}} ,
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can be removed, since t and x are dead after the do loop (note that the local variable x does not appear
in the first branch of the either – or statement). For clarity, consider each of the two alternatives of the
either – or statement separately. For the first one, we have

t := S;
{{t = null}}
return empty

w
[[ t := S;
{{t = null}}
return empty ]]

using the atomicity refinement rule, with the assignment t := S as the non-local command. For the second
one, we can establish the following sequence of refinement steps.

t := S;
{{t 6= null}};
x := t.next ;
[[ {{S = t}};
S := x ]];

return t.data

w

t := S;
{{t 6= null}};
[[ x := t.next ;
{{S = t}};
S := x ]];

return t.data

w

t := S;
[[ {{t 6= null}};
x := t.next ;
{{S = t}};
S := x;

return t.data ]]

w

t := S;
[[ {{S = t}};
{{t 6= null}};
x := t.next ;
{{S = t}};
S := x;

return t.data ]]

w

[[ t := S;
{{S = t}};
{{t 6= null}};
x := t.next ;
{{S = t}};
S := x;

return t.data ]]

Following is a motivation for each step in turn.

1. The command x := t.next can be moved inside the atomic section, since x is a local variable, and t.next
is a non-conflicting access.

2. The atomic section is expanded to include the command return t.data: note that t.data is a non-
conflicting access. The command {{t 6= null}} is also included into the atomic statement, since t is local.

3. The assertion {{S = t}} is added to the beginning of the atomic section, similarly as for the Push method.

4. By the Absorption Rule, the assignment t := S can be performed together with the atomic section.

Following this sequence of refinement steps, we use the obvious rule

either [[ S ]] or [[ T ]] ≡ [[ either S or T ]]

to merge the two alternatives into one atomic statement. Finally, we reinsert the do-loop as was done for
the Push method.

do {t := S; {{t 6= null}};x := t.next ; {{S 6= t}}}

at the beginning of the atomic statement. By composing these refinement relations, it is established that the
Pop method refines its atomic version.

6. Application to Michael and Scott’s Concurrent Queue

In this section, we illustrate how our framework and the refinement rules in Section 4 can be used to establish
linearizability of Michael and Scott’s concurrent queue [MS96]. A description of this queue algorithm appears
in Figure 3. The queue is represented by linked list in which the first cell is a dummy cell. The global variable
Head points to the dummy cell, and Tail points to the last cell in the list. Initially, the list contains only a
dummy cell. An invocation of the Enqueue method inserts a new cell at the end of the list and makes Tail
point to this new cell. This is done using a retry loop, in analogy with the Push method of Treiber’s stack.
An invocation of Dequeue returns empty if the queue is empty, or else removes and returns the first value in
the queue.

For the proof of refinement, we will first transforms its control structure, as explained at the end of
Section 4. The resulting methods are shown in Figure 4. As in the treatment of Treiber’s stack, we remove
pure loops using the Cancellation rule. The result is shown in Figure 5. Our proof that the program in
Figure 5 refines the atomic version of the methods in Figure 4 follows a similar pattern as that for Treiber’s
stack, but contains additional complications. One is that we must first establish a global invariant, that
relates the variables Head and Tail and the heap. Let us introduce some notation.

For two variables x1 and x2, let x1
∗→ x2 denote that the cell pointed to by x2 can be reached by

following a chain of zero or more next fields from the cell pointed to by x1. Let x1
+→ x2 denote that the
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struct Node {
Data data;
Node ∗next

}

void Enqueue(Data d) {
Node ∗t, ∗n, ∗x;
new(x);
x.data := d;
do {
t := Tail;
n := t.next ;
if (t = Tail) {

if (n = null) {
if (CAS(t.next , n, x)) break;

} else {
CAS(Tail, t, n)

}
}

};
CAS(Tail, t, x));
return

}

void Init() {
Node ∗Head, ∗Tail, ∗n;
new(n);
Head := n;
Tail := n;
}

Data Dequeue() {
Node ∗h, ∗t, ∗n;
do {
h := Head;
t := Tail;
n := h.next ;
if (h = Head) {

if (h = t) {
if (n = null) return empty;
CAS(Tail, t, n));
} else {

retval := n.data;
if (CAS(Head, h, n)) return retval
}

}
}
}

Fig. 3. Michael and Scott’s concurrent queue

cell pointed to by x2 can be reached by following a chain of one or more next fields from the cell pointed
to by x1. Reasoning about these relations can be mechanized, e.g., using techniques presented by Bingham
and Rakamaric [BR06]. We will only need to reason about these relations using simple principles, e.g., that

x1
∗→ x2 ∧ x1 6= x2 implies x1

+→ x2.

The global invariant we will need is that Head
∗→ Tail, i.e., that the cell pointed to by Tail can be

reached by following a chain of zero or more next fields from the cell pointed to by Head. Let us consider
how it is preserved by changes to global variables and to heap cells (we need only consider next fields).

1. Initially, Head = Tail, which conforms to the invariant.

2. The program contains only one update of a next field, in the next-to-last atomic statement of the Enqueue
body. By propagating properties of local variables and local occurrences, this atomic statement is equiv-
alent to

[[ {{t.next = n = null ∧ local(x) ∧ x.next = null}}; t.next := x ]] ,

showing that the heap is modified only by adding new cells, which are pointed to by pointers from cells
that previously had null as their next field. This implies that the heap maintains the shape of a singly
linked list. We also observe that a non-null next field is never modified.

3. The program contains three updates of Tail. The first one in the Enqueue method is equivalent, using
the observation that the command n := t.next commutes right with all commands in the program (since
n 6= null and the program contains no write-access to a non-null next-field) and hence can be moved into
the atomic statement, to

[[ {{t = Tail ∧ n = t.next ∧ n 6= null}};Tail := n ]] ,

which shows that Tail is assigned to Tail.next which is non-null . We can draw the same conclusion for
the other updates of Tail: The last line of the Enqueue method is equivalent to

[[ {{t = Tail ∧ x = t.next ∧ x 6= null}};Tail := x ]] ,
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void Enqueue(Data d) {
Node ∗t, ∗n, ∗x;
new(x);
x.data := d;
do {

either {
t := Tail;
n := t.next ;
{{t 6= Tail}}
} or {
t := Tail;
n := t.next ;
{{t = Tail}};
{{n = null}};
{{t.next 6= n}}
} or {
t := Tail;
n := t.next ;
{{t = Tail}};
{{n 6= null}};
[[ if (t = Tail) Tail := n ]]
}

};
t := Tail;
n := t.next ;
{{t = Tail}};
{{n = null}};
[[ {{t.next = n}}; t.next := x ]];
[[ if (t = Tail) Tail := x ]]
return

}

Data Dequeue() {
Node ∗h, ∗t, ∗n;
do {

either {
h := Head;
t := Tail;
n := h.next ;
{{h 6= Head}}
} or {
h := Head;
t := Tail;
n := h.next ;
{{h = Head}};
{{h = t}};
{{n 6= null}};
CAS(Tail, t, n)
} or {
h := Head;
t := Tail;
n := h.next ;
{{h = Head}};
{{h 6= t}};
retval := n.data;
{{h 6= Head}}
}

};
either {
h := Head;
t := Tail;
n := h.next ;
{{h = Head}};
{{h = t}};
{{n = null}};
return empty

} or {
h := Head;
t := Tail;
n := h.next ;
{{h = Head}};
{{h 6= t}};
retval := n.data;
[[ {{h = Head}};Head := n ]];
return retval

}
}

Fig. 4. Michael and Scott’s concurrent queue with transformed control structure.

and the update in the loop of Dequeue is equivalent to

[[ {{t = Tail ∧ n = h.next ∧ h = t ∧ n 6= null}};Tail := n ]] .

4. Let us finally consider the update to Head in the next-to-last line of Dequeue. We can assume that

Head
∗→ Tail at the beginning of the method body. This implies that h

∗→ Tail immediately after the

preceding assignment h := Head (occurring 6 lines earlier). The property h
∗→ Tail is then preserved
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void Enqueue(Data d) {
Node ∗t, ∗n, ∗x;
new(x);
x.data := d;
do {
t := Tail;
n := t.next ;
{{t = Tail}};
{{n 6= null}};
[[ {{t = Tail}};Tail := n ]]

};
t := Tail;
n := t.next ;
{{t = Tail}};
{{n = null}};
[[ {{t.next = n}}; t.next := x ]];
[[ if (t = Tail) Tail := x ]];
return

}

Data Dequeue() {
Node ∗h, ∗t, ∗n;
do {
h := Head;
t := Tail;
n := h.next ;
{{h = Head}};
{{h = t}};
{{n 6= null}};
[[ {{t = Tail}};Tail := n ]]

};
either {
h := Head;
t := Tail;
n := h.next ;
{{h = Head}};
{{h = t}};
{{n = null}};
return empty

} or {
h := Head;
t := Tail;
n := h.next ;
{{h = Head}};
{{h 6= t}};
retval := n.data;
[[ {{h = Head}};Head := n ]];
return retval

}
}

Fig. 5. Michael and Scott’s concurrent queue with pure loops removed

throughout the method body, which means that the update to Head is equivalent to

[[ {{h = Head ∧ h ∗→ Tail ∧ h ∗→ t ∧ h 6= t}};Head := n ]] .

From this, we deduce that Head is assigned to Head.next which is non-null , and that Head
+→ Tail just

before the assignment.

Taken together, the above steps establish that we can use the global invariant Head
∗→ Tail when reasoning

about the algorithm. In a similar way, we can also establish that after an assignment of form t := Tail or

an assertion {{t = Tail}}, the invariant t
∗→ Tail holds until t is modified, and that after an assignment of

form h := Head, the invariant h
∗→ Head holds until h is modified.

The Enqueue Method We will now consider the five parts of the program in Figure 5, and see how they
can be considered atomic. We begin with the body of the do loop in Enqueue.

t := Tail;
n := t.next ;
{{t = Tail}};
{{n 6= null}};
[[ {{t = Tail}};
Tail := n ]]

w

t := Tail;
n := t.next ;
[[ {{n 6= null}};
{{t = Tail}};
Tail := n ]]

w

t := Tail;
[[ n := t.next ;
{{n 6= null}};
{{t = Tail}};
Tail := n ]]

w

t := Tail;
[[ {{t = Tail}};
n := t.next ;
{{n 6= null}};
{{t = Tail}};
Tail := n ]]

w

[[ t := Tail;
{{t = Tail}};
n := t.next ;
{{n 6= null}};
{{t = Tail}};
Tail := n ]]

Following is a motivation for each step in turn.
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1. The assertion n 6= null only concerns the local variable n. Thereafter, we remove the assume command
{{t = Tail}} (assume commands can always be removed).

2. The assignment n := t.next can be moved inside the atomic section, since it commutes right with all
commands (follows from the observations that n 6= null and that the program contains no write-access
to a non-null next-field), and hence can be moved into the atomic statement.

3. The assertion {{t = Tail}} can be propagated backwards inside the atomic section.

4. By the Absorption rule, the assignment t := Tail can be performed together with the atomic section.

Let us consider the next segment

t := Tail;
n := t.next ;
{{t = Tail}};
{{n = null}};
[[ {{t.next = n}};
t.next := x ]];

w

t := Tail;
n := t.next ;
{{t = Tail}};
[[ {{n = null}};
{{t.next = n}};
t.next := x ]];

w

t := Tail;
n := t.next ;
[[ {{t = Tail}};
{{n = null}};
{{t.next = n}};
t.next := x ]];

w

t := Tail;
[[ n := t.next ;
{{t = Tail}};
{{n = null}};
{{t.next = n}};
t.next := x ]];

w

[[ t := Tail;
n := t.next ;
{{t = Tail}};
{{n = null}};
{{t.next = n}};
t.next := x ]];

Following is a motivation for each step in turn.

1. The assertion n = null only concerns the local variable n.

2. By the observation that t
∗→ Tail holds after {{t = Tail}}, the assertion {{n = null}} in the atomic

statement can be extended to {{n = null ∧ t.next = n∧ t ∗→ Tail}}, which implies t = Tail. We therefore
include {{t = Tail}} inside the atomic statement, and thereafter omit the occurrence of {{t = Tail}} that
is outside.

3. Since t.next = n at the entry to the atomic statement, we can include the assignment n := t.next by the
Absorption rule.

4. The assertion {{t = Tail}} now holds at the beginning of the atomic statement, so by the Absorption
rule, the assignment t := Tail can be performed together with the atomic section.

The Dequeue Method Let us next consider the Dequeue method. It consists of three parts, each of which

begins with the two assignments h := Head; t := Tail. After the first assignment, we infer h
∗→ Head, which

is maintained throughout that part. Using the global invariant Head
∗→ Tail, we infer that the assertion

h
∗→ t

∗→ Tail holds immediately after the second assignment. Furthermore, since h and t are local and not
reassigned within the part, the assertion remains valid for a number of commands. We will see how this
property is used in the refinement steps below.

Let us consider the body of the do loop in the Dequeue method.

h := Head;
t := Tail;
n := h.next ;
{{h = Head}};
{{h = t}};
{{n 6= null}};
[[ {{t = Tail}};
Tail := n ]]

w

h := Head;
t := Tail;
n := h.next ;
{{h = Head}};
[[ {{h = t}};
{{n 6= null}};
{{t = Tail}};
Tail := n ]]

w

h := Head;
t := Tail;
n := h.next ;
[[ {{h = Head}};
{{h = t}};
{{n 6= null}};
{{t = Tail}};
Tail := n ]]

w

h := Head;
t := Tail;
[[ n := h.next ;
{{h = Head}};
{{h = t}};
{{n 6= null}};
{{t = Tail}};
Tail := n ]]

w

[[ h := Head;
t := Tail;
n := h.next ;
{{h = Head}};
{{h = t}};
{{n 6= null}};
{{t = Tail}};
Tail := n ]]

Following is a motivation for each step in turn.

1. The assertions before the atomic command only concern local variables.

2. By combining the inferred properties h
∗→ t

∗→ Tail and h
∗→ Head and the invariant Head

∗→ Tail with
the assertions in the atomic section (implying h = t = Tail), we infer that h = t = Head = Tail at
the beginning of the atomic section. We can therefore add the assertion {{h = Head}} inside the atomic
section, and thereafter omit its occurrence before the atomic section.

3. We next infer that h.next is untouched between n := h.next and the atomic statement (since any as-
signment to a next-field only occurs when it is null). Since h.next is untouched, we extend the atomic
section.
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4. By the Absorption rule, the assignment t := Tail can be performed together with the atomic statement.
Another application of the Absorption rule moves h := Head inside the atomic statement.

Let us consider the second segment in the Dequeue method.

h := Head;
t := Tail;
n := h.next ;
{{h = Head}};
{{h = t}};
{{n = null}};
return empty

w

h := Head;
t := Tail;
[[ n := h.next ;
{{h = t}};
{{n = null}} ]];

{{h = Head}};
{{h = t}};
{{n = null}};
return empty

w

[[ h := Head;
t := Tail;
n := h.next ;
{{h = t}};
{{n = null}} ]];

{{h = Head}};
{{h = t}};
{{n = null}};
return empty

w

[[ h := Head;
t := Tail;
n := h.next ;
{{h = Head}};
{{h = t}};
{{n = null}};
return empty ]]

The linearization point in this part is the command n := h.next , so the atomic statement will be built from
there. We consider each step in turn.

1. We first move the following assertions with only local variables into the atomic statement.

2. By combining the inferred properties h
∗→ t

∗→ Tail and h
∗→ Head and the invariant Head

∗→ Tail with
the assertions in the atomic section (implying h = t∧ h.next = null), we infer that h = t = Head = Tail
at the linearization point. We can therefore add the assertion {{h = Head ∧ t = Tail}} at the beginning
of the atomic section, and thereafter absorb the two first assignments.

3. The three assumptions that follow the atomic statement are all valid at the end of the atomic statement,
so we can move them inside the atomic statement. Finally, the return statement is purely local, and can
also be included.

Let us finally consider the last part of the Dequeue method.

h := Head;
t := Tail;
n := h.next ;
{{h = Head}};
{{h 6= t}};
retval := n.data;
[[ {{h = Head}};
Head := n ]];

return retval

w

h := Head;
t := Tail;
n := h.next ;
[[ {{h = Head}};
{{h 6= t}};
retval := n.data;
{{h = Head}};
Head := n;
return retval ]]

w

h := Head;
t := Tail;
[[ n := h.next ;
{{h = Head}};
{{h 6= t}};
retval := n.data;
{{h = Head}};
Head := n;
return retval ]]

w

[[ h := Head;
n := h.next ;
{{h = Head}};
{{n 6= null}};
retval := n.data;
{{h = Head}};
Head := n;
return retval ]]

w

[[ h := Head;
t := Tail;
n := h.next ;
{{h = Head}};
{{h 6= t}};
retval := n.data;
{{h = Head}};
Head := n;
return retval ]]

We consider each step in turn.

1. The expansion of the atomic statement to include {{h 6= t}}; retval := n.data is straight-forward. There-
after, the assertion {{h = Head}} holds at the beginning of the atomic statement, so we can add it there,
and finally remove the occurrence of {{h = Head}} that is just before the atomic statement.

2. By combining the inferred properties h
∗→ t

∗→ Tail and h
∗→ Head with the assertion h 6= t, we infer

that h.next 6= null after the assignment t := Tail. This assignment therefore commutes right with all
other commands in the program, and can be moved inside the atomic statement.

3. We replace the assertion {{h 6= t}} by the implied assertion {{n 6= null}}. Thereafter the assignment
t := Tail becomes dead, and can be removed. Finally, we can then absorb the first assignment h := Head.

4. We now infer that h
+→ Tail inside the atomic section, and can therefore replace the assertion {{n 6= null}}

by the two commands t := Tail; {{h 6= t}}.

Making Method Bodies Atomic We have now transformed the program into two methods consisting
of totally six atomic statements. By removing assignments to local variables that are dead when exiting an
atomic statement, and making trivial reorganizations of commands inside atomic statements, we can express
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the resulting program in the following form.

void Enqueue(Data d) {
Node ∗t, ∗n, ∗x;
do {

[[ {{Tail.next 6= null}};
Tail := Tail.next ]]

};
[[ new(x);
x.data := d;
t := Tail;
{{Tail.next = null}};
Tail.next := x ]];

[[ if (t = Tail) Tail := Tail.next ]];
return

}

Data Dequeue() {
Node ∗h, ∗t, ∗n;
do {

[[ {{Head = Tail}};
{{Head.next 6= null}};
Tail := Head.next ]];

};
[[ either {

{{Head = Tail}};
{{Head.next = null}};
return empty

} or {
{{Head 6= Tail}};
Head := Head.next ;
return Head.next .data ]]

}
}

Let us introduce names for the atomic statements, so that the two methods can be represented as follows.

void Enqueue(Data d) : do MoveTail ; EnqueueCell ; TryMoveTail
Data Dequeue() : do MoveTail’ ; EmptyOrDequeue

It would now be natural to use a rule for atomicity refinement to prove that each method body refines a
corresponding atomic statement. However, the normal Atomicity Refinement rule cannot easily be used for
this. For instance, one condition would then be that MoveTail commutes right with EnqueueCell. However,
this is not true, since if the sequence MoveTail ; EnqueueCell can be performed from some configuration,
then the statement EnqueueCell is blocked (since first Tail must be moved).

We therefore use the Strengthened Atomicity Refinement rule, where the concerned statements may
occur in do loops. We will now establish the commutativity properties between atomic statements that are
required by the strengthened atomicity refinement rule. By sequential reasoning (using the global invariant

Head
∗→ Tail), we first establish that MoveTail commutes right with all other statements. More precisely,

we can establish that

• MoveTail commutes right and left with itself (of course),

• MoveTail by thread i followed by EnqueueCell by i′ can be simulated by [[ MoveTail ; EnqueueCell ]] by
i′ followed by skip by i,

• MoveTail by thread i followed by EmptyOrDequeue by i′ can be simulated by
[[ do MoveTail’ ; EmptyOrDequeue ]] by thread i′ followed by [[ do MoveTail ]] by i,

• MoveTail by thread i followed by MoveTail’ by i′ is not possible. The same holds for MoveTail by thread
i followed by TryMoveTail by i′.

Analogous investigations can be performed to establish that MoveTail’ commutes right with all other state-
ments. It remains to check that TryMoveTail commutes left with EnqueueCell and with EmptyOrDequeue.
For the first case, we note that EnqueueCell by a thread i cannot occur before MoveTail’ by another thread.
The second case is straight-forward.

In conclusion, by the Strengthened Atomicity Refinement rule, the two method bodies refine the following
ones.

void Enqueue(Data d) : [[ do MoveTail ; EnqueueCell ; TryMoveTail ]]
Data Dequeue() : [[ do MoveTail’ ; EmptyOrDequeue ]]

As a final step in the proof of linearizability, we can finally re-insert the pure loops, so that the method
bodies become exactly the atomic versions of those in Figure 4. This step is analogous to that performed for
Treiber’s stack.
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7. Conclusions and Future Work

We have shown how extensions of techniques that originate in the refinement calculus [Bac88, Mor90] can be
used for structuring proofs of correctness of programs that implement concurrent objects. In particular, we
showed how a natural refinement relation can be used to express that a particular program for concurrent
objects is linearizable. We thereafter presented rules for establishing our refinement relation by a sequence of
applications of local rules. A main contribution has been stronger techniques for establishing refinement of
atomic statements. We applied the rules for proving linearizability of two well-known algorithms for concur-
rent objects by establishing a refinement relation between two programs through a sequence of refinement
steps. Such a sequence also serves as an explanation of why a particular algorithm is linearizable. Since the
employed rules mostly rely on locality of accesses, and to a large extent avoid complicated reasoning, e.g.,
about data types, we think that this work would also be suitable as a basis for automation.
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