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Abstract. A major challenge in automated verification is to develop techniques
that are able to reason about fine-grained concurrent algorithms that consist of
an unbounded number of concurrent threads, which operate on an unbounded
domain of data values, and use unbounded dynamically allocated memory. Exist-
ing automated techniques consider the case where shared data is organized into
singly-linked lists. We present a novel shape analysis for automated verification
of fine-grained concurrent algorithms that can handle heap structures which are
more complex than just singly-linked lists, in particular skip lists and arrays of
singly linked lists, while at the same time handling an unbounded number of
concurrent threads, an unbounded domain of data values (including timestamps),
and an unbounded shared heap. Our technique is based on a novel shape abstrac-
tion, which represents a set of heaps by a set of fragments. A fragment is an
abstraction of a pair of heap cells that are connected by a pointer field. We have
implemented our approach and applied it to automatically verify correctness, in
the sense of linearizability, of most linearizable concurrent implementations of
sets, stacks, and queues, which employ singly-linked lists, skip lists, or arrays of
singly-linked lists with timestamps, which are known to us in the literature.

1 Introduction

Concurrent algorithms with an unbounded number of threads that concurrently access a
dynamically allocated shared state are of central importance in a large number of soft-
ware systems. They provide efficient concurrent realizations of common interface ab-
stractions, and are widely used in libraries, such as the Intel Threading Building Blocks
or the java.util.concurrent package. They are notoriously difficult to get cor-
rect and verify, since they often employ fine-grained synchronization and avoid lock-
ing when possible. A number of bugs in published algorithms have been reported [13,
30]. Consequently, significant research efforts have been directed towards developing
techniques to verify correctness of such algorithms. One widely-used correctness crite-
rion is that of linearizability, meaning that each method invocation can be considered
to occur atomically at some point between its call and return. Many of the developed
verification techniques require significant manual effort for constructing correctness
proofs (e.g., [25, 41]), in some cases with the support of an interactive theorem prover
(e.g., [40, 11, 35]). Development of automated verification techniques remains a diffi-
cult challenge.

A major challenge for the development of automated verification techniques is that
such techniques must be able to reason about fine-grained concurrent algorithms that
are infinite-state in many dimensions: they consist of an unbounded number of concur-
rent threads, which operate on an unbounded domain of data values, and use unbounded



dynamically allocated memory. Perhaps the hardest of these challenges is that of han-
dling dynamically allocated memory. Consequently, existing techniques that can auto-
matically prove correctness of such fine-grained concurrent algorithms restrict attention
to the case where heap structures represent shared data by singly-linked lists [1, 18, 3,
36, 42]. Furthermore, many of these techniques impose additional restrictions on the
considered verification problem, such as bounding the number of accessing threads [4,
45, 43]. However, in many concurrent data structure implementations the heap repre-
sents more sophisticated structures, such as skiplists [16, 22, 38] and arrays of of singly-
linked lists [12]. There are no techniques that have been applied to automatically verify
concurrent algorithms that operate on such data structures.

Contributions In this paper, we present a technique for automatic verification of concur-
rent data structure implementations that operate on dynamically allocated heap struc-
tures which are more complex than just singly-linked lists. Our framework is the first
that can automatically verify concurrent data structure implementations that employ
singly linked lists, skiplists [16, 22, 38], as well as arrays of singly linked lists [12], at
the same time as handling an unbounded number of concurrent threads, an unbounded
domain of data values (including timestamps), and an unbounded shared heap.

Our technique is based on a novel shape abstraction, called fragment abstraction,
which in a simple and uniform way is able to represent several different classes of
unbounded heap structures. Its main idea is to represent a set of heap states by a set
of fragments. A fragment represents two heap cells that are connected by a pointer
field. For each of its cells, the fragment represents the contents of its non-pointer fields,
together with information about how the cell can be reached from the program’s global
pointer variables. The latter information consists of both: (i) local information, saying
which pointer variables point directly to them, and (ii) global information, saying how
the cell can reach to and be reached from (by following chains of pointers) heap cells
that are globally significant, typically since some global variable points to them. A set
of fragments represents the set of heap states in which any two pointer-connected nodes
is represented by some fragment in the set. Thus, a set of fragments describes the set of
heaps that can be formed by “piecing together” fragments in the set. The combination
of local and global information in fragments supports reasoning about the sequence
of cells that can be accessed by threads that traverse the heap by following pointer
fields in cells and pointer variables: the local information captures properties of the
cell fields that can be accessed as a thread dereferences a pointer variable or a pointer
field; the global information also captures whether certain significant accesses will at
all be possible by following a sequence of pointer fields. This support for reasoning
about patterns of cell accesses enables automated verification of reachability and other
functional properties.

Fragment abstraction can (and should) be combined, in a natural way, with data ab-
stractions for handling unbounded data domains and with thread abstractions for han-
dling an unbounded number of threads. For the latter we adapt the successful thread-
modular approach [5], which represents the local state of a single, but arbitrary thread,
together with the part of the global state and heap that is accessible to that thread. Our
combination of fragment abstraction, thread abstraction, and data abstraction results in
a finite abstract domain, thereby guaranteeing termination of our analysis.



We have implemented our approach and applied it to automatically verify correct-
ness, in the sense of linearizability, of a large number of concurrent data structure algo-
rithms, described in a C-like language. More specifically, we have automatically veri-
fied linearizability of most linearizable concurrent implementations of sets, stacks, and
queues, and priority queues, which employ singly-linked lists, skiplists, or arrays of
timestamped singly-linked lists, which are known to us in the literature on concurrent
data structures. For this verification, we specify linearizability using the simple and
powerful technique of observers [1, 7, 9], which reduces the criterion of linearizabil-
ity to a simple reachability property. To verify implementations of stacks and queues,
the application of observers can be done completely automatically without any manual
steps, whereas for implementations of sets, the verification relies on light-weight user
annotation of how linearization points are placed in each method [3],.

The fact that our fragment abstraction has been able to automatically verify all sup-
plied concurrent algorithms, also those that employ skiplists or arrays of SLLs, indi-
cates that the fragment abstraction is a simple mechanism for capturing both the local
and global information about heap cells that is necessary for verifying correctness, in
particular for concurrent algorithms where an unbounded number of threads interact via
a shared heap.

Outline In the next section, we illustrate our fragment abstraction on the verification
of a skiplist-based concurrent set implementation. In Section 3 we introduce our model
for programs, and of observers for specifying linearizability. In Section 4 we describe
in more detail our fragment abstraction for skiplists; note that singly-linked lists can
be handled as a simple special case of skiplists. In Section 5 we describe how fragment
abstraction applies to arrays of singly-linked lists with timestamp fields. Our implemen-
tation and experiments are reported in Section 6, followed by conclusions in Section 7.

Related Work A large number of techniques have been developed for representing heap
structures in automated analysis, including, e.g., separation logic and various related
graph formalisms [47, 10, 15], other logics [33], automata [23], or graph grammars [19].
Most works apply these to sequential programs.

Approaches for automated verification of concurrent algorithms are limited to the
case of singly-linked lists [1, 18, 3, 36, 42]. Furthermore, many of these techniques im-
pose additional restrictions on the considered verification problem, such as bounding
the number of accessing threads [4, 45, 43].

In [1], concurrent programs operating on SLLs are analyzed using an adaptation
of a transitive closure logic [6], combined with tracking of simple sortedness proper-
ties between data elements; the approach does not allow to represent patterns observed
by threads when following sequences of pointers inside the heap, and so has not been
applied to concurrent set implementations. In our recent work [3], we extended this
approach to handle SLL implementations of concurrent sets by adapting a well-known
abstraction of singly-linked lists [28] for concurrent programs. The resulting technique
is specifically tailored for singly-links. Our fragment abstraction is significantly simpler
conceptually, and can therefore be adapted also for other classes of heap structures. The
approach of [3] is the only one with a shape representation strong enough to verify con-
current set implementations based on sorted and non-sorted singly-linked lists having



non-optimistic contains (or lookup) operations we consider, such as the lock-free sets
of HM [22], Harris [17], or Michael [29], or unordered set of [48]. As shown in Sec-
tion 6, our fragment abstraction can handle them as well as also algorithms employing
skiplists and arrays of singly-linked lists.

There is no previous work on automated verification of skiplist-based concurrent al-
gorithms. Verification of sequential algorithms have been addressed under restrictions,
such as limiting the number of levels to two or three [23, 2]. The work [34] generates
verification conditions for statements in sequential skiplist implementations. All these
works assume that skiplists have the well-formedness property that any higher-level
lists is a sublist of any lower-level list, which is true for sequential skiplist algorithms,
but false for several concurrent ones, such as [22, 26].

Concurrent algorithms based on arrays of SLLs, and including timestamps, e.g., for
verifying the algorithms in [12] have shown to be rather challenging. Only recently has
the TS stack been verified by non-automated techniques [8] using a non-trivial exten-
sion of forward simulation, and the TS queue been verified manually by a new technique
based on partial orders [24, 37].. We have verified both these algorithms automatically
using fragment abstraction,

Our fragment abstraction is related in spirit to other formalisms that abstract dy-
namic graph structures by defining some form of equivalence on its nodes (e.g., [46,
33, 23]). These have been applied to verify functional correctness fine-grained concur-
rent algorithms for a limited number of SLL-based algorithms. Fragment abstraction’s
representation of both local and global information allows to extend the applicability of
this class of techniques.

2 Overview

In this section, we illustrate our technique on the verification of correctness,
in the sense of linearizability, of a concurrent set data structure based on
skiplists, namely the Lock-Free Concurrent Skiplist from [22, Section 14.4].

-∞ +∞3 5 7
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Fig. 1: An example of skiplist

Skiplists provide expected logarithmic
time search while avoiding some of the
complications of tree structures. Infor-
mally, a skiplist consists of a collection
of sorted linked lists, each of which is lo-
cated at a level, ranging from 1 up to a
maximum value. Each skiplist node has
a key value and participates in the lists at
levels 1 up to its height. The skiplist has
sentinel head and tail nodes with max-
imum heights and key values −∞ and
+∞, respectively. The lowest-level list (at level 1) constitutes an ordered list of all
nodes in the skiplist. Higher-level lists are increasingly sparse sublists of the lowest-
level list, and serve as shortcuts into lower-level lists. Figure 1 shows an example of a
skiplist of height 3. It has head and tail nodes of height 3, two nodes of height 2, and
one node of height 1.



The algorithm has three main methods, namely add, contains and remove.
The method add(x) adds x to the set and returns true iff x was not already in the
set; remove(x) removes x from the set and returns true iff x was in the set; and
contains(x) returns true iff x is in the set. All methods rely on a method find to
search for a given key. In this section, we shortly describe the find and add methods.
Figure 2 shows code for these two methods.

struct Node { int key; int height; Node next[]; boolean marked[];}

boolean find(int x,Node preds[],Node succs[])

1 boolean marked = false;

2 boolean s;

3 retry:

4 while (true)

5 pred = H;

6 for (int k = MAXLEVEL; k >= 1; k--)

7 curr = pred.next[k];

8 while (true)

9 <succ, marked> =

<curr.next[k], curr.marked[k]>;

10 while (marked)

11 s=CAS(<pred.next[k],pred.marked[k]>

,<curr,false>,<succ,false>);

12 if (!s) goto retry;

13 curr = pred.next[k]; •
14 <succ, marked =

<curr.next[k], curr.marked[k]>;

15 if (curr.key < x)

16 pred = curr;

17 curr = succ;

18 else break;

19 preds[k] = pred;

20 succs[k] = curr;

21 return (curr.key == x);

boolean add (int x):

1 int h = randomLevel;

2 Node* preds[1..h]; succs[1..h]

3 while (true);

4 if find(x,preds,succs)

5 return false;

6 else

7 Node* n = new Node(x, h);

8 for (int k = 1;k <= h; k++)

9 <n.next[k],n.marked[k]> =

<succ[k],false>;

10 Node* pred = preds[1];

11 Node* succ = succs[1];

12 <n.next[1],n.marked[1]>=<succ,false>

13 if !CAS(<pred.next[1],pred.marked[1]>

,<succ,false>,<n,false>);

14 goto 3;

15 else •
16 for (int k = 2; k <= h; k++)

17 while (true);

18 pred = preds[k];

19 succ = succs[k];

20 if CAS(<pred.next[k],pred.marked

[k]>,<succ,false>,<n,false>)

21 break;

22 find(x,preds,succs);

23 return true;

Fig. 2: Code for the find and add methods of the skiplist algorithm.

In the algorithm, each heap node has a key field, a height, an array of next point-
ers indexed from 1 up to its height, and an array of marked fields which are true if
the node has been logically removed at the corresponding level. Removal of a node (at
a certain level k) occurs in two steps: first the node is logically removed by setting its
marked flag at level k to true, thereafter the node is physically removed by unlinking
it from the level-k list. The algorithm must be able to update the next[k] pointer and
marked[k] field together as one atomic operation; this is standardly implemented by
encoding them in a single word. The head and tail nodes of the skiplist are pointed to
by global pointer variables H and T, respectively. The find method traverses the list at
decreasing levels using two local variables pred and curr, starting at the head and at
the maximum level (lines 5-6). At each level k it sets curr to pred.next[k] (line 7).
During the traversal, the pointer variable succ and boolean variable marked are atom-



ically assigned the values of curr.next[k] and curr.marked[k], respectively (line 9,
14). After that, the method repeatedly removes marked nodes at the current level (lines
10 to 14). This is done by using a CompareAndSwap (CAS) command (line 11), which
tests whether pred.next[k] and pred.marked[k] are equal to curr and false respec-
tively. If this test succeeds, it replaces them with succ and false and returns true;
otherwise, the CAS returns false. During the traversal at level k, pred and curr are
advanced until pred points to a node with the largest key at level k which is smaller
than x (lines 15-18). Thereafter, the resulting values of pred and curr are recorded into
preds[k] and succs[k] (lines 19, 20), whereafter traversal continues one level below
until it reaches the bottom level. Finally, the method returns true if the key value of
curr is equal to x; otherwise, it returns false meaning that a node with key x is not
found.

The add method uses find to check whether a node with key x is already in the list.
If so it returns false; otherwise, a new node is created with randomly chosen height
h (line 7), and with next pointers at levels from 1 to h initialised to corresponding
elements of succ (line 8 to 9). Thereafter, the new node is added into the list by linking
it into the bottom-level list between the preds[1] and succs[1] pointers returned by
find. This is achieved by using a CAS to make preds[1].next[1] point to the new
node (line 13). If the CAS fails, the add method will restart from the beginning (line
3) by calling find again, etc. Otherwise, add proceeds with linking the new node into
the list at increasingly higher levels (lines 16 to 22). For each higher level k, it makes
preds[k].next[k] point to the new node if it is still valid (line 20); otherwise find

is called again to recompute preds[k] and succs[k] on the remaining unlinked levels
(line 22). Once all levels are linked, the method returns true.

To prepare for verification, we add a specification which expresses that the skiplist
algorithm of Figure 2 is a linearizable implementation of a set data structure, using the
technique of observers [1, 7, 9, 3]. For our skiplist algorithm, the user first instruments
statements in each method that correspond to linearization points (LPs), so that their
execution announces the corresponding atomic set operation. In Figure 2, the LP of
a successful add operation is at line 15 of the add method (denoted by a blue dot)
when the CAS succeeds, whereas the LP of an unsuccessful add operation is at line 13
of the find method (denoted by a red dot). We must now verify that in any concurrent
execution of a collection of method calls, the sequence of announced operations satisfies
the semantics of the set data structure. This check is performed by an observer, which
monitors the sequence of announced operations. The observer for the set data structure
utilizes a register, which is initialized with a single, arbitrary key value. It checks that
operations on this particular value follow set semantics, i.e., that successful add and
remove operations on an element alternate and that contains are consistent with them.
We form the cross-product of the program and the observer, synchronizing on operation
announcements. This reduces the problem of checking linearizability to the problem of
checking that in this cross-product, regardless of the initial observer register value, the
observer cannot reach a state where the semantics of the set data structure has been
violated.

To verify that that the observer cannot reach a state where a violation is reported, we
compute a symbolic representation of an invariant that is satisfied by all reachable con-



figurations of the cross-product of a program and an observer. This symbolic represen-
tation combines thread abstraction, data abstraction and our novel fragment abstraction
to represent the heap state. Our thread abstraction adapts the thread-modular approach
by representing only the view of single, but arbitrary, thread th. Such a view consists of
the local state of thread th, including the value of the program counter, the state of the
observer, and the part of the heap that is accessible to thread th via pointer variables
(local to th or global). Our data abstraction represents variables and cell fields that
range over small finite domains by their concrete values, whereas variables and fields
that range over the same domain as key fields are abstracted to constraints over their
relative ordering (wrp. to <).

In our fragment abstraction, we represent the part of the heap that is accessible to
thread th by a set of fragments. A fragment represents a pair of heap cells (accessible to
th) that are connected by a pointer field, under the applied data abstraction. A fragment
is a triple of form 〈i, o, φ〉, where i and o are tags that represent the two cells, and φ
is a subset of {<,=, >} which constrains the order between the key fields of the cells.
Each tag is a tuple tag = 〈dabs, pvars, reachfrom, reachto, private〉, where

– dabs represents the non-pointer fields of the cell under the applied data abstraction,
– pvars is the set of (local to th or global) pointer variables that point to the cell,
– reachfrom is the set of (i) global pointer variables from which the cell represented

by the tag is reachable via a (possibly empty) sequence of next[1] pointers, and
(ii) observer registers xi such that the cell is reachable from some cell whose data
value equals that of xi,

– reachto is the corresponding information, but now considering cells that are
reachable from the cell represented by the tag.

– private is true only if c is private to th.

Thus, the fragment contains both (i) local information about the cell’s fields and vari-
ables that point to it, as well as (ii) global information, representing how each cell in
the pair can reach to and be reached from (by following a chain of pointers) a small set
of globally significant heap cells.

A set of fragments represents the set of heap structures in which each pair of pointer-
connected nodes is represented by some fragment in the set. Put differently, a set of
fragments describes the set of heaps that can be formed by “piecing together” pairs of
pointer-connected nodes that are represented by some fragment in the set. This “piecing
together” must be both locally consistent (appending only fragments that agree on their
common node), and globally consistent (respecting the global reachability information).

key

marked[1]

marked[h]

next[1]

next[h]

height = h

Fig. 3: A structure of a cell

When applying fragment abstraction to
skiplists, we use two types of frag-
ments: level 1-fragments for nodes con-
nected by a next[1]-pointer, and higher
level-fragments for nodes connected by a
higher level pointer. In other words, we
abstract all levels higher than 2 by the
abstract element higher. Thus, a pointer
or non-pointer variable of form v[k], in-
dexed by a level k ≥ 2, is abstracted to v[higher].



Let us illustrate how fragment abstraction applies to the skiplist algorithm. Figure 4
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Fig. 4: A heap shape of a 3-level skiplist with two threads active

shows an example heap state of the skiplist algorithm with three levels. Each heap cell
is shown with the values of its fields as described in Figure 3. In addition, each cell is
labeled by the pointer variables that point to it; we use preds(i)[k] to denote the local
variable preds[k] of thread thi, and the same for other local variables. In the heap
state of Figure 4, thread th1 is trying to add a new node of height 1 with key 9, and
has reached line 8 of the add method. Thread th2 is trying to add a new node with key
20 and it has done its first iteration of the for loop in the find method. The variables
preds(2)[3] and currs(2)[3] have been assigned so that the new node (which has not
yet been created) will be inserted between node 5 and the tail node. The observer is
not shown, but the value of the observer register is 9; thus it currently tracks the add

operation of th1.
Figure 5 illustrates how pairs of heap nodes can be represented by fragments. As a

first example, in the view of thread th1, the two left-most cells in Figure 4 are repre-
sented by the level 1-fragment v1 in Figure 5. Here, the variable preds(1)[3] is repre-
sented by preds[higher]. The mapping π1 represents the data abstraction of the key

field, here saying that it is smaller than the value 9 of the observer register. The two left-
most cells are also represented by a higher-level fragment, viz. v8. The pair consisting
of the two sentinel cells (with keys −∞ and +∞) is represented by the higher-level
fragment v9. In each fragment, the abstraction dabs of non-pointer fields are shown
represented inside each tag of the fragment. The φ is shown as a label on the arrow be-
tween two tags. Above each tag is pvars. The first row under each tag is reachfrom,
whereas the second row is reachto.

Figure 5 shows a set of fragments that is sufficient to represent the part of the heap
that is accessible to th1 in the configuration in Figure 4. There are 11 fragments, named
v1, . . . , v11. Two of these (v6, v7 and v11) consist of a tag that points to ⊥. All other
fragments consist of a pair of pointer-connected tags. The fragments v1, . . . , v6 are
level-1-fragments, whereas v7, . . . , v11 are higher level-fragments. The private field
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Fig. 5: Fragment abstraction of skiplist algorithm

of the input tag of v7 is true, whereas the private field of tags of other fragments are
false.

To verify linearizability of the algorithm in Figure 2, we must represent several key
invariants of the heap. These include (among others):

1. the bottom-level list is strictly sorted in key order,
2. a higher-level pointer from a globally reachable node is a shortcut into the level-1

list, i.e., it points to a node that is reachable by a sequence of next[1] pointers,
3. all nodes which are unreachable from the head of the list are marked, and
4. the variable pred points to a cell whose key field is never larger than the input

parameter of its add method.

Let us illustrate how such invariants are captured by our fragment abstraction. 1) All
level-1 fragments are strictly sorted, implying that the bottom-level list is strictly
sorted. 2) For each higher-level fragment v, if H ∈ v.i.reachfrom then also H ∈
v.o.reachfrom, implying (together with v.φ = {<}) that the cell represented by v.o
it is reachable from that represented by v.i by a sequence of next[1]-pointers. 3) This
is verified by inspecting each tag: v3 contains the only unreachable tag, and it is also
marked. 4) The fragments express this property in the case where the value of key is
the same as the value of the observer register x. Since the invariant holds for any value
of x, this property is sufficiently represented for purposes of verification.

3 Concurrent Data Structure Implementations

In this section, we introduce our representation of concurrent data structure implemen-
tations, we define the correctness criterion of linearizability, we introduce observers and
how to use them for specifying linearizability.



3.1 Concurrent Data Structure Implementations

We first introduce (sequential) data structures. A data structure DS is a pair 〈D,M〉,
where D is a (possibly infinite) data domain and M is an alphabet of method
names. An operation op is of the form m(din , dout), where m ∈ M is a method
name, and din , dout are the input resp. output values, each of which is either
in D or in some small finite domain F, which includes the booleans. For some
method names, the input or output value is absent from the operation. A trace of
DS is a sequence of operations. The (sequential) semantics of a data structure DS

is given by a set JDSK of allowed traces. For example, a Set data structure has
method names add, remove, and contains. An example of an allowed trace is
add(3, true) contains(4, false) contains(3, true) remove(3, true).

A concurrent data structure implementation operates on a shared state consisting of
shared global variables and a shared heap. It assigns, to each method name, a method
which performs operations on the shared state. It also comes with a method named
init, which initializes its shared state.

A heap (state) H consists of a finite set C of cells, including the two special cells
null and ⊥ (dangling). Heap cells have a fixed set F of fields, namely non-pointer
fields that assume values in D or F, and possibly lock fields. We use the term D-field
for a non-pointer field that assumes values inD, and the terms F-field and lock field with
analogous meaning. Furthermore, each cell has one or several named pointer fields. For
instance, in data structure implementations based on singly-linked lists, each heap cell
has a pointer field named next; in implementations based on skiplists there is an array
of pointer fields named next[k] where k ranges from 1 to a maximum level.

Each method declares local variables and a method body. The set of local variables
includes the input parameter of the method and the program counter pc. A local state
loc of a thread th defines the values of its local variables. The global variables can
be accessed by all threads, whereas local variables can be accessed only by the thread
which is invoking the corresponding method. Variables are either pointer variables (to
heap cells), locks, or data variables assuming values inD or F. We assume that all global
variables are pointer variables. The body is built in the standard way from atomic com-
mands, using standard control flow constructs (sequential composition, selection, and
loop constructs). Atomic commands include assignments between variables, or fields
of cells pointed to by a pointer variable. Method execution is terminated by executing
a return command, which may return a value. The command new Node() allocates
a new structure of type Node on the heap, and returns a reference to it. The compare-
and-swap command CAS(a, b, c) atomically compares the values of a and b. If equal,
it assigns the value of c to a and returns true, otherwise, it leaves a unchanged and
returns false. We assume a memory management mechanism, which automatically
collects garbage, and ensures that a new cell is fresh, i.e., has not been used before; this
avoids the so-called ABA problem (e.g., [31]).

We define a program P (over a concurrent data structure) to consist of an arbitrary
number of concurrently executing threads, each of which executes a method that per-
forms an operation on the data structure. The shared state is initialized by the init

method prior to the start of program execution. A configuration of a program P is a tu-
ple cP = 〈T, LOC,H〉 where T is a set of threads,H is a heap, and LOC maps each thread



th ∈ T to its local state LOC (th). We assume concurrent execution according to sequen-
tially consistent memory model. The behavior of a thread th executing a method can be
formalized as a transition relation−→th on pairs 〈loc,H〉 consisting of a local state loc
and a heap stateH. The behavior of a program P can be formalized by a transition rela-
tion−→P on program configurations; each step corresponds to a move of a single thread.
I.e., there is a transition of form 〈T, LOC,H〉−→P 〈T, LOC[th← loc′],H′〉 whenever
some thread th ∈ T has a transition 〈loc,H〉−→th 〈loc′,H′〉 with LOC(th) = loc.

3.2 Linearizability

In a concurrent data structure implementation, we represent the calling of a method by a
call action callo m

(
din
)
, and the return of a method by a return action reto m (d

out),
where o ∈ N is an action identifier, which links the call and return of each method
invocation. A history h is a sequence of actions such that (i) different occurrences of
return actions have different action identifiers, and (ii) for each return action a2 in h
there is a unique matching call action a1 with the same action identifier and method
name, which occurs before a2 in h. A call action which does not match any return action
in h is said to be pending. A history without pending call actions is said to be complete.
A completed extension of h is a complete history h′ obtained from h by appending (at
the end) zero or more return actions that are matched by pending call actions in h, and
thereafter removing the call actions that are still pending. For action identifiers o1, o2,
we write o1 �h o2 to denote that the return action with identifier o1 occurs before
the call action with identifier o2 in h. A complete history is sequential if it is of the
form a1a

′
1a2a

′
2 · · · ana′n where a′i is the matching action of ai for all i : 1 ≤ i ≤ n,

i.e., each call action is immediately followed by its matching return action. We identify
a sequential history of the above form with the corresponding trace op1op2 · · · opn
where opi = m(dini , d

out
i ), ai = calloi m

(
dini
)
, and ai = retoi m (douti ), i.e., we

merge each call action together with the matching return action into one operation.
A complete history h′ is a linearization of h if (i) h′ is a permutation of h, (ii) h′ is
sequential, and (iii) o1 �h′ o2 if o1 �h o2 for each pair of action identifiers o1 and o2.
A sequential history h′ is valid wrt. DS if the corresponding trace is in JDSK. We say that
h is linearizable wrt. DS if there is a completed extension of h, which has a linearization
that is valid wrt. DS. We say that a program P is linearizable wrt. DS if, in each possible
execution, the sequence of call and return actions is linearizable wrt. DS.

We specify linearizability using the technique of observers [1, 7, 9, 3]. Depending
on the data structure, we apply it in two different ways.

– For implementations of sets and priority queues, the user instruments each method
so that it announces a corresponding operation precisely when the method executes
its LP, either directly or with lightweight instrumentation using the technique of lin-
earization policies [3]. We represent such announcements by labels on the program

transition relation −→P , resulting in transitions of form cP
m(din ,dout )−−−−−−→Pc′P . There-

after, an observer is constructed, which monitors the sequence of operations that
is announced by the instrumentation; it reports (by moving to an accepting error
location) whenever this sequence violates the (sequential) semantics of the data
structure.



– For stacks and queues, we use a recent result [7, 9] that the set of linearizable
histories, i.e., sequences of call and return actions, can be exactly specified by an
observer. Thus, linearizability can be specified without any user-supplied instru-
mentation, by using an observer which monitors the the sequences of call and return
actions and reports violations of linearizability.

s0 s1

s2

add(x, true)

rmv(x, true)

add(x, false)

rmv(x, true)

ctn(x, true)

add(x, true)

rmv(x, false)

ctn(x, false)

Fig. 6: Set observer.

Formally, an observer O is a tuple
〈
SO, sOinit, X

O, ∆O, sOacc
〉

where SO is a finite
set of observer locations including the initial location sOinit and the accepting location
sOacc, a finite set XO of registers, and ∆O is a finite set of transitions. For observers
that monitor sequences of operations, transitions are of the form

〈
s1, m(x

in , xout), s2
〉
,

where m ∈ M is a method name and xin and xout are either registers or constants, i.e.,
transitions are labeled by operations whose input or output data may be parameterized
on registers. The observer processes a sequence of operations one operation at a time.
If there is a transition, whose label (after replacing registers by their values) matches
the operation, such a transition is performed. If there is no such transition, the observer
remains in its current location. The observer accepts a sequence if it can be processed in
such a way that an accepting location is reached. The observer is defined in such a way
that it accepts precisely those sequences that are not in JDSK. Fig. 6 depicts an observer
for the set data structure.

To check that no execution of the program announces a sequence of labels that can
drive the observer to an accepting location, we form the cross-product S = P ⊗ O of
the program P and the observer O, synchronizing on common transition labels. Thus,
configurations of S are of the form 〈cP , 〈s, ρ〉〉, consisting of a program configuration
cP , an observer location s, and an assignment ρ of values in D to the observer regis-
ters. Transitions of S are of the form 〈cP , 〈s, ρ〉〉 ,−→S , 〈cP′, 〈s′, ρ〉〉, obtained from a
transition cP

λ−→PcP′ of the program with some (possibly empty) label λ, where the ob-
server makes a transition s λ−→s′ if it can perform such a matching transition, otherwise
s′ = s. Note that the observer registers are not changed. We also add straightforward
instrumentation to check that each method invocation announces exactly one operation,
whose input and output values agree with the method’s parameters and return value.
This reduces the problem of checking linearizability to the problem of checking that in
this cross-product, the observer cannot reach an accepting error location.



4 Verification using Fragment Abstraction for Skiplists

In the previous section, we reduced the problem of verifying linearizability to the prob-
lem of verifying that, in any execution of the cross-product of a program and an ob-
server, the observer cannot reach an accepting location. We perform this verification
by computing a symbolic representation of an invariant that is satisfied by all reach-
able configurations of the cross-product, using an abstract interpretation-based fixpoint
procedure, starting from a symbolic representation of the set of initial configurations,
thereafter repeatedly performing symbolic postcondition computations that extend the
symbolic representation by the effect of any execution step of the program, until con-
vergence.

In Section 4.1, we define in more detail our symbolic representation for skiplists,
focusing in particular on the use of fragment abstraction, and thereafter (in Section 4.2)
describe the symbolic postcondition computation. Since singly-linked lists is a trivial
special case of skiplists, we can use the relevant part of this technique also for programs
based on singly-linked lists.

4.1 Symbolic Representation

This subsection contains a more detailed description of our symbolic representation for
programs that operate on skiplists, which was introduced in Section 2. We first describe
the data abstraction, thereafter the fragment abstraction, and finally their combination
into a symbolic representation.
Data Abstraction Our data abstraction is defined by assigning a abstract domain to
each concrete domain of data values, as follows.

– For small concrete domains (including that of the program counter, and of the ob-
server location), the abstract domain is the same as the concrete one.

– For locks, the abstract domain is {me, other , free}, meaning that the lock is held
by the concerned thread, held by some other thread, or is free, respectively.

– For the concrete domainD of data values, the abstract domain is the set of mappings
from observer registers and local variables ranging overD to subsets of {<,=, >}.
An mapping in this abstract domain represents the set of data values d such that it
maps each local variable and observer register with a value d′ ∈ D to a set which
includes a relation ∼ such that d ∼ d′.

Fragment Abstraction Let us now define our fragment abstraction for skiplists. For
presentation purposes, we assume that each heap cell has at most one D-field, named
data. For an observer register xi, let a xi-cell be a heap cell whose data field has the
same value as xi.

Since the number of levels is unbounded, we define an abstraction for levels. Let k
be a level. Define the abstraction of a pointer variable of form p[k], denoted p̂[k], to be
p[1] if k = 1, and to be p[higher] if k ≥ 2. That is, this abstraction does not distinguish
different higher levels.

A tag is a tuple tag = 〈dabs, pvars, reachfrom, reachto, private〉, where
(i) dabs is a mapping from non-pointer fields to their corresponding abstract domains;



if a non-pointer field is an array indexed by levels, then the abstract domain is that for
single elements: e.g., the abstract domain for the array marked in Figure 2 is simply the
set of booleans, (ii) pvars is a set of abstracted pointer variables, (iii) reachfrom and
reachto are sets of global pointer variables and observer registers, and (iv) private
is a boolean value.

For a heap cell c that is accessible to thread th in a configuration cS , and a tag
tag = 〈dabs, pvars, reachfrom, reachto, private〉, we let cCcSth,k tag denote that
c satisfies the tag tag “at level k”. More precisely, this means that

– dabs is an abstraction of the concrete values of the non-pointer fields of c; for array
fields f we use the concrete value f[k],

– pvars is the set of abstractions of pointer variables (global or local to th) that point
to c,

– reachfrom is the set of (i) abstractions of global pointer variables from which c

is reachable via a (possibly empty) sequence of next[1] pointers, and (ii) observer
registers xi such that c is reachable from some xi-cell (via a sequence of next[1]
pointers),

– reachto is the set of (i) abstractions of global pointer variables pointing to a cell
that is reachable (via a sequence of next[1] pointers) from c, and (ii) observer
registers xi such that some xi-cell is reachable from c.

– private is true only if c is not accessible to any other thread than th.

Note that the global information represented by the fields reachfrom and reachto

concerns only reachability via level-1 pointers.
A skiplist fragment v (or just fragment) is a triple of form 〈i, o, φ〉, of form

〈i, null〉, or of form 〈i,⊥〉, where i and o are tags and φ is a subset of {<,=, >}.
Each skiplist fragment additionally has a type, which is either level-1 or higher-level
(note that a level-1 fragment can otherwise be identical to a higher-level fragment). For
a cell c which is accessible to thread th, and a fragment v of form 〈i, o, φ〉, let cCcSth,kv
denote that the next[k] field of c points to a cell c′ such that cCcSth,k i, and c

′ CcSth,k o,
and c.data ∼ c

′.data for some ∼∈ φ. The definition of c CcSth,k v is adapted to frag-
ments of form 〈i, null〉 and 〈i,⊥〉 in the obvious way. For a fragment v = 〈i, o, φ〉,
we often use v.i for i and v.o for o, etc.

Let V be a set of fragments. A global configuration cS satisfies V wrp. to th, de-
noted cS |=heap

th V , if

– for any cell c that is accessible to th (different from null and⊥), there is a level-1
fragment v ∈ V such that cCcSth,1 v, and

– for all levels k from 2 up to the height of c, there is a higher-level fragment v ∈ V
such that cCcSth,k v.

Intuitively, a set of fragment represents the set of heap states, in which each pair of cells
connected by a next[1] pointer is represented by a level-1 fragment, and each pair of
cells connected by a next[k] pointer for k ≥ 2 is represented by a higher-level fragment
which represents array fields of cells at index k.



Symbolic Representation We can now define our abstract symbolic representation.
Define a local symbolic configuration σ to be a mapping from local non-pointer

variables (including the program counter) to their corresponding abstract domains. We
let cS |=loc

th σ denote that in the global configuration cS , the local configuration of
thread th satisfies the local symbolic configuration σ, defined in the natural way. For
a local symbolic configuration σ, an observer location s, a pair V of fragments and a
thread th, we write cS |=th 〈σ, s, V 〉 to denote that (i) cS |=loc

th σ, (ii) the observer is in
location s, and (iii) cS |=heap

th V .

Definition 1. A symbolic representation Ψ is a partial mapping from pairs of local sym-
bolic configurations and observer locations to sets of fragments. A system configuration
cS satisfies a symbolic representation Ψ , denoted cS sat Ψ , if for each thread th, the
domain of Ψ contains a pair 〈σ, s〉 such that cS |=th 〈σ, s, Ψ(〈σ, s〉)〉.

4.2 Symbolic Postcondition Computation

The symbolic postcondition computation must ensure that the symbolic representation
of the reachable configurations of a program is closed under execution of a statement
by some thread. That is, given a symbolic representation Ψ , the symbolic postcondi-
tion operation must produce an extension Ψ ′ of Ψ , such that whenever cS sat Ψ and
cS−→Sc′S then cS

′ sat Ψ ′. Let th be an arbitrary thread. Then cS sat Ψ means that
Dom(Ψ) contains some pair 〈σ, s〉 with cS |=th 〈σ, s, Ψ(〈σ, s〉)〉. The symbolic post-
condition computation must ensure that Dom(Ψ ′) contains a pair 〈σ′, s′〉 such that
c′S |=th 〈σ′, s′, Ψ ′(〈σ′, s′〉)〉. In the thread-modular approach, there are two cases to
consider, depending on which thread causes the step from cS to cS′.

– Local Steps: The step is caused by th itself executing a statement which may
change its local state, the location of the observer, and the state of the heap. In
this case, we first compute a local symbolic configuration σ′, an observer location
s′, and a set V ′ of fragments such that c′S |=th 〈σ′, s′, V ′〉, and then (if necessary)
extend Ψ so that 〈σ′, s′〉 ∈ Dom(Ψ) and V ′ ⊆ Ψ(〈σ′, s′〉).

– Interference Steps: The step is caused by another thread th2, executing a state-
ment which may change the location of the observer (to s′) and the heap. By
cS sat Ψ there is a local symbolic configuration σ2 with 〈σ2, s〉 ∈ Dom(Ψ) such
that cS |=th2 〈σ2, s, Ψ(〈σ2, s〉)〉. For any such σ2 and statement of th2, we must
compute a set V ′ of fragments such that the resulting configuration cS′ satisfies
c′S |=

heap
th V ′ and ensure that 〈σ, s′〉 ∈ Dom(Ψ) and V ′ ⊆ Ψ(〈σ, s′〉). To do this,

we first combine the local symbolic configurations σ and σ2 and the sets of frag-
ments Ψ(〈σ, s〉) and Ψ(〈σ2, s〉), using an operation called intersection, into a joint
local symbolic configuration of th and th2 and a set V1,2 of fragments that repre-
sents the cells accessible to either th or th2. We thereafter symbolically compute
the postcondition of the statement executed by th2, in the same was as for local
steps, and finally project the set of resulting fragments back onto th to obtain V ′.

In the following, we first describe the symbolic postcondition computation for local
steps, and thereafter the intersection operation.



Symbolic Postcondition Computation for Local Steps Let th be an arbitrary thread,
assume that 〈σ, s〉 ∈ Dom(Ψ), and let V = Ψ(〈σ, s〉) For each statement that th can
execute in a configuration cS with cS |=th 〈σ, s, V 〉, we must compute a local sym-
bolic configuration σ′, a new observer location s′ and a set V ′ of fragments such that
the resulting configuration cS′ satisfies c′S |=th 〈σ′, s′, V ′〉. This computation is done
differently for each statement. For statements that do not affect the heap or pointer vari-
ables, this computation is standard, and affects only the local symbolic configuration,
the observer location, and the dabs component of tags. We therefore here describe how
to compute the effect of statements that update pointer variables or pointer fields of heap
cells, since these are the most interesting cases. In this computation, the set V ′ is con-
structed in two steps: (1) First, the level-1 fragments of V ′ are computed, based on the
level-1 fragments in V . (2) Thereafter, the higher-level fragments of V ′ are computed,
based on the higher-level fragments in V and how fragments in V are transformed when
entered in to V ′. We first describe the construction of level-1 fragments, and thereafter
the construction of higher-level fragments.

Construction of level-1 fragments Let us first intuitively introduce techniques used
for constructing the level-1 fragments of V ′. Consider a statement of form g := p,
which assigns the value of a local pointer variable p to a global pointer variable g. The
set V ′ of fragments is obtained by modifying fragments in V to reflect the effect of
the assignment. For any tag in a fragment, the dabs field is not affected. The pvars

field is updated to contain the variable g if and only if it contained the variable p before
the statement. The difficulty is to update the reachability information represented by
the fields reachfrom and reachto, and in particular to determine whether g should
be in such a set after the statement (note that if p were a global variable, then the
corresponding reachability information for p would be in the fields reachfrom and
reachto, and the update would be simple, reflecting that g and p become aliases). In
order to construct V ′ with sufficient precision, we therefore investigate whether the set
of fragments V allows to form a heap in which a p-cell can reach or be reached from
(by a sequence of next[1] pointers) a particular tag of a fragment. We also investigate
whether a heap can be formed in which a p-cell can not reach or be reached from a
particular tag. For each such successful investigation, the set V ′ will contain a level-1
fragment with corresponding contents of its reachto and reachfrom fields.

The postcondition computation performs this investigation by computing a set of
transitive closure-like relations between level-1 fragments, which represent reachability
via sequences of next[1] pointers (since only these are relevant for the reachfrom and
reachto fields). First, say that two tags tag and tag′ are consistent (wrp. to a set of
fragments V ) if the concretizations of their dabs-fields overlap, and if the other fields
pvars, reachfrom, reachto, and private) agree. Thus, tag and tag′ are consistent
if there can exist a cell c accessible to th in some heap, with cCcSth tag and cCcSth tag

′.
Next, for two level-1 fragments v1 and v2 in a set V of fragments,

– let v1 ↪→V v2 denote that v1.o and v2.i are consistent, and
– let v1 ↔V v2 denote that v1.o = v2.o are consistent, and that either v1.i.pvars ∩
v2.i.pvars = ∅ or the global variables in v1.i.reachfrom are disjoint from those
in v2.i.reachfrom.



Intuitively, v1 ↪→V v2 denotes that it is possible that c1.next[1] = c2 for some cells
with c1 C

cS
th,1 v1 and c2 C

cS
th,1 v2. Intuitively, v1 ↔V v2 denotes that it is possible that

c1.next[1] = c2.next[1] for different cells c1 and c2 with c1 CcSth,1 v1 and c2 CcSth,1 v2
(Note that these definitions also work for fragments containing null or ⊥). We use
these relations to define the following derived relations on level-1 fragments:

–
+
↪→V denotes the transitive closure, and

∗
↪→V the reflexive transitive closure, of ↪→V ,

– v1
∗∗↔V v2 denotes that ∃v′1, v′2∈V with v′1↔V v′2 where v1

∗
↪→V v′1and v2

∗
↪→V v′2,

– v1
∗+↔V v2 denotes that ∃v′1, v′2∈V with v′1↔V v′2 where v1

∗
↪→V v′1and v2

+
↪→V v′2,

– v1
∗◦↔V v2 denotes that ∃v′1 ∈ V with v′1↔V v2 where v1

∗
↪→V v′1,

– v1
++↔V v2 denotes that ∃v′1, v′2∈V with v′1↔V v′2 where v1

+
↪→V v′1and v2

+
↪→V v′2,

– v1
+◦↔V v2 denotes that ∃v′1 ∈ V with v′1↔V v2 where v1

+
↪→V v′1.

We sometimes use, e.g., v2
+∗↔V v1 for v1

∗+↔V v2. We say that v1 and v2 are compatible
if vx

∗
↪→ vy , or vy

∗
↪→ vx, or vx

∗∗↔ vy . Intuitively, if v1 and v2 are satisfied by two cells
in the same heap state, then they must be compatible.
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Fig. 7: Illustration of some transitive closure-like relations between fragments

Figure 7 illustrates the above relations for a heap state with 13 heap cells. The
figure depicts, in green, four pairs of heap cells connected by a next[1] pointer, which
satisfy the four fragments v1, v2, v3, and v4, respectively. At the bottom are depicted
the transitive-closure like relations that hold between these fragments.

We can now describe the symbolic postcondition computation for statements that
affect pointer variables or fields. This is a case analysis, and for space reasons we only
include some representative cases.

First, consider a statement of form x := y, where x and y are local (to thread th)
or global pointer variables. We must compute a set V ′ of fragments which are satisfied



by the configuration after the statement. We first compute the level-1-fragments in V ′

as follows (higher-level fragments will be computed later). We observe that for any cell
c which is accessible to th after the statement, there must be some level-1 fragment
v′ in V ′ with c CcSth,1 v

′. By assumption, c satisfies some fragment v in V before the
statement, and is in the same heap state as the cell pointed to by y. This implies that v
must be compatible with some fragment vy ∈ V such that ŷ ∈ vy.i.pvars (recall that
ŷ is the abstraction of y, which in the case that y is an array element maps higher level
indices to that abstract index higher). This means that we can make a case analysis on
the possible relationships between v and any such vy . Thus, for each fragment vy ∈ V
such that ŷ ∈ vy.i.pvars we let V ′ contain the fragments obtained by any of the
following transformations on any fragment in V .

1. First, for the fragment vy itself, we let V ′ contain v′y , which is the same as vy ,
except that

– v′y.i.pvars = vy.i.pvars ∪ {x̂} and v′y.o.pvars = v.o.pvars \ {x̂}
and furthermore, if x is a global variable, then

– v′y.i.reachto = vy.i.reachto∪{x̂} and v′y.i.reachfrom = vy.i.reachfrom∪{x̂},
– v′y.o.reachfrom = vy.o.reachfrom∪{x̂} and v′y.o.reachto = vy.o.reachto\{x̂}.

2. for each v with v ↪→V vy , let V ′ contain v′ which is the same as v except that
– v′.i.pvars = v.i.pvars \ {x̂},
– v′.o.pvars = v.o.pvars ∪ {x̂},
– v′.i.reachfrom = v.i.reachfrom \ {x̂} if x is a global variable,
– v′.i.reachto = v.i.reachto ∪ {x̂} if x is a global variable,
– v′.o.reachfrom = v.o.reachfrom ∪ {x̂} if x is a global variable,
– v′.o.reachto = v.o.reachto ∪ {x̂} if x is a global variable,

3. We perform analogous inclusions for fragments v with v
+
↪→V vy , vy

∗
↪→V v,

vy
∗+↔V v, and vy

∗◦↔V v. Here, we show only the case of vy
∗+↔V v, in which

case we let V ′ contain v′ which is the same as v except that x̂ is removed from
the sets v′.i.pvars, v′.o.pvars, v′.i.reachfrom, v′.i.reachto, v′.o.reachfrom,
and v′.o.reachto.

The statement x := y.next[1] is handled rather similarly to the case x := y. Let
us therefore describe the postcondition computation for statements of the form
x.next[1] := y. This is the most difficult statement, since it is a destructive update of
the heap. It affects reachability relations for both x and y. The postcondition computa-
tion makes a case analysis on how a fragment in V is related to some pair of compatible
fragments vx, vy in V such that x̂ ∈ vx.i.pvars, ŷ ∈ vy.i.pvars. Thus, for each pair
of compatible fragments vx, vy in V such that x̂ ∈ vx.i.pvars and ŷ ∈ vy.i.pvars, it
is first checked whether the statement may form a cycle in the heap. This may happen
if vy

∗
↪→V vx, in which case the postcondition computation reports a potential cycle.

Otherwise, V ′ consists of

1. the fragment vnew, representing the new pair of neighbours formed by the
statement, of form vnew = 〈i, o, φ〉, such that vnew.i.tag = vx.i.tag and
vnew.o.tag = vy.i.tag except that vnew.o.reachfrom = vy.i.reachfrom ∪
vx.i.reachfrom and vnew.i.reachto = vy.i.reachto ∪ vx.i.pvars; the con-
straint represent by vnew.φ is obtained from the constraints represented by the data



abstractions of vx.i and vy.i, as well as the possible transitive closure-relations be-
tween vx and vy , some of which imply that the data fields of vx and vy are ordered,
and

2. all possible fragments that can result from a transformation of some fragment v ∈
V . This is done by an exhaustive case analysis on the possible relationships between
v, vx and vy . Let us consider an interesting case, in which vx

∗
↪→V v and either

v
+
↪→V vy or vy

∗+↔ v. In this case,
– for each subset regset of the observer registers in v.i.reachfrom ∩
vx.i.reachfrom, and for each subset regset′ of the set of observer regis-
ters in v.o.reachfrom ∩ vx.i.reachfrom, we let V ′ contain a fragment v′

which is the same as v except that v′.i.reachfrom = (v.i.reachfrom \
vx.i.reachfrom) ∪ regset and v′.o.reachfrom = (v.o.reachfrom \
vx.i.reachfrom) ∪ regset′. An intuitive explanation for the rule for
v′.i.reachfrom is that the global variables that can reach vx.i should clearly
be removed from v′.i.reachfrom since vx

∗
↪→V v′ is false after the statement.

However, for an observer register xi, an xi-cell can still reach v′.i, if there are
two xi- cells, one which reaches vx.i and another which reaches v′.i; we can-
not precisely determine for which xi this may be the case, except that any such
xi must be in v.i.reachfrom∩ vx.i.reachfrom. The intuition for the rule for
v′.o.reachfrom is analogous.

Construction of higher-level fragments Based on the above construction of level-1
fragments, the set of higher-level fragments in V ′ is obtained as follows. For each higher
level-fragment v ∈ V , let v1 and v2 be level 1-fragments such that v1.i.tag = v.i.tag
and v2.i.tag = v.o.tag. For any fragments v′1 and v′2 that are derived from v1 and v2,
respectively, V ′ contains a higher-level fragment v′ which is the same as v except that
(i) v′.i.pvars = v′1.i.pvars and v′.o.pvars = v′2.i.pvars, (ii) v′.i.reachfrom =
v′1.i.reachfrom and v′.o.reachfrom = v′2.i.reachfrom, and (iii) v′.i.reachto =
v′1.i.reachto and v′.o.reachto = v′2.i.reachto. In addition, a statement of form
x.next[k] := y for k ≥ 2 creates a new fragment. The formation of this fragment is
simpler than for the statement x.next[1] := y, since reachability via next[1]-pointers
is preserved.

Symbolic Postcondition Computation for Interference Steps Here, the key step is
the intersection operation, which takes two sets of fragments V1 and V2, and produces
a set of joint fragments V1,2, such that cS |=heap

th1,th2 V1,2 for any configuration such that
cS |=heap

thi
Vi for i = 1, 2 (here |=heap

th1,th2 is defined in the natural way). This means
that for each heap cell accessible to either th1 or th2, the set V1,2 contains a fragment
v with c CcS{th1,th2},k v for each k which is at most the height of c (generalizing the
notation CcSth,k to several threads). Note that a joint fragment represents local pointer
variables of both th1 and th2. In order to distinguish between local variables of th1
and th2, we use x[i] to denote a local variable x of thread thi. Here, we describe the
intersection operation for level-1 fragments. The intersection operation is analogous for
higher-level fragments.



For a fragment v, define v.i.greachfrom as the set of global variables
in v.i.reachfrom. Define v.i.greachto, v.o.greachfrom, v.o.greachto,
v.i.gpvars, and v.o.gpvars analogously. Define v.i.gtag as the tuple
〈v.i.dabs, v.i.gpvars, v.i.greachfrom, v.i.greachto〉, and define v.o.gtag
analogously. We must distinguish the following possibilities.

– If c is accessible to both th1 and th2, then there are fragments v1 ∈ V1 and v2 ∈
V2 such that c CcSth1,1 v1 and c CcSth2,1 v2. This can happen only if v1.i.gtag =
v2.i.gtag, and v1.o.gtag = v2.o.gtag, and v1.i.private = v2.i.private =
false. Thus, for any such pair of fragments v1 ∈ V1 and v2 ∈ V2, we let V1,2
contain a fragment v12 which is identical to v1 except that
• v12.i.pvars = v1.i.pvars ∪ v2.i.pvars,
• v12.o.pvars = v1.o.pvars ∪ v2.o.pvars,
• v12.i.reachfrom = v1.i.reachfrom ∪ v2.i.reachfrom, and
• v12.o.reachfrom = v1.o.reachfrom ∪ v2.o.reachfrom.

– If c is accessible to th1, but not to th2, and c.next[1] is accessible also to
th2, then there are fragments v1 ∈ V1 and v2 ∈ V2 such that c CcSth1,1 v1
and c.next[1] CcSth2,1 v2.o. This can happen only if v1.i.greachfrom = ∅, and
v1.o.gtag = v2.o.gtag, and v1.o.private = v2.o.private = false. Thus, for
any such pair of fragments v1 ∈ V1 and v2 ∈ V2, we let V1,2 contain a fragment v′1
which is identical to v1 except that
• v′1.o.pvars = v1.o.pvars ∪ v2.o.pvars, and
• v′1.o.reachfrom = v1.o.reachfrom ∪ v2.o.reachfrom.

– If neither c nor c.next[1] is accessible th2, then there is a fragment v1 ∈ V1 such
that cCcSth1,1 v1. This can happen only if v1.o.greachfrom = ∅, in which case we
let V1,2 contain the fragment v1.

– For each of the two last cases, there is also a symmetric case with the roles of th1
and th2 reversed.

5 Arrays of Singly-Linked Lists with Timestamps

In this section, we show how to apply fragment abstraction to concurrent programs that
operate on a shared heap which represents an array of singly linked lists. We use this
abstraction to provide the first automated verification of linearizability for the Timed-
stamped stack and Timestamped queue algorithms of [12] as reported in Section 6.

Figure 8 shows a simplified version of the Timestamped Stack (TS stack) of [12],
where we have omitted the check for emptiness in the pop method, and the optimiza-
tion using push-pop elimination. These features are included in the full version of the
algorithm, that we have verified automatically.

The algorithm uses an array of singly-linked lists (SLLs), one for each thread, ac-
cessed via the thread-indexed array pools[maxThreads] of pointers to the first cell of
each list. The init method initializes each of these pointers to null. Each list cell con-
tains a data value, a timestamp value, a next pointer, and a boolean flag mark which
indicates whether the node is logically removed from the stack. Each thread pushes
elements only to “its own” list, but can pop elements from any list.



struct Node {

int data;

Timestamp ts;

Node* next;

boolean mark;

}

int pop():

1 boolean success = false;

2 int maxTS = -1;

3 Node* youngest, myTop, n = null;

4 while (!success)

5 int k;

6 for(int i=1; i<=maxThreads; i++)

7 n = pools[i];

8 while (n.mark & n.next != n) n = n.next;

9 if(maxTS < n.ts)

10 maxTS = n.ts;

11 youngest = n;

12 k = i; myTop = pools[k];

13 if (youngest != null)

14 success = CAS(youngest.mark,false,true);

15 if (success)

16 CAS(pools[k], myTop, youngest);

17 if (myTop != youngest);

18 myTop.next = youngest;

19 pools[k].next = youngest.next;

20 Node* next=youngest.next

21 while (next.next != next & next.mark);

22 next = next.next;

23 youngest.next = next;

24 return youngest.data;

void push(int d):

1 Node* new := new Node(d,-1,null,false);

2 new.next = pools[myID];

3 pools[myID] = new;

4 Timestamp t = new Timestamp();

5 new.ts = t;

6 Node* next = new.next;

7 while (next.next != next & !next.mark)

8 next = next.next;

9 new.next = next;

10 return new;

init() :

Node* pools[maxThreads];

for(int i=1; i<=maxThreads; i++)

pools[i].next = null;

Fig. 8: Description of the Timestamped stack algorithm, with some simplifications.

A push method for inserting a data element d works as follows: first, a new cell with
element d and minimal timestamp −1 is inserted at the beginning of the list indexed by
the calling thread (line 1-3). After that, a new timestamp is created and assigned (via the
variable t) to the ts field of the inserted cell (line 4-5). Finally, the method unlinks (i.e.,
physically removes) all cells that are reachable (through a sequence of next pointers)
from the inserted cell and whose mark field is true; these cells are already logically
removed. This is done by redirecting the next pointer of the inserted cell to the first
cell with a false mark field, which is reachable from the inserted cell.

A pop method first traverses all lists, finding in each list the first cell whose mark

field is false (line 8), and letting the variable youngest point to the most recent such
cell (i.e., with the largest timestamp) (line 1-11). A compare-and-swap (CAS) is used
to set the mark field of this youngest cell to true, thereby logically removing it. This
procedure will restart if the CAS fails. After the youngest cell has been removed, the
method will unlink all cells, whose mark field is true, that appear before (line 17-19)
or after (line 20-23) the removed cell. Finally, the method returns the data value of the
removed cell.

Fragment Abstraction In our verification, we establish that the TS stack algorithm of
Figure 8 is correct in the sense that it is a linearizable implementation of a stack data
structure. For stacks and queues, we specify linearizability by observers that synchro-



nize on call and return actions of methods, as shown by [7]; this is done without any
user-supplied annotation, hence the verification is fully automated.

The verification is performed analogously as for skiplists, as described in Sec-
tion 4. Here we show how fragment abstraction is used for arrays of singly-linked
lists. Figure 9 shows an example heap state of TS stack. The heap consists of a set
of singly linked lists (SLLs), each of which is accessed from a pointer in the ar-
ray pools[maxThreads] in a configuration when it is accessed concurrently by three
threads th1, th2, and th3. The heap consists of three SLLs accessed from the three
pointers pools[1], pools[2], and pools[3] respectively. Each heap cell is shown with
the values of its fields, using the layout shown to the right in Figure 9. In addition, each
cell is labeled by the pointer variables that point to it. We use lvar(i) to denote the
local variable lvar of thread thi.

In the heap state of Figure 9, thread th1 is trying to push a new node with data value
4, pointed by its local variable new, having reached line 3. Thread th3 has just called the
push method. Thread th2 has reached line 12 in the execution of the pop method, and
has just assigned youngest to the first node in the list pointed to by pools[3] which is
not logically removed (in this case it is the last node of that list). The observer has two
registers x1 and x2, which are assigned the values 4 and 2, respectively.
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Fig. 9: A possible heap state of TS stack with three threads.

We verify the algorithm using a symbolic representation that is analogous to the one
used for skiplists. There are two main differences.

– Since the array pools is global, all threads can reach all lists in the heap (the only
cells that cannot be reached by all threads are new cells that are not yet inserted).

– We therefore represent the view of a thread by a thread-dependent abstraction of
thread indices, which index the array pools. In the view of a thread, the index
of the list where it is currently active is abstracted to me, and all other indices are
abstracted to ot. The currently active index is taken to be the thread index for a



thread performing a push, the value of i for a thread executing in the for loop of
pop, and the value of k after that loop.

In the definition of tags, the only global variables that can occur in the fields reachfrom
and reachto are therefore pools[me] and pools[other]. The data abstraction rep-
resents (i) for each cell, the set of observer registers, whose values are equal to the
datafield, (ii) for each timestamp and observer register xi, the possible orderings
between this timestamp and the timestamp of an xi-cell.
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pc : 12; success : false; k : {me, ot}; maxTS : x1 7→ {<} ; x2 7→ {=}

λ1 : x1 7→ {=} ; x2 7→ {<};λ2 : x1 7→ {<} ; x2 7→ {<};λ3 : x1 7→ {>} ; x2 7→ {>}

λ4 : x1 7→ {>} ; x2 7→ {=};

Fig. 10: Fragment abstraction

Figure 10 shows a set of fragments that is satisfied wrp. to th2 by the configuration
in Figure 9. There are 7 fragments, named v1, . . . , v7. Consider the tag which occurs
in fragment v7. This tag is an abstraction of the bottom-rightmost heap cell in Figure 9,
The different non-pointer fields are represented as follows.

– The data field of the tag (to the left) abstracts the data value 2 to the set of observer
registers with that value: in this case x2.

– The ts field (at the top) abstracts the timer value 15 to the possible relations with
ts-fields of heap cells with the same data value as each observer registers. Recall
that observer registers x1 and x2 have values 4 and 2, respectively. There are three
heap cells with data field value 4, all with a ts value less than 15. There is one
heap cell with data field value 2, having ts value 15. Consequently, the abstraction
of the ts field maps x1 to {>} and x2 to {=}: this is the mapping λ4 in Figure 10.

– The mark field assumes values from a small finite domain and is represented pre-
cisely as in concrete heap cells.

Symbolic Postcondition Computation The symbolic postcondition computation is
similar to that for skiplists. Main differences are as follows.

– Whenever a thread performing pop moves from one iteration of the for loop to
the next, the abstraction must consider to swap between the abstractions me and ot.



– In interference steps, we must consider that the abstraction me for the interfering
thread may have to be changed into ot. Furthermore, the abstractions me for two
push methods cannot coincide, since each thread pushes only to its own list.

6 Experimental Results

Based on our framework, we have implemented a tool in OCaml, and used it for ver-
ifying various kinds of concurrent data structures implementation of stacks, priority
queues, queues and sets. All of them are based on heap structures. There are three types
of heap structures we consider in our experiments.

Algorithms Time (s) Algorithms Time (s)
a b a b

Treiber stack [39] 18 0.18 O′Hearn set [32] 88 12
MS lock-free queue [31] 22 21 HM lock-free set [22] 120 462
DGLM queue [14] 16 16 Harris lock-free set [17] 950 1512
Vechev-CAS set [44] 86 24 Unordered set [48] 1230 2301
Vechev-DCAS set [44] 16 16 TS stack [12] 176
Michael lock-free set [29] 178 110 TS queue [12] 101
Pessimistic set [22] 30 1.51 Lock-free skiplist [22] 1992
Optimistic set [22] 25 60 Lock-based skiplist [21] 500
Lazy set [20] 34 289 Priority queue skiplist 1 [27] 1320

Priority queue skiplist 2 [26] 599

Fig. 11: Times for verifying concurrent data structure implementations. Column a shows the ver-
ification times for our tool based on fragment abstraction. Column b shows the verification times
for the tool for SLLs in our previous work [3]

Singly-linked list benchmarks: These benchmarks include stacks, queues and sets al-
gorithms which are the well-known in the literature. The challenge is that in some set
implementation, the linearization points are not fixed, they depended on the future of
each execution. The sets with non fixed linearization points are the lazy set [20], lock-
free sets of HM [22], Harris [17], Michael [29], and unordered set of [48]. By using
observers and controllers in our previous work [3]. Our approach is simple and strong
enough to verify these singly-linked list benchmarks.

Skiplist benchmarks: We consider four skiplist algorithms including the lock-based
skiplist set [31], the lock-free skiplist set which is described in section 2 [22], and two
skiplist-based priority queues [26], [27]. One challenge for verifying these algorithms
is to deal with unbounded number of levels. In addition, in the lock-free skiplist [22]
and priority queue [26], the skiplist shape is not well formed, meaning that each higher
level list need not be a sub-list of lower level lists. These algorithms have not been
automatically verified in previous work. By applying our fragment abstraction, to the
best of our knowledge, we provide first framework which can automatically verify these
concurrent skiplists algorithms.



Arrays of singly-linked list benchmarks: We consider two challenging timestamp al-
gorithms in [12]. There are two challenges when verifying these algorithm. The first
challenge is how to deal with an unbounded number of SLLs, and the second challenge
is that the linearization points of the algorithms are not fixed, but depend on the fu-
ture of each execution. By combining our fragment abstraction with the observers for
stacks and queues in [7], we are able to verify these two algorithms automatically. The
observers are crucial for achieving automation, since they enforce the weakest possi-
ble ordering constraints that are necessary for proving linearizability, thereby making it
possible to use a less precise abstraction.

Running Times. The experiments were performed on a desktop 2.8 GHz processor with
8GB memory. The results are presented in Fig. 11, where running times are given in
seconds. Column a shows the verification times of our tool, whereas column b shows
the verification times for algorithms based on SLLs, using the technique in our previous
work [3]. In our experiments, we run the tool together with an observer in [1], [7]
and controllers in [3] to verify linearizability of the algorithms. All experiments start
from the initial heap, and end either when the analysis reaches a fixed point or when
a violation of safety properties or linearizability is detected. As can be seen from the
table, the verification times vary in the different examples. This is due to the types
of shapes that are produced during the analysis. For instance, skiplist algorithms have
much longer verification times. This is due to the number of pointer variables and their
complicated shapes. In contrast, other algorithms produce simple shape patterns and
hence they have shorter verification times.

Error Detection In addition to establishing correctness of the original versions of the
benchmark algorithms, we tested our tool with intentionally inserted bugs. For example,
we omitted setting time statement in line 5 of the push method in the TS stack algo-
rithm, or we omitted the CAS statements in lock-free algorithms. The tool, as expected,
successfully detected and reported the bugs.

7 Conclusions

We have presented a novel shape abstraction, called fragment abstraction, for auto-
matic verification of concurrent data structure implementations that operate on different
forms of dynamically allocated heap structures, including singly-linked lists, skiplists,
and arrays of singly-linked lists. Our approach is the first framework that can auto-
matically verify concurrent data structure implementations that employ skiplists and
arrays of singly linked lists, at the same time as handling an unbounded number of
concurrent threads, an unbounded domain of data values (including timestamps), and
an unbounded shared heap. We showed fragment abstraction allows to combine local
and global reachability information to allow verification of the functional behavior of a
collection of threads.

As future work, we intend to investigate whether fragment abstraction can be ap-
plied also to other heap structures, such as concurrent binary search trees.
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