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Abstract. We present a new method for proving liveness and termination prop-
erties for fair concurrent programs, which does not rely on finding a ranking
function or on computing the transitive closure of the transition relation. The
set of states from which termination or some liveness property is guaranteed is
computed by a backwards reachability analysis. A central technique for handling
concurrency is a check for certain commutativity properties. The method is not
complete. However, it can be seen as a complement to other methods for proving
termination, in that it transforms a termination problem into a simpler one with
a larger set of terminated states. We show the usefulness of our method by ap-
plying it to existing programs from the literature. We have also implemented it
in the framework of Regular Model Checking, and used it to automatically verify
non-starvation for parameterized algorithms.

1 Introduction

The last decade has witnessed impressive progress in the ability of tools to verify prop-
erties of hardware and software systems (e.g., [9, 15, 23]). The success has to a large
extent concerned safety properties, e.g., absence of run-time errors, deadlocks, race
conditions, etc. Progress in verification of liveness properties has been less prominent.
A major reason is that they are harder to verify than safety properties. For finite-state
systems and some parameterized systems, safety properties can be verified by comput-
ing (some approximation of) the set of reachable states. Verifying liveness properties,
requires at least a repeated search through the state space in enumerative model check-
ers [23]. In symbolic model checkers, a natural but more expensive technique is to
compute the transitive closure of the transition relation. Multiple fairness requirements
can make the situation even more complicated. For general infinite-state systems, the
difference between safety and liveness properties is even larger. For some classes of
systems, such as lossy channel systems, checking safety properties is decidable [5],
whereas checking liveness properties is undecidable [4].

The general approach for proving liveness involves finding auxiliary assertions as-
sociated with well-founded ranking functions and helpful directions (e.g., [25]). Find-
ing such ranking functions is not easy, and automation requires techniques adapted to
specific data domains. Techniques have been developed for programs with integers or
reals [11–13, 17, 18], functional programs, [24], and parameterized systems [21, 22].
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The main technique of software model checking, using finite-state abstractions [15]
has been difficult to apply when proving liveness properties, since abstractions may in-
troduce spurious loops [32] that do not preserve liveness. Podelski and Rybalchenko
therefore extended the framework of predicate abstraction to that of transition predi-
cate abstraction [31], which involves constructing an abstraction of the transition rela-
tion and its transitive closure. However, the transitive closure is harder to compute or
approximate than the set of reachable states.

Here, we present a new method for proving liveness using simple reachability anal-
ysis, which uses neither computation of transitive closure nor explicit construction of
ranking functions. The method assumes that the liveness property has been transformed
to the property of termination for a system; which is standard for many classes of live-
ness properties, including the so-called progress properties (of form 2(P =⇒ 3Q)).
Termination is then checked by backwards reachability analysis, which computes the
set of states that are backwards reachable from the set of terminated states under a
particular transition relation, which we call a convergence relation. Computing the set
of backwards reachable states is conceptually easier than finding ranking functions or
computing the transitive closure. Thus, liveness properties can be established for a class
of systems, provided that there is a powerful way to compute sets of backwards reach-
able states. For many classes of parameterized and infinite-state systems, the set of
backwards reachable states is computable (e.g., [5, 2]). For other classes of infinite-
state systems, powerful acceleration techniques have been developed that compute or
under-approximate the set of reachable states (e.g., [35, 3]). It should be possible to de-
velop equally powerful techniques for backwards reachability analysis, and apply them
to proving liveness properties.

For a simple deterministic (non-concurrent) program, the set of states in which ter-
mination is guaranteed can be calculated as the set of states that are backwards reachable
from some terminated state. We generalize this observation to develop techniques for
using backwards reachability analysis to prove termination for general concurrent pro-
grams with arbitrary (weak) fairness (aka justice) requirements; backwards reachability
analysis should be the only non-trivial computation on the verified program. A central
new technique for handling concurrency is the use of commutativity properties between
different actions of the program.

Our technique is in general not complete. It computes an under-approximation of
the set of states from which termination is guaranteed. If this under-approximation does
not include the states for which one intends to prove termination, there are several ways
to increase the power of the method. One way is to repeat the backwards reachability
analysis, letting the computed under-approximation play the role of terminated states.
One then exploits the fact that our convergence relation increases when the set of ter-
minated states increases: a repeated reachability analysis will therefore improve the
under-approximation. Another way is to apply other techniques (e.g. based on ranks
or transitive closure computation) to prove termination for the remaining states of in-
terest. Here, we present such a complementary technique, developed particularly for
parameterized systems.

To show the usefulness of our method, we apply it to several examples. The first
is a program also considered by Podelski and Rybalchenko [31]; our method also han-



dles the other programs in [31]. The second example is the well-known alternating bit
protocol. This is an example of a lossy channel system, for which liveness properties
are undecidable [4]. Our example shows that backwards reachability analysis (which is
guaranteed to terminate [5]) can prove liveness properties for some of these systems,
although in general they are undecidable. Finally, we have implemented our technique
in the framework of regular model checking [7]. We prove starvation-freedom for sev-
eral parameterized mutual exclusion protocols; some of which we have previously not
been able to prove starvation-freedom for using transitive closure computation [6].

Related Work For infinite-state systems, fair termination is typically proven by finding
auxiliary assertions associated with well-founded ranking functions and helpful direc-
tions (e.g., [25, 26]). Automated construction of such ranking functions is a challenging
task, which requires techniques adapted to specific data domains. Recently, significant
progress has been achieved for programs that operate on numerical domains, integers
or reals [11–13, 17, 18, 20]. Rather few papers present efficient techniques to prove ter-
mination for programs that operate on arbitrary data domains. For families of parame-
terized systems, where each system instance is finite-state, liveness can in principle be
proven from the transitive closure, but computation of transitive closure is typically ex-
pensive [29]. Another approach is to develop heuristics to automate the search for rank
functions [21, 22] and procedures to check the conditions in a general proof rule [26]
automatically. A third approach has been to find specialized abstractions, e.g., into in-
tegers, which work in certain cases [30].

Podelski and Rybalchenko extend the framework of predicate abstraction to that of
transition predicate abstraction [31, 32, 28, 19], which can be applied on arbitrary pro-
grams. The transitive closure of the transition relation is harder to compute or approx-
imate than the set of reachable states. Extensions of predicate abstraction techniques
for synthesizing ranking functions have also been developed by Balaban, Pnueli, and
Zuck [8].

Our use of commutativity between actions is inspired by the use of commutativity
in partial-order techniques to optimize state-space exploration [16] in finite-state model
checking.

Organization of the paper Section 2 contains basic definitions, Section 3 an informal
overview of our method, and Section 4 the formal presentation of the method. In Sec-
tion 5, we verify an example also considered by Podelski and Rybalchenko [31], and
the alternating bit protocol. In Section 6, we give experimental results on non-starvation
for parameterized mutual exclusion algorithms, and describe our complementary termi-
nation rule, particularly developed for parameterized systems. Section 7 contains con-
clusions.

2 Preliminaries

Programs We consider fair concurrent programs modeled as transition systems. A pro-
gram may contain a set of actions with (weak) fairness requirements (aka justice), as in,
e.g., UNITY [14].

Formally, a program P is a triple 〈S,−→,A〉, where



– S is a set of states,
– −→⊆ S × S is a transition relation on S. We require that the identity relation is

included in −→.
– A is a finite or countable set of fair actions, each of which is a subset of −→, and

required to be deterministic.

An action is any subset of the transition relation. We write s −→ s′ for (s, s′) ∈−→.
For an action α, we use s α−→ s′ to denote (s, s′) ∈ α. An action α is enabled in a state
s if there is some state s′ such that s α−→ s′. The set of states in which the action α is
enabled is denoted En(α). If T is a set of states, then α ∧ T denotes the set of pairs
(s, s′) of states such that s α−→ s′ and s ∈ T . For a set B of actions, let B ∧ T denote
{α ∧ T | α ∈ B}. A computation of P from a state s ∈ S is an infinite sequence
of states s0 s1 s2 . . . such that (i) s = s0; (ii) si−→ si+1 for each i ≥ 0; and (iii)
for each fair action α ∈ A, there are infinitely many i ≥ 0 where either si

α−→ si+1 or
si 6∈ En(α).

For a set T of states and action α, let Pre(α, T ) be the set of states s such that
s

α−→ t for some t ∈ T . For a set of actions B, let Pre∗(B, T ) be the union of T and the
set of states s such that s α1−→· · · αn−→ t for some t ∈ T and α1, . . . , αn ∈ B.

Termination Let P be a program 〈S,−→,A〉 and F ⊆ S be a set of terminated states.
We assume F to be stable, i.e., that s ∈ F and s −→ s′ implies s′ ∈ F . Define 3F as
the set of states s such that any computation of P from s contains a state in F . In other
words, 3F is the set of states from which termination is guaranteed, in the sense that
each computation from s will eventually reach F . In this paper we present methods for
computing (an under-approximation of) 3F .

We can also consider many classes of liveness properties, e.g., progress proper-
ties (of form 2(P =⇒ 3Q)), by first transforming them to termination properties.
There exist standard techniques for such reductions. For example, a program satisfies
2(P =⇒ 3Q) if 3Q includes states that can be reached from an initial state in a
sequence of transitions that visit P , but have not yet visited Q.

Remarks The restriction that each fair action be deterministic can often be circum-
vented by representing a nondeterministic action as a union of several deterministic
ones. Our definition of program does not mention initial states. When initial states are
given, a typical use of our techniques will be to first compute the set of reachable states
(or an over-approximation), and let them be the states of the program as defined above.

3 Overview of the Proof Method

In this section, we give an overview of our method for computing a (good) under-
approximation of the set 3F , where F is a set of states of a program P = 〈S,−→,A〉.
The inspiration for our method is the simple observation that when P is a deterministic
program with only one fair action α, then 3F is the set Pre∗(α, F ). Our goal is there-
fore a technique for proving termination and liveness properties, where the only non-
trivial computation is a predecessor calculation, i.e., computing Pre∗(B, T ) for some
set of states T and actions B.



Our method works by computing a so-called convergence relation, here denoted
↪→F , on the states of P; this is a relation with the property that if s ↪→F t and t ∈ 3F
then also s ∈ 3F . From this property it follows that Pre∗(↪→F , F ) ⊆ 3F for any con-
vergence relation ↪→F . The construction of ↪→F depends in general on F . Since ↪→F

will be employed in a predecessor calculation, it is natural to allow the use of prede-
cessor calculations also in the construction of ↪→F itself, but to avoid computations of
transitive closures or other more powerful techniques.

Our main technique for constructing ↪→F uses a commutativity argument to infer
that it satisfies the required properties. To explain its intuition, consider the following
simple program, which consists of two deterministic processes executing in parallel.

α1 : x := x− 1 if x > 0
α2 : y := y − 1 if y > 0

Variables x and y assume values in the natural numbers. For i = 1, 2, process i repeat-
edly performs action αi. Both α1 and α2 are fair actions. The transition relation is the
union of both actions plus the identity relation. The set F of terminated states is the
single state with x = y = 0.

In this example, our method computes ↪→F asα1 ∪α2. Our method implicitly ascer-
tains that ↪→F is a convergence relation using a commutativity argument. To understand
why α1 is in ↪→F , assume that s α1−→ t and t ∈ 3F . Consider any computation from s.
If it goes first to t we are done. Otherwise, it first consists of a sequence of executions
of action α2. During this sequence, α1 remains enabled, and so must eventually (by
fairness) be executed, leading to some state t′. Now observe that since α1 and α2 com-
mute, t′ is reachable from t. Since t ∈ 3F we infer, using the fact that 3F is a stable
set, that t′ ∈ 3F and hence that s ∈ 3F . We conclude that termination is guaranteed
for all states in Pre∗(↪→F , F ), which here is the set of all states.

The above method can prove termination for many programs with a regular struc-
ture. It is in general incomplete. For programs where the above method computes a too
small under-approximation of 3F , we offer the following two ways to proceed.

The backwards reachability computation can be repeated several times. If one com-
putation produces an under-approximationG of 3F , the next application of our method
will compute 3G using a convergence relation ↪→G that is larger than in the first com-
putation, since it depends on G instead of F . Let us illustrate this by changing the
above program by changing the guard of α1 into 0 < x ≤ y ∨ y = 0. This destroys
commutativity between α1 and α2 in case y = x. However, a first backwards reach-
ability computation will produce the set G consisting of states with 0 ≤ x ≤ 1 or
with 0 ≤ y < x as an under-approximation to 3F . A second backwards reachability
computation thereafter reveals that all states are in 3G, hence also in 3F .

In many cases, the under-approximation of 3F computed by our method is suffi-
ciently large that other techniques (e.g., standard techniques based on ranks or transitive
closure computation) become computationally feasible. For the class of parameterized
systems, we have developed a powerful method, whose only nontrivial computation
is predecessor calculation, which can be used after applying the commutativity-based
method.



4 Proving Termination as Backward Reachability

In this section, we formalize the methods for calculating (an under-approximation of)
the set 3F by backwards reachability analysis, presented in the previous section. We
first present the general approach, and then our main technique.

Assume a program 〈S,−→,A〉. Let F be a stable set of terminated states. Define a
convergence relation on S for F to be a relation ↪→F on S such that whenever s ↪→F t
and t ∈ 3F then also s ∈ 3F . The point of convergence relations is that if ↪→F is
a convergence relation for F , then Pre∗(↪→F , F ) ⊆ 3F , i.e., we can use predecessor
calculation to prove that termination is guaranteed from a set of states. Larger conver-
gence relations allow to prove termination for larger sets of states. Furthermore, even
if we cannot precisely calculate Pre∗(↪→F , F ), any under-approximation of this set is
also in 3F .

To apply these ideas, we need techniques to compute sufficiently powerful conver-
gence relations. Any number of convergence relations can be combined into one, since
the union of two convergence relations is again a convergence relation. Now we present
our main technique, which is based on a commutativity argument.

Definition 1. Let α be a deterministic fair action, and let F be a set of states. Define
the left moving states for (α, F ), denoted Left(α, F ), as the set of states s satisfying

– whenever there are states s′, t′ with t′ 6∈ F such that s−→ s′
α−→ t′, then there is a

state t with s α−→ t−→ t′.

Intuitively, α can “move left” of −→, and still reach the same state. The definition is
illustrated in Figure 1.

∃ t −→ t′ 6∈ F
∀ s′, t′ −→α −→α

s −→ s′

Fig. 1. s ∈ Left(α, F ). Action α commutes left at state s.

Definition 2. Define the α-helpful states, denoted Helpful(α, F ), as the largest set T
of states such that T ⊆ ((En(α) ∩ Left(α, F ))∪F ), and

– whenever s ∈ Helpful(α, F ) and s−→ s′ then either s α−→ s′, or s′ ∈ F , or s′ ∈
Helpful(α, F ).

Intuitively, a state is α-helpful if the properties that α is enabled and left moving remain
true when any sequence of transitions not in α are taken, unless F is reached. The above
concepts can be used to define a convergence relation as follows.

Theorem 1. Let α be a fair action of 〈S,−→,A〉 and F be a stable set of states. Then
the relation

α
↪→F , defined by

α
↪→F ≡ α ∧Helpful(α, F )



is a convergence relation for F .

Proof. Assume that s
α
↪→F t and t ∈ 3F . Consider any computation s0 s1 s2 . . . from

s = s0. We must show that it contains a state in F .

– If there is a k with sk ∈ F we are done.
– Otherwise, if there is a k with sk

α−→ sk+1, let k be the least such index. By in-
duction, using the definition of Helpful(α, F ), we infer that si ∈ Helpful(α, F ),
hence si ∈ En(α) and si ∈ Left(α, F ) for i = 0, . . . , k. Let ti be the unique state
with si

α−→ ti, in particular sk+1 = tk. By induction we infer, using the definition
of Left(α, F ), that ti is reachable from t for all i with 0 ≤ i ≤ k. In particular,
sk+1 = tk is reachable from t. From t ∈ 3F we infer sk+1 ∈ 3F and hence the
computation must contain a state in F . An illustration of this argument is provided
in Figure 2.

– Otherwise, we infer by induction over k, using s ∈ Helpful(α, F ), that α is enabled
in all states of the computation. By fairness, α will eventually be executed, and we
are back to the previous case. �

t −→ t1 −→ t2 −→ · · · −→ tk

−→α −→α −→α −→α
s

¬α−→ s1
¬α−→ s2

¬α−→ · · · ¬α−→ sk

Fig. 2. (s, t) ∈ α
↪→F . The α-successor of any successor of s, is either a successor of t, or in F .

Corollary 1. Pre∗({ α
↪→F |α ∈ A} , F ) ⊆ 3F

In order to show how termination can be proven by backwards reachability analysis,
we must finally explain how to compute Helpful(α, F ), or an under-approximation of
it, by backwards reachability analysis. We first observe that:

Left(α, F ) = ¬Pre((−→ ◦α)− (α ◦ −→),¬F )

Proposition 1. The set Helpful(α, F ) is the complement of the set

Pre∗((A− α) ∧ ¬F , (¬Left(α, F )∪¬En(α)) ∩ ¬F )

Proof. According to Definition 2, a state s is not in Helpful(α, F ) if and only if there
is a sequence of transitions from s, none of which is in α or visits a state in F , which
leads to a state neither in F nor in En(α) ∩ Left(α, F ); exactly what the proposition
formalizes. �

5 Examples

In this section we illustrate our method, by applying it to two examples from the litera-
ture.



5.1 Any-Down

The example Any-Down is used by Podelski and Rybalchenko [31] to illustrate their
method of transition invariants. In fact, our method can handle, in two iterations or less,
all the examples given in [31]. For readability, we reformulate the program into the
action-based syntax of the example in Section 3, as follows.

α1 : y := y + 1 if x = 1
α2 : x := 0 if true
α3 : y := y − 1 if x = 0 ∧ y > 0

The program variable y assumes values in the natural numbers, and the variable x as-
sumes values in {0, 1}. Both α2 and α3 are fair actions. The transition relation is the
union of all three actions plus the identity relation. The set F of terminated states is the
single state with x = y = 0. It is well-known that a standard termination proof for this
program will require a ranking function whose range is larger than the natural numbers.
This suggests that we need at least two iterations of our method to compute the set 3F .
We describe each iteration below.

In the first iteration we compute Helpful(αi, F ) for i = 2, 3 (we omit α1, since it is
not a fair action). These computations are summarized in the below table.

En(αi) Left(αi, F ) Helpful(αi, F )
α2 true x = 0 x = 0
α3 x = 0 ∧ y > 0 x = 0 ∨ y = 0 ∨ y = 1 x = 0

We explain the entries of the table for α2. The corresponding entries for α3 can be
explained in a similar manner. The set Left(α2, F ) includes all states s where x = 0.
This is since either (i) y = 0 in which case s ∈ F ; or (ii) y > 0, which means that
α1 is not enabled, and α2 commutes with α3. On the other hand, Left(α2, F ) does not
include any state s with x = 1, as follows. We have s α1−→ α2−→ t, for some t with y > 0.
Obviously, t 6∈ F and furthermore it is not the case that s α2−→ α1−→ t since α2 disables
α1. This means we have violated the condition for being a left mover.

The set Helpful(α2, F ) includes all states where x = 0; such a state s belongs to
Left(α2, F ). The action α2 is enabled from s. Furthermore, the action α1 is disabled,
while the execution of α3 from s again leads to a state satisfying Helpful(α2, F ).

By Corollary 1, the following set is in 3F :

G ≡ Pre∗((α2 ∧Helpful(α2, F ))∪(α3 ∧Helpful(α3, F )), F ) ≡ x = 0

In the second iteration we compute Helpful(αi, G) for i = 2, 3 in the same way.
The interesting difference is that Left(α2, G), which is true , is larger than Left(α2, F ),
since any execution of α2 leads to G. Hence also Helpful(α2, G), which is true , is
larger than Helpful(α2, F ).

En(αi) Left(αi, G) Helpful(αi, G)
α2 true true true
α3 x = 0 ∧ y > 0 true x = 0

By Corollary 1, the following set is in 3G, hence in 3F :

Pre∗((α2 ∧ true)∪(α3 ∧Helpful(α3, F )), G) ≡ true



5.2 Alternating Bit Protocol

We consider the alternating bit protocol as a second example. This protocol consists
of finite-state processes that communicate over unbounded and lossy FIFO channels.
As shown in our earlier work, it is decidable whether such a protocol satisfies a safety
property [5], but undecidable whether a protocol satisfies a liveness property [4]. Using
our technique, we can prove liveness properties for some of these protocols.

The alternating bit protocol involves a sender and a receiver that communicate over
two channels cM and cA. Channel cM is used to transmit messages from the sender
to the receiver, and channel cA to transmit acknowledgments from the receiver to the
sender. Both channels are FIFO and faulty in the sense that messages may be lost but
not reordered. The purpose of the protocol is to transmit messages from the sender to
the receiver in correct order, in spite of the fact that the channels can lose messages.
Corruption of messages can also be taken into account by modeling it as a loss (some
mechanism will detect and discard a corrupted message). Each channel is “fair” in the
sense that if infinitely many messages are input, then infinitely many messages will be
delivered.

We describe the operations of sender and receiver in the protocol. At one extremity
of the channels, the sender constructs a message mi by adding a sequence number i
in {0, 1} to a pending message m, and sends it on the channel cM to the receiver.
The sender awaits for an acknowledgment ai with the same sequence number on the
channel cA. If ai arrives, the procedure is repeated with the next pending message but
with an inverted sequence number (1 − i). If no acknowledgment ai arrives within
a specified time period the sender retransmits the message mi. Retransmissions are
repeated until an acknowledgment ai with a corresponding sequence number arrives.
Acknowledgments with non-corresponding sequence numbers are discarded. On the
other extremity of the channels, the receiver receives messages mi from the incoming
channel cM . A message mi is delivered if the corresponding sequence number i was
expected. After delivery of mi, the receiver sends on channel cA an acknowledgment
ai with the same sequence number to the sender. The receiver expects a message with
an inverted sequence number (1 − i). Messages with non-expected sequence numbers
are discarded.

s0

s1

α7 :?m1

skip

α8 :!a1

α10 :!a0α9 :?m0α4 :!m1
r1

r0

α2 :!m0α1 :?a1

α6 :?a1

α3 :?a0

skipskip

skip

α12 :?m1 α11 :?m0α5 :?a0

Fig. 3. The Alternating Bit Protocol



The sender and the receiver are modeled by the finite-state processes depicted in
figure 3. The states of the sender are in {s0, s1}, while those of the receiver are in
{r0, r1}. A state of the system is of form skrl(wM , wA) where sk is a sender state,
rl is a receiver state, wM is the content of channel cM , and wA is the content of
channel cA. The initial state is s0r0(〈〉, 〈〉) with both channels empty. From a state
skrl(wM , wA), the effects of the actions !mi and !ai, with i in {0, 1}, are respectively
skrl(mi • wM , wA) and skrl(wM , ai • wA) (the operator • being the concatenation of
channels content). The state skrl(wM , wA) results from applying the action ?mi to the
state skrl(wM •mi, wA), or from applying the action ?ai to the state skrl(wM , wA•ai).
Here, cM and cA are perfect FIFO buffers, and message losses are modeled as a non-
deterministic choice between a send and a skip action.

There are techniques to automatically calculate the set of states reachable from the
initial state s0r0(〈〉, 〈〉). An example is to start from the initial state and to apply the
technique of loop-first search [?]. This technique generates the set of reachable states
by taking all possible transitions, and evaluating (whenever possible) the effect of per-
forming an arbitrary number of the same transition. Examples of such accelerations are
α∗1 or α∗2, resulting in the addition of to the tail of cM , respectively the substraction
from the head of cA, of an arbitrary number of m0, respectively a1. Sets of states can
be captured by Queue-content Decision Diagram (QDD) of the form skrl(wM , wA)
where wM and wA are regular languages. The search stops once the set of generated
states stabilizes, i.e. no new states are generated when applying transitions. For the pro-
tocol at hand, this technique returns the set of reachable states as union of the four sets
s0r0(m

∗
0m
∗
1, a
∗
1), s0r1(m

∗
0, a
∗
0a
∗
1), s1r0(m

∗
1, a
∗
1a
∗
0), and s1r1(m∗1m

∗
0, a
∗
0).

We describe the program 〈S,−→,A〉 corresponding to the alternating bit protocol.
The set S is here chosen to be the set of reachable configurations computed above.
The transition relation −→ is the union of the actions skip and α1, . . . , α12. All these
actions, except skip, are in A. This corresponds to the assumption that if a message is
continuously retransmitted, then eventually one of the messages is not lost.

We use the method defined in Section 4 to prove the following four progress prop-
erties of the protocol.

Pr0r1 : s0r0(m
∗
0m
∗
1, a
∗
1) ⊆ 3s0r1(m

∗
0, a
∗
0a
∗
1)

Ps0s1 : s0r1(m
∗
0, a
∗
0a
∗
1) ⊆ 3s1r1(m

∗
1m
∗
0, a
∗
0)

Pr1r0 : s1r1(m
∗
1m
∗
0, a
∗
0) ⊆ 3s1r0(m

∗
1, a
∗
1a
∗
0)

Ps1s0 : s1r0(m
∗
1, a
∗
1a
∗
0) ⊆ 3s0r0(m

∗
0m
∗
1, a
∗
1)

Observe the property Pr0r1 implies that from any state in the set s0r0(m∗0m
∗
1, a
∗
1),

the system is guaranteed to reach a state in s0r1(m∗0, a
∗
0a
∗
1). This means the receiver

changed state from r0 to r1. In other words, the receiver is guaranteed to take action
α11 and to receive the messagem0. A similar reasoning with Ps0s1 , Pr1r0 and Ps1s0 en-
sures sender and receiver indefinitely alternate sending m0, a0, m1 and a1. We show in
the following how to prove the property Pr0r1 ; the other progress properties are proven
in a similar manner.

Assume the set F coincides with s0r1(m∗0, a
∗
0a
∗
1). We use the method defined in

Section 4 to calculate a set of states included in 3F . To ensure the stability of F , we
first modify all actions α to α ∧ ¬F . Observe α5 ∧ ¬F is an empty relation, while



the other actions are modified as shown in figure ??. The results of the computations
(according to Proposition 1) of the helpful set of states for each fair action αi in A
appear in the same figure. Let us give an intuition of why Helpful(α7, F ) coincides
with the union of the sets s0r0(m∗0m

+
1 , a

∗
1), s1r0(m

+
1 , a

∗
1a
∗
0) and s0r1(m∗0, a

∗
0a
∗
1). For

every state s in this union, it is the case that either (i) s is in F = s0r1(m
∗
0, a
∗
0a
∗
1); or (ii)

s is in the union of s0r0(m∗0m
+
1 , a

∗
1) and s1r0(m+

1 , a
∗
1a
∗
0). In the second case, observe

that α7 is enabled and that the only action that does not commute with α7 is action α11

(which is not enabled). We have that (i) α7 is enabled from s and commutes with any
other enabled action; and (ii) the execution of any other action from s leads to the same
union of s0r0(m∗0m

+
1 , a

∗
1) and s1r0(m+

1 , a
∗
1a
∗
0). Observe that α7 is not enabled outside

the union of s0r0(m∗0m
+
1 , a

∗
1), s1r0(m

+
1 , a

∗
1a
∗
0) and s0r1(m∗0, a

∗
0a
∗
1). Therefore, this

union coincides with Helpful(α7, F ). The other sets in figure ?? can be explained in a
similar manner.

En(αi) En(αi) ∩ Left(αi, F ) Helpful(αi, F )

α1 s0r0(m
∗
0m
∗
1, a

+
1 ) s0r0(m

∗
0m
∗
1, a

+
1 ) s0r0(m

∗
0m
∗
1, a

+
1 )∪ s0r1(m∗0, a∗0a∗1)

α2 s0r0(m
∗
0m
∗
1, a
∗
1) s0r0(m

∗
0m
∗
1, a
∗
1) s0r0(m

∗
0m
∗
1, a
∗
1)∪ s0r1(m∗0, a∗0a∗1)

α3 s1r0(m
∗
1, a
∗
1a

+
0 ) s1r0(m

∗
1, a
∗
1a

+
0 ) s1r0(m

∗
1, a
∗
1a

+
0 )∪ s1r1(m∗1m∗0, a

+
0 )

∪ s1r1(m∗1m∗0, a+0 ) ∪ s1r1(m∗1m∗0, a+0 ) ∪ s0r1(m∗0, a∗0a∗1)
α4 s1r0(m

∗
1, a
∗
1a
∗
0) s1r0(m

∗
1, a
∗
1a
∗
0) s1r1(m

∗
1m
∗
0, a
∗
0)∪ s0r1(m∗0, a∗0a∗1)

∪ s1r1(m∗1m∗0, a∗0) ∪ s1r1(m∗1m∗0, a∗0)
α5 ∅ ∅ s0r1(m

∗
0, a
∗
0a
∗
1)

α6 s1r0(m
∗
1, a

+
1 ) ∅ s0r1(m

∗
0, a
∗
0a
∗
1)

α7 s0r0(m
∗
0m

+
1 , a

∗
1) s0r0(m

∗
0m

+
1 , a

∗
1) s0r0(m

∗
0m

+
1 , a

∗
1)∪ s1r0(m+

1 , a
∗
1a
∗
0)

∪ s1r0(m+
1 , a

∗
1a
∗
0) ∪ s1r0(m+

1 , a
∗
1a
∗
0) ∪ s0r1(m∗0, a∗0a∗1)

α8 s0r0(m
∗
0m
∗
1, a
∗
1) s0r0(m

∗
0m
∗
1, a
∗
1) s0r0(m

∗
0m
∗
1, a
∗
1)∪ s1r0(m∗1, a∗1a∗0)

∪ s1r0(m∗1, a∗1a∗0) ∪ s1r0(m∗1, a∗1a∗0) ∪ s0r1(m∗0, a∗0a∗1)
α9 s1r1(m

∗
1m

+
0 , a

∗
0) s1r1(m

∗
1m

+
0 , a

∗
0) s1r1(m

∗
1m

+
0 , a

∗
0)∪ s0r1(m∗0, a∗0a∗1)

α10 s1r1(m
∗
1m
∗
0, a
∗
0) s1r1(m

∗
1m
∗
0, a
∗
0) s0r1(m

∗
0, a
∗
0a
∗
1)

α11 s0r0(m
+
0 , a

∗
1) s0r0(m

+
0 , a

∗
1) s0r0(m

+
0 , a

∗
1)∪ s0r1(m∗0, a∗0a∗1)

α12 s1r1(m
+
1 , a

∗
0) ∅ s0r1(m

∗
0, a
∗
0a
∗
1)

Fig. 4. Calculation of 3(s0r1(m
∗
0, a
∗
0a
∗
1))

By Corollary 1, the set G = Pre∗({ αi
↪→F |i = 1, . . . , 12}, F ) is in 3F . Observe

that s0r0(m∗0m
∗
1, a
∗
1) = Pre∗({αi ∧ Helpful(αi, F )|i = 2, 7, 11}, s0r0(m∗0, a∗1)) is a

subset of G. We therefore conclude that s0r0(m∗0m
∗
1, a
∗
1) ⊆ 3F .

6 Parameterized Systems

In this section we consider verification of liveness properties for parameterized systems:
these are systems with an arbitrary number of similar processes operating in parallel. A
challenge is that they are not finite-state, since the number of processes is unbounded.



We describe an implementation of our method in the framework of Regular Model
Checking [7]. For several examples, the proof rule of Section 4 computes a strict under-
approximation of the set 3F ; therefore we also present a complementary rule which
can prove termination for those examples.

Example: Szymanski’s Algorithm As an example of a parameterized system, we de-
scribe the mutual exclusion algorithm by Szymanski [33]. In the algorithm, an arbitrary
number of processes compete for a critical section. The processes are numbered, say
from 1 to N . The local state of each process consists of a control state ranging over the
integers from 1 to 7 and of two Boolean flags, w and s. A pseudo-code description of
the behavior of process number i is shown in Figure 4.

1: await ∀j : j 6= i : ¬s[j]
2: w[i], s[i] := true, true
3: if ∃j : j 6= i : (pc[j] 6= 1) ∧ ¬w[j]

then s[i] := false ; goto 4
else w[i] := false ; goto 5

4: await ∃j : j 6= i : s[j] ∧ ¬w[j]
then w[i], s[i] := false, true

5: await ∀j : j 6= i : ¬w[j]
6: await ∀j : j < i : ¬s[j]
7: s[i] := false ; goto 1

Fig. 5. Szymanski

For instance, according to the code on line 6, if the control state of a process i is 6,
and if the value of s is false for all processes j < i, then the control state of i may be
changed to 7. Line 7 represents the critical section. Each numbered line is modeled as
an action: αj(i) is the statement beginning at line j in the pseudo-code for process i. All
actions are fair, except α1(i); this action represents process i entering the competition
for the critical section, and therefore its execution should not be enforced.

Starvation freedom can be formulated as follows: whenever any process is at line 2
it will eventually reach line 7. Define Fk to be all states in which process k is at line 7.
To prove starvation freedom for process k we must show that all reachable states where
process k is at line 2 are in 3Fk.

6.1 A Complementary Termination Rule

In this section, we present a proof rule for termination, which is particularly suitable
for the class of parameterized systems considered in this section. It will be used to
complement the method of Corollary 1. The rule assumes that we select a finite number
of fair actions of the program, and establishes that a state s is in 3F if computations
from s satisfy

– whenever one of these actions is enabled, it remains enabled until it is executed,



– each of the actions can be executed at most once before F is reached, and
– when all these actions are disabled, the computation has reached F .

This rule is particularly useful for parameterized systems, since termination is often
achieved by letting a selected subset of the processes execute a fixed sequence of actions
(i.e., statements). Let us define the involved properties formally. Assume a program
〈S,−→,A〉. Let F be a set of terminated states.

– Persist(α, F ) is the set of states s such that in any computation from s, whenever
α is enabled, it remains enabled unless it is executed or F is reached.

– Twice(α, F ) is the set of states, from which there exists a computation where α is
executed twice (or more) without visiting F .

– Let B be a finite set of actions. After(B, F ) is the set of states s such that in any
computation from s, whenever all actions inB are disabled at a state s′, then s′ ∈ F .

The above sets are computable using backwards reachability analysis, in a manner anal-
ogous to the way Helpful(α, F ) is computed in Proposition 1. Note that the set B used
in After(B, F ) is typically a parameterized set of actions, containing a set of actions of
form αj(i) for a finite set j, and an arbitrary i with 1 ≤ i ≤ N . Thus the set B is un-
boundedly large, but still finite. Care must be taken to handle the parameters correctly
when performing the predecessor calculations. Now we state the termination rule.

Theorem 2. Let B be a set of fair actions of 〈S,−→,A〉, and let F be a set of states in
S. Then [

After(B, F ) ∩
⋂
α∈B

(¬Twice(α, F ) ∩ Persist(α, F ))

]
⊆ 3F

Proof. Let s be a state in the set defined by the left-hand side. Consider a computation
from s. Assume that it contains no state in F . Then, since s ∈ After(B, F ) it also
contains no state in which all actions in B are disabled. This means that at any state in
the computation, some action α is enabled. Since s ∈ Persist(α, F ) the action α will
remain enabled until it is executed, and thereafter (since s ∈ ¬Twice(α, F )) never be
executed again. This implies that after a finite number of computation steps, all actions
in B have been executed. This contradicts the previous conclusion that thereafter some
action in B is enabled, and will eventually be executed.

6.2 Implementation

We have implemented a verification method based on Corollary 1 and Theorem 2 in the
framework of Regular Model Checking [7], and applied it to a number of well-known
parameterized mutual exclusion protocols.

Verification Procedure For each protocol, we have modeled Fk as the set of states where
process k is in the critical section. We have thereafter computed an under-approximation
Gk of 3Fk using the method of Section 4, and thereafter applied the complementary



rule described in Section 6.1 to compute 3Gk. To ensure that predecessors are reach-
able states, we computed the set of (forwards) reachable states, and restricted the actions
to it.

In our experiments we manually chose what rules to apply and when, to test their
expressive power. However, the approach may be fully automated by e.g. applying the
rules alternatingly. As a termination condition one could use that the complementary
rule does not increase the set 3F , no matter which action it is applied to.

As an example, we describe how our verification of starvation freedom for Szyman-
ski’s algorithm works. Three successive applications of Corollary 1 establish starvation
freedom for almost all the system states where process k is waiting. However, Corol-
lary 1 cannot prove starvation freedom for system states where there are processes at
both line 1 and line 2. The reason for this is that the actions of line 2 may disable the
actions on line 1, thereby destroying commutativity. By using also one application of
Theorem 2, starvation freedom is proven for all the system states where process k is
waiting, as desired.

Results The verification results of our implementation are presented in Table 1. We have
computed the sets of states from which starvation freedom for process k is guaranteed,
as a set which depends on k. In all cases, the computed live states contain all the ter-
minating states. For example, the live states of Szymanski’s algorithm are: “whenever
process k is at line 2”. The column “Time” contains time measured from our imple-
mentation. The experiments were run on a PC with a 2.4 GHz processor and 1 GB of
RAM. For the first three protocols, we need apply only Corollary 1. For the last three
last protocols, we need also Theorem 2. Dijkstra’s algorithm takes significantly longer
time to verify because it contains an action where a global variable is set. Computing
the effect of arbitrarily many executions of such an action is relatively expensive in our
current implementation [7].

Model Token Pass Token Ring Bakery Szymanski Burns Dijkstra
Time 9 s 14 s 36 s 7 min 15 s 7 min 30 s 55 min 11 s

Table 1. Experimental results.

Comparison with Related Work Several works have considered verification of individ-
ual starvation freedom for parameterized mutual exclusion protocols. In papers [30, 10]
the Szymanski protocol and the Bakery protocol are verified in 95.87 seconds and 9
seconds respectively, using manually supplied abstractions. The works [21, 22] verify
the Bakery protocol using automatically generated ranking functions, but do not report
running times. We have previously verified the Bakery protocol in 44.2 seconds using
repeated reachability [27], on the same system. To our knowledge, starvation freedom
for the algorithms of Burns and Dijkstra has not been successfully automatically veri-
fied before.



Techniques exist for quicker accelerations, which should significantly improve the
performance ([1, 29]). There is a need for quick automatic accelerations, which also
cover global variables and compositions of actions.

7 Conclusions

We have presented a method for proving liveness and termination properties of fair
concurrent programs using backwards reachability analysis. The method uses neither
computation of transitive closure nor explicit construction of ranking functions and
helpful directions, and relies instead on showing certain commutativity properties be-
tween different actions of the program. The advantage of our method is that reachability
analysis can typically be expected to be simpler to perform than computation of tran-
sitive closures or ranking functions. We expect that it should be possible to use and
develop powerful techniques for backwards reachability analysis for many classes of
parameterized and infinite-state programs. The technique is in general incomplete, but
its power can be increased by performing repeated applications and by applying com-
plementary techniques afterwards. The examples in the paper indicate that the method
should be applicable to several classes of infinite-state systems. In particular, we have
shown that our technique is able to prove starvation-freedom for several parameterized
mutual exclusion protocols, for which automated techniques have previously been too
expensive.
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