
State-Space Exploration for Concurrent Algorithms under Weak Memory
Orderings (Preliminary Version)

Bengt Jonsson
UPMARC

Department of Information Technology, Uppsala University, Sweden
bengt@it.uu.se

Abstract

Several concurrent implementations of familiar data ab-
stractions such as queues, sets, or maps typically do not
follow locking disciplines, and often use lock-free synchro-
nization to gain performance. Since such algorithms are ex-
posed to a weak memory model, they are notoriously hard to
get correct, as witnessed by many bugs found in published
algorithms We outline a technique for analyzing correctness
of concurrent algorithms under weak memory models, in
which a model checker is used to search for correctness
violations. The algorithm to be analyzed is transformed
into a form where statements may be reordered according
to a particular weak memory ordering. The transformed
algorithm can then be analyzed by a model-checking tool,
e.g., by enumerative state exploration. We illustrate the ap-
proach on a small example of a queue, which allows an en-
queue operation to be concurrent with a dequeue operation,
which we analyze with respect to the RMO memory model
defined in SPARC v9.

1. Introduction

Shared-memory multiprocessors and multi-core chips
are now ubiquitous. Programming such systems remains
a huge challenge [19]. To make matters worse, most com-
monly used multiprocessor architectures use weak memory
ordering models (see, e.g., [1]). For example, a processor
may reorder loads and stores by the same thread if they tar-
get different addresses, or it may buffer stores in a local
queue. To avoid exposing the programmer to these compli-
cations, programming guidelines recommend to employ a
locking discipline to avoid race conditions which expose the
particular weak memory model of the target platform. Such
programs can be understood as using a sequentially con-
sistent memory semantics [12], and can be reasoned about
using standard interleaving semantics.

Concurrency libraries, e.g., the Intel Threading Building
Blocks or the java.util.concurrent package, sup-
port the programmer by providing concurrent implementa-
tions of familiar data abstractions such as queues, sets, or
maps. Implementations of such libraries typically do not
follow locking disciplines, and can use lock-free synchro-
nization for gaining performance (e.g., [13, 18]). Since
these algorithms are exposed to a weak memory model, they
are notoriously hard to get correct, as witnessed by many
bugs found in published algorithms (e.g., [7, 14]). Imple-
mentations that use lock-free synchronization require ex-
plicit memory ordering fences to function correctly on weak
memory models. Fences counteract the ordering relaxations
by selectively enforcing memory order between preceding
and succeeding instructions. A lack of fences leads to incor-
rect behavior, whereas an overzealous use of fences impacts
performance. Unfortunately, fence placements are rarely
published along with the algorithm.

This paper addresses the problem of verifying correct-
ness of, or finding bugs in, concurrent algorithms which do
not rely on explicit locking, as found in, e.g., lock-free im-
plementations of common data structures. The absence of
locks means that standard race-detection tools (e.g., [9, 16])
are of little use. Existing verification and testing techniques
and tools must therefore be adapted to handle also weak
memory models.

A large share of all verification, program analysis, and
testing algorithms, can very roughly be thought of as per-
forming an exploration of possible sequences of compu-
tation steps, starting from some initial state. There is of
course a huge variation in how they cover the space of com-
putations, and whether they store intermediate system con-
figurations in order to avoid repeating already performed
work. Some such exploration tools include the model
checker SPIN [11], the backtracking testing/simulation tool
VeriSoft [10], and most testing techniques (e.g., [17]). The
goal of our work is to provide techniques to adapt them to
handle weak memory orderings. In this paper, we consider
the model checker SPIN. More precisely, we present a tech-

nique to adapt models analyzed by SPIN, which are natu-
rally expressed for sequentially consistent memory models
in the Promela modeling language, so that they also repre-
sent all possible computations under a weak ordering.

Some Related Work The research performed on the
problem of analyzing concurrent algorithms correct under
weak memory models is still limited. The work on Check-
Fence by Burckhardt and Alur [4] use a bounded model
checkin approach rather than state-space exploration: they
encode possible computations by a constraint system, and
use a SAT solver to search for correctness violations. The
work closest to ours is that by Park and Dill [15], who have
developed an operational encoding of a shared memory with
weak ordering constraints, in particular the RMO model
used in SPARC v9, and used it to analyze simple synchro-
nization examples from the SPARC architecture manual, us-
ing the model checker Murϕ [6]. Their work only reports
application to very small examples, our aim is to make a
more efficient operational representation of the weak mem-
ory model, and to be able to analyze more complicated
algorithms, such as, e.g., those considered by Burckhardt
and Alur [4]. Some specific weak memory ordering has
also been considered in program analysis work [8]. Bur-
ckhardt and Musuvathi [5] develops a run-time monitoring
tool which checks whether concurrent executions are se-
quentially consistent, by maintaining vector clocks.

2. Representing Weak Memory Models

In this section, we describe the principles for represent-
ing the memory model in this work. Abstractly, a memory
model specifies how the program operations “see” the ef-
fects of other program operations through the memory sys-
tem. The interesting part here is how load operations see
store operations. More specifically, an execution consists
of a set of load and store operations (plus memory barriers,
to be explained later), which affect the “state” of the main
memory. Each load sees the value of some store operation
(or the initial value) to the same location. The hard part is
to describe in a concise way which store operations can be
seen.

We follow Burckhardt [3] (who in his turn follows pre-
vious work), and use

• a partial order ≺, called the program order, which
is a total order on all operations of the same thread,
and which does not order two operations of different
threads,

• a total order <M , called the memory order, which intu-
itively models the order in which operations reach the
“main memory”.

The fact that <M is a total order implies that we are aiming
at modeling memory models with a global store order, i.e.,
such that the stores of a thread are seen in the same order
by all other threads. Load operations of the thread that per-
forms the store may see it earlier than other threads through
the mechanism of store-load forwarding.

The orderings≺ and <M are related by four axioms. For
a load operation l, let seed(l) be the store operations which
stores the value that l loads. Let S(l) be the set of store
operations s which access the same address as l, such that
either s <M l or s ≺ l. The axioms are

(A1) whenever x and y are operations to the same address,
y is a store, and x ≺ y, then x <M y,

(A2) seed(l) ∈ S(l) for all loads l,

(A3) seed(l) is the maximal element wrp. to <M in S(l),

(A4) whenever x ≺ f ≺ y for a fence operation f , and
x and y match the type of the fence f (e.g., if f is
a load-load fence, then x and y should both be load
operations), then x <M y.

We shall in particular consider the RMO memory model,
defined by SPARC v9, which is also used by Park and
Dill [15], which is nice because it preserves single-thread
semantics. This is done by defining a dependency order,
which constrains the order between data dependent oper-
ations of the same thread. For operations x and y of the
same thread where x is a load, we say that x <d y if y loads
a data register that is written by x, or if some control branch
instruction between x and y is data dependent on x. Add
the axiom

(A5) whenever x ≺ y and x <d y, then x <M y.

Roughly speaking, the RMO ordering differs in two re-
spects from the natural sequential consistency model. First,
operations of one thread may be reordered, but respecting
fences and data dependencies. Second, while the global
memory order is a merge of the (possibly reordered) local
orderings as in sequential consistency, a load sees the lat-
est store to the same location in the same thread, if it is later
wrp. to <M than the latest preceding store in memory order.

Finally, let us consider locks. In the examples we have
locks which are updated by lock and unlock operations.
In this work, we assume that lock operations are atomic, and
that

• For the lock operation, a fence is inserted to make
sure that the lock operation precedes all the following
instructions of the thread in memory order.

• For the unlock operation, a fence is inserted to make
sure that the unlock operation succeeds the preced-
ing instructions of the thread in memory order.

3. Illustration of Technique

Our ambition is to consider examples, such as those
taken from the thesis of Sebastian Burckhardt [3]. In this
section, we use one of them, a two-lock queue, to illustrate
how the technique presented in this paper, should work. The
code for the queue, in C syntax, is the following, taken lit-
erally from [3].

1 #include "lsl_protos.h"
2
3 /* ---- data types ---- */
4
5 typedef int value_t;
6
7 typedef struct node {
8 struct node *next;
9 value_t value;

10 } node_t;
11
12 typedef struct queue {
13 node_t *head;
14 node_t *tail;
15 lsl_lock_t headlock;
16 lsl_lock_t taillock;
17 } queue_t;
18
19 /* ---- operations ---- */
20
21 void init_queue(queue_t *queue)
22 {
23 node_t *dummy =

lsl_malloc(sizeof(node_t));
24 dummy->next = 0;
25 dummy->value = 0;
26 queue->head = dummy;
27 queue->tail = dummy;
28 lsl_initlock(&queue->headlock);
29 lsl_initlock(&queue->taillock);
30 }
31
32 void enqueue(queue_t *queue, value_t val)
33 {
34 node_t *node = lsl_malloc(sizeof(node_t));
35 node->value = val;
36 node->next = 0;
37 lsl_lock(&queue->taillock);
38 lsl_fence("store-store");
39 queue->tail->next = node;
40 queue->tail = node;
41 lsl_unlock(&queue->taillock);
42 }
43
44 boolean_t dequeue

(queue_t *queue, value_t *retvalue)
45 {
46 node_t *node;
47 node_t *new_head;

48 lsl_lock(&queue->headlock);
49 node = queue->head;
50 new_head = node->next;
51 if (new_head == 0) {
52 lsl_unlock(&queue->headlock);
53 return false;
54 }
55 lsl_fence("data-dependent-loads");
56 *retvalue = new_head->value;
57 queue->head = new_head;
58 lsl_unlock(&queue->headlock);
59 lsl_free(node);
60 return true;
61 }

The prefix lsl on some operations (for memory man-
agement and lock operations) means that they refere to par-
ticular definitions of these operations used in [3].

Generating an Analyzable Program In order to see
which sequences of loads and stores are in principle gener-
ated by these operations, we transform the description into
“high-level machine instructions”, which are on the same
level of abstraction as the above C pseudocode, but obeys
the restriction that each statement induces at most one store
or load operation. A store operation is typically of the form
*p = v for some address p and value v. We allow both p
and v to be locally computable expressions. Analogously,
a load operation has the form r = *p for some local vari-
able r (sometimes called register), and address p. The first
transformation typically preserves most of the description,
but breaks up statements that involve more than one store or
load. In order to introduce offset calculations more explic-
itly, for a field f in a structure struct, we introduce [f]
to denote the offset induced by f. Thus, if structp points
to struct, then structp + [f] points to the field f in
struct.

Let us first consider the init queue operation. We
transform the code into

void init_queue(queue)
{

1 node_t *dummy =
lsl-malloc(sizeof(node_t));

2 *(dummy + [next]) = 0;
3 *(dummy + [value]) = 0;
4 *(queue + [head]) = dummy;
5 *(queue + [tail]) = dummy;
6 lsl-initlock(queue + [headlock]);
7 lsl-initlock(queue + [taillock]);

return
}

This is essentially the same as before. In order to infer
which are possible orderings between statements, we should

find the data-dependencies between statements. The only
ones in this function are that line 1 must precede lines 2, 3,
4, and 5, through the dependence on dummy.

Next we consider the enqueue operation. At first, we
ignore the fence instruction at line 38. We transform the
code as follows (e.g., breaking the statement at line 39 into
two: one load and one store).

void enqueue(queue, val)
{

1 node = lsl-malloc();
2 *(node + [value]) = val;
3 *(node + [next]) = 0;
4 lsl-lock(queue + [taillock]);
5 queuetail = *(queue + [tail]);
6 *(queuetail + [next]) = node;
7 *(queue + [tail]) = node;
8 lsl-unlock(queue + [taillock]);
9 return

}

Our next job is to see which orderings in the program
order are preserved in the RMO model. We see that depen-
dencies arise as follows:

1 <d 2 1 <d 3 1 <d 6 1 <d 7 5 <d 6 5 <d 7

It remains to understand the ordering constraints imposed
by the lock operation. These ensure that instruction 4 pre-
cede all following instructions, and that 8 succeed all pre-
ceding instructions. In total, we arrive at the following de-
pendencies:

1 <d 2 <d 8 1 <d 3 <d 8 1 <d 6 <d 8 5 <d 7
1 <d 7 <d 8 4 <d 5 <d 6 <d 8 4 <d 7 <d 8

We can summarize these dependencies in the following di-
agram.

1
2
3

4
5 6

7

8

³³³
PPP

S
S
S

©©PPP@@

@
@@PPP
©©

¡
¡¡

Figure 1. Dependencies in the procedure en-
queue

We finally consider the function dequeue. A con-
densed pseudo-code is as follows

void dequeue(queue, retvalue)
{

1 lsl-lock(queue + [headlock]);
2 node = *(queue + [head]);

3 new_head = *(node + [next]);
4 if (new_head == 0) {
5 lsl-unlock(queue + [headlock]);
6 return(0);

}
7 tmp = *(new_head + [value]);
8 *retvalue = tmp:
9 *(queue + [head]) = new_head;
10 lsl-unlock(queue + [headlock]);
11 lsl-free(node);
12 return(1);

}

Here, there are more data dependencies.

1 <d 2 <d 3 <d 4 <d 5
4 <d 7 <d 8 <d 10 4 <d 9 <d 10 3 <d 11

Lines 6 and 12 should be the last ones

Generating a Promela Model In order to use the SPIN
model checker to analyze the queue implementation, we
must produce a Promela Model, which executes the state-
ments of the transformed program in any possible order
consistent with the ordering. To to this, we must consider
the following issues.

• Promela does not support dynamid heap data struc-
tures. Instead, we model, e.g., the queue structure
as just a structure, and the nodes of type node t by
an array.

• Promela has only a few standard control constructs,
therefore we should find an idiom for allowing all
executions that are linearizations of a partial order.
We can do this by a loop, which in each iteration
checks whether the appropriate preceding statements
have been executed in order to see whether some in-
struction is enabled. This scheme needs an array of
flags to record which statements have already been ex-
ecuted.

A possible Promela model of the above queue for a particu-
lar test case is shown in Appendix A.

4. Experiments

We have so far only considered the example queue
described in Section 3, to obtain some illustrative ex-
ample. We ran exhaustive analyses using several dif-
ferent test harnesses that first perform an initialization
using init queue, and thereafter starts a number of
threads, each of which performs a sequence of enqueue
or dequeue operations. After this, we check that the se-
quence of values returned by the dequeue operation is

consistent with a normal sequentially consistent execution
of these operations.

We denote test harnesses in a condensed notation (fol-
lowing [3]), using a sequence of e (for enqueue) and d
(for dequeue) in each thread, and separating threads by |.
For example, the test (ee | dd) has two threads, one with
two enqueue operations, and one with two dequeue op-
erations.

We first performed a simple test (e | d), which found a
shortest counterexample in a few seconds, generating about
900 states. The problem is the obvious one, that the ini-
tialization of the new node in enqueue at line 2 can be
delayed past the dequeueing of the same node, so that the
dequeue operation read an uninitialized value field. This
problem can be remedied by a store-store-fence between
lines 3 and line 6 of enqueue, e.g., after the lock op-
eration, as in the C pseudocode (line 38). This implies that
line 6 can be completed only after lines 2 and 3. We modi-
fied the promela model accordingly, and reran the test, and
the number of reachable states decreased to 250 with no vi-
olation of sequentially consistent semantics. The Promela
model for this experiment is given in the appendix.

We thereafter subjected the model to the two largest tests
of [3], namely (eeeee | ddddd), and (e | e | e | e | d | d).
The first test completed by SPIN in less than one second,
generating about 100, 000 states. The second test com-
pleted after 260 seconds, using state compression and be-
tween 1GB and 2GB of memory, generating a state space of
28, 000, 000 states. Out of curiosity, we tried different val-
ues for the number of operations in the first test, and were
able to make SPIN analyze two threads, each with 10 opera-
tions, in 143 seconds, generating around 37, 000, 000 states.
It seems that SPIN has problems handling a large number of
threads, due to the many possible interleavings It seems that
work on optimization is needed to make the approach scale
to a larger number of threads.

5 Conclusions

We presented a technique for analyzing correctness of
concurrent algorithms, under weak memory models. The
algorithm to be analyzed is transformed into a partial order-
ing form, which satisfies exactly the ordering constraints
imposed by the memory model under consideration. The
transformed algorithm can then be analyzed by a model
checking tool, such as SPIN.

We implemented the approach in the context of the
SPIN model checker [11], by developing a transformation
to Promela models, which follows a certain idiom to model
execution under partial order constraints. We illustrated the
approach by applying it to an example used in the thesis by
Burckhardt [3]. the scalability of the approach by applying
it to published synchronization algorithms and concurrent

data structures.
We should not make to firm conclusions about this ap-

proach from the limited amount of experiments conducted.
For a better evaluation, the transformation should be auto-
mated; now it is by hand. For the particular example con-
sidered, the limitations, in terms scalability, appear compa-
rable to the approach by Burckhardt. In our approach, we
were able to perform slightly longer test cases, but on the
other hand Burckhardt’s approach is automated.

The work closest to ours, by Park and Dill [15], use a
similar approach of letting a model checker examine all pos-
sible executions that are consistent with the memory model.
Their work only reports application to very small examples.
We have been able to show that the approach can also han-
dle interesting concurrent algorithms.

An impression from the illustrating example is that in-
crease in the number of interleavings as the number of
threads grow will impose limits on the scalability in us-
ing a model checker in the way proposed in this paper. We
can probably make scalability better by introducing a more
generic model of the heap; now there will be many duplica-
tions of isomorphic heaps in the state space from our rep-
resentation as an array. It may also be fruitful to consider
approaches which are not so sensitive to this explosion, con-
sidering either static program analysis (e.g., as in [8] or pa-
rameterized infinite-state model checking (e.g., as in [2].

Acknowledgments Ke Jiang pointed out a problem in a
previous version of the paper.

References

[1] S. Adve and K. Gharachorloo. Shared memory consistency
models: A tutorial. IEEE Computer, 29(12):66–76, 1996.

[2] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regu-
lar model checking. In Emerson and Sistla, editors, Proc.
12th Int. Conf. on Computer Aided Verification, volume
1855 of Lecture Notes in Computer Science, pages 403–418.
Springer Verlag, 2000.

[3] S. Burckhardt. Memory Model Sensitive Analysis of Con-
current Data Types. PhD thesis, Univ. of Pennsylvania,
2007.

[4] S. Burckhardt, R. Alur, and M. Martin. Checkfence: check-
ing consistency of concurrent data types on relaxed memory
models. In PLDI 2007, pages 12–21, 2007.

[5] S. Burckhardt and M. Musuvathi. Effective program ver-
ification for relaxed memory models. In Computer-Aided
Verification (CAV), pages 107–120, 2008.

[6] D. Dill. The murphi verification system. In Proc. 8th Int.
Conf. on Computer Aided Verification, volume 1102 of Lec-
ture Notes in Computer Science, pages 390–393. Springer
Verlag, 1996.

[7] S. Doherty, D. Detlefs, L. Groves, C. Flood, V. Luchangco,
P. Martin, M. Moir, N. Shavit, and G. S. Jr. Dcas is not
a silver bullet for nonblocking algorithm design. In SPAA

2004: Proceedings of the Sixteenth Annual ACM Sympo-
sium on Parallel Algorithms, June 27-30, 2004, Barcelona,
Spain, pages 216–224, 2004.

[8] P. Ferrara. Static analysis via abstract interpretation of the
happens-before memory model. In Proc. TAP 2008, 2nd Int.
Conf. Tests and Proofs, Prato, Italy, volume 4966 of Lec-
ture Notes in Computer Science, pages 116–133. Springer
Verlag, April 2008.

[9] C. Flanagan and S. Freund. Atomizer: A dynamic atomicity
checker for multithreaded programs. Science of Computer
Programming, 71(2):89–109, 2008.

[10] P. Godefroid, B. Hammer, and L. Jagadeesan. Model check-
ing without a model: An analysis of the heart-beat monitor
of a telephone switch using verisoft. In Proc. ACM SIG-
SOFT International Symposium on Software Testing and
Analysis, pages 124–133, 1998.

[11] G. Holzmann. The model checker SPIN. IEEE Trans. on
Software Engineering, SE-23(5):279–295, May 1997.

[12] L. Lamport. Time, clocks and the ordering of events in a dis-
tributed system. Communications of the ACM, 21(7):558–
565, 1978.

[13] M. Michael. Scalable lock-free dynamic memory allocation.
In PLDI 2004, pages 35–46, 2004.

[14] M. Michael and M. Scott. Correction of a memory manage-
ment method for lock-free data structures. Technical Report
TR599, University of Rochester, 1995.

[15] S. Park and D. Dill. An executable specification and veri-
fier for relaxed memory order. IEEE Trans. on Computers,
48(2):227–235, 1999.

[16] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. An-
derson. Eraser: A dynamic data race detector for multi-
threaded programs. ACM Trans. on Computer Systems,
14(4):391–411, Nov. 1997.

[17] K. Sen. Race directed random testing of concurrent pro-
grams. In PLDI 2008, pages 11–21, 2008.

[18] H. Sundell and P. Tsigas. Fast and lock-free concurrent pri-
ority queues for multi-thread systems. J. Parallel Distrib.
Comput., 65(5):609–627, 2005.

[19] H. Sutter and J. Larus. Software and the concurrency revo-
lution. ACM Queue, 3(7):54–62, 2005.

Appendix

In this appendix, we show the Promela model, used to
analyze the example of Section 3 for the test case (e|d).

#define TRUE 1
#define FALSE 0
#define UNDEF 255

#define IF if ::
#define FI :: else fi

#define FOR(i,l,h) i = l ; do :: i < h ->
#define ROF(i,l,h) ; i++ :: i >= h -> break od

#define HEAPSIZE 8
#define INITQUEUESIZE 9
#define ENQUEUESIZE 9
#define DEQUEUESIZE 12
#define RETVALSIZE 2

#define malloc(X) X = cur ; cur++
#define free(X) \

atomic{ next[X] = UNDEF ; value[X] = UNDEF}

byte next[HEAPSIZE]; /* model of the heap */
byte value[HEAPSIZE];
byte cur = 0;

byte head = UNDEF; /* the queue structure */
byte tail = UNDEF;
bit headlock = 1;
bit taillock = 1;

/* stores output from dequeue */
byte retval[RETVALSIZE];

byte i = 0 ;

proctype initqueue() {
bit done[INITQUEUESIZE];
byte dummy ;
do
:: atomic{!done[1] ->

malloc(dummy) ; done[1] = TRUE}
:: atomic{!done[2] && done [1] ->

next[dummy] = UNDEF ; done[2] = TRUE}
:: atomic{!done[3] && done [1] ->

value[dummy] = UNDEF ; done[3] = TRUE}
:: atomic{!done[4] && done [1] ->

head = dummy ; done[4] = TRUE}
:: atomic{!done[5] && done [1] ->

tail = dummy ; done[5] = TRUE}
:: atomic{!done[6] && done [1] ->

headlock = 1 ; done[6] = TRUE}
:: atomic{!done[7] && done [1] ->

taillock = 1 ; done[7] = TRUE}
:: atomic{done[1] && done [2] && done [3] &&

done [4] && done [5] && done [6] &&
done [7] ->

break}
od

}

proctype enqueue(byte val) {

bit done[ENQUEUESIZE];
byte node, queuetail;
do
:: atomic{!done[1] ->

malloc(node) ; done[1] = TRUE}
:: atomic{!done[2] && done [1] ->

value[node] = val ; done[2] = TRUE}
:: atomic{!done[3] && done [1] ->

next[node] = UNDEF ; done[3] = TRUE}
:: atomic{!done[4] && taillock == 1 ->

taillock = 0 ; done[4] = TRUE}
:: atomic{!done[5] && done[4] ->

queuetail = tail ; done[5] = TRUE}
:: atomic{!done[6] && done[2] &&

done[3] && done[5] ->
next[queuetail] = node ; done[6] = TRUE}

:: atomic{!done[7] && done[1] &&
done[4] && done[5] ->

tail = node ; done[7] = TRUE}
:: atomic{!done[8] && done[2] && done[3] &&

done[6] && done[7] ->
taillock = 1 ; done[8] = TRUE ; break}

od
}

proctype dequeue(byte rv) {
bit done[DEQUEUESIZE];
byte node, new_head, tmp;

atomic{headlock == 1 -> headlock = 0};
node = head;
new_head = next[node];
if
:: atomic{ new_head == UNDEF ->

headlock = 1 ; retval[rv] = 0}
:: new_head != UNDEF ->

do
:: atomic{!done[7] ->

tmp = value[new_head] ; done[7] = TRUE}
:: atomic{!done[8] && done [7] ->

retval[rv] = tmp ; done[8] = TRUE}
:: atomic{!done[9] ->

head = new_head ; done[9] = TRUE}
:: atomic{!done[10] && done [8] && done [9] ->

headlock = 1 ; done[10] = TRUE}
:: atomic{!done[11] && done [10] ->

free(node) ; done[11] = TRUE ; break}
od

fi
}

init{
atomic{FOR(i,0,HEAPSIZE)

next[i] = UNDEF ; value[i] = UNDEF
ROF(i,0,HEAPSIZE)

} ;
run initqueue();
timeout -> atomic{run enqueue(4) ; run dequeue(0)} ;
timeout -> assert(retval[0] == 0 || retval[0] == 4)

}

