
A Succinct Canonical Register Automaton
Model for Data Domains with Binary Relations ?

Sofia Cassel1, Bengt Jonsson1, Falk Howar2, and Bernhard Steffen2

1 Dept. of Information Technology, Uppsala University, Sweden
{sofia.cassel|bengt.jonsson}@it.uu.se

2 Chair for Programming Systems, Technical University Dortmund, Germany
{falk.howar|steffen}@cs.tu-dortmund.de

Abstract. We present a novel canonical automaton model for languages
over infinite data domains, that is suitable for specifying the behavior of
services, protocol components, interfaces, etc. The model is based on reg-
ister automata. A major contribution is a construction of succinct canon-
ical register automata, which is parameterized on the set of relations by
which elements in the data domain can be compared. We also present
a Myhill Nerode-like theorem, from which minimal canonical automata
can be constructed. This canonical form is as expressive as general de-
terministic register automata, but much better suited for modeling in
practice since we lift many of the restrictions on the way variables can
be accesed and stored: this allows our automata to be significantly more
succinct than previously proposed canonical forms. Key to the canoni-
cal form is a symbolic treatment of data languages, which allows us to
construct minimal representations whenever the set of relations can be
equipped with a so-called branching framework.

1 Introduction

Our aim is to develop automata formalisms that can be used for systems speci-
fication, verification, testing, and modeling. It is crucial to be able to model not
only control, but also data aspects of a system’s behavior, and express relations
between data values and how they affect control flow. For example, we may want
to express that a password entered matches a previously registered one, that a
sequence number is in some interval, or that a user identity can be found in some
specific group.

There are many kinds of automata augmented with data, for example timed
automata [1], counter automata, data-independent transition systems [15], and
different kinds of register automata. Many of these types of automata have long
been used for specification, verification, and testing (e.g., [18]). In our context,
register automata is a very interesting formalism [3, 13, 7]. A register automaton
has a finite set of registers (or state variables) and processes input symbols using
a predefined set of operations (tests and updates) over input data and registers.

? Supported in part by the European FP7 project CONNECT (IST 231167).

Modeling and reasoning about systems becomes significantly easier if au-
tomata can be transformed into a canonical form: this is exploited in equiva-
lence and refinement checking, e.g., through (bi)simulation based criteria [14,
17], and in automata learning (aka regular inference) [2, 9, 19]. There are stan-
dard algorithms for minimization of finite automata, based on the Myhill-Nerode
theorem [11, 16], but it has proven difficult to carry over such constructions to
automata models over infinite alphabets, including timed automata [21].

More recently, canonical automata based on extensions of the Myhill-Nerode
theorem have been proposed for languages in which data values can be compared
for equality [8, 3, 6], and also for inequality when the data domain has a total
order (in [3, 6]). In these works, canonicity is obtained at the price of rather strict
restrictions on how data is stored in variables and which guards may be used in
transitions: two variables may not store the same data value, and in the ordered
case each state enforces a fixed ordering between its variables. These restrictions
often cause a blow-up in the number of states, since they require testing and
encoding accidental as well as essential3 relations between data values in a word.
For instance, a cross-product of two independent automata, representing, e.g.,
the interleaving of two independent languages, will result in a blow-up due to
the recording of accidental relations between data values of the two languages.

In [7], we presented a succinct canonical automaton model, based on a Myhill-
Nerode characterization, for languages where data is compared for equality. Our
model does not require different variables to store different values, and allows
representing only essential relations between data values. Our approach results in
register automata that are minimal in a certain class, and that can be exponen-
tially more succinct than similar, previously proposed automata formalisms [8,
3, 6]. We have also exploited our model for active learning of data languages [12].

In this paper, we extend our canonical automaton model of [7] to data do-
mains where data values can be compared using an arbitrary set of relations.
We consider data languages that are able to distinguish words by comparing
data values using only the relations in this set, and propose a form of RA that
accept such languages. To achieve succinctness, our construction must be able to
filter out unnecessary tests between data values, and also produce the weakest
possible guards that still make the necessary distinctions between data words.
It is a challenge to achieve such succinctness while maintaining canonicity. We
approach it by using a symbolic representation of data languages in the form
of decision-tree-like structures, called constraint decision trees. Constraint de-
cision trees have superficial similarities with decision diagrams or BDDs, but
since relations on the data domain typically impose asymmetries in the tree,
we cannot use the minimization techniques for BDDs. Instead, we introduce a
signature-specific branching framework that may restrict the allowable guards,
and also allows us to compare branches in the tree in order to filter out unneces-
sary guards. Under some conditions on the branching framework, we obtain the
nontrivial result that our decision trees are minimal.

3 By essential relation, we mean a test which is necessary for recognizing the language.

As an illustration, if our data domain is equipped with tests for equality and
(ordered) inequality, then after processing three data values (say, d1, d2, d3), it
may be that the only essential test between a fourth value d4 and these three is
whether d4 ≤ d1 or not (i.e., all other comparisons not essential for determining
whether the data word is accepted). In previous automaton proposals, this would
typically result in 7 different cases, representing all possible outcomes of testing
d4 against the three previous values. In our proposal, however, we take into
account whether comparisons are essential or not, resulting in only 2 cases.

Related work. An early work on generalizing regular languages to infinite al-
phabets is due to Kaminski and Francez [13], who introduced finite memory
automata (FMA) that recognize languages with infinite input alphabets. Since
then, a number of formalisms have been suggested (pebble automata, data au-
tomata, . . .) that accept different flavors of data languages (see [20, 5, 4] for an
overview). Many of these formalisms recognize data languages that are invariant
under permutations on the data domain, corresponding to the ability to test for
equality on the data domain. Much of the work focuses on non-deterministic
automata and are concerned with closedness properties and expressiveness re-
sults of data languages. A model that represents relations between data values
without using registers or variables is proposed by Grumberg et al. [10].

Our interest lies in canonical deterministic RAs that can be used to model
the behavior of protocols or (restricted) programs. Kaminski and Francez [8],
Benedikt et al. [3], and Bojanczyk et al. [6] all present Myhill-Nerode theorems
for data languages with equality tests. Canonicity is achieved by restricting how
state variables are stored, which prompted us to propose a more succinct con-
struction in [7].

There are a few extensions of Myhill-Nerode theorems to more general sets
of relations between data values. Benedikt et al. [3] and Bojanczyk et al. [6]
consider the case where the data domain is equipped with a total order. They
present canonical automata, in which stored variables must be known to obey
a total order, and in which guards must be as tight as possible (we term such
automata complete): such restrictions may lead to unintuitive and significant
blow-ups in the number of control locations.

Organization. In the next section we provide a motivating example, and intro-
duce the register automaton model as a basis for representing data languages.
In Section 3, we introduce a succinct representation of data languages, which
suppresses non-essential tests, in the form of a decision tree-like structure called
constraint decision trees (CDTs). Based on this representation, in Section 4 we
define a Nerode congruence, and show that it characterizes minimal canonical
forms of deterministic RAs. We also discuss the effects of restricting the RA in
different ways. Conclusions are provided in Section 5.

2 Data languages and register automata

In this section, we introduce data languages. Data languages can be seen as
languages over finite alphabets augmented with data. A data symbol is of the
form α(d) where each α is an action and each d is a data value from some
(possibly infinite) domain. A data word is a sequence of data symbols, and a
data language is a set of data words.

We will consider data languages that can be recognized by comparing data
values using relations from a given set R of binary relations. For example, if
the set R of binary relations includes only the equality relation, this means that
data languages will be closed under permutations on the data domain.

A register automaton (RA) is an automaton model capable of recognizing a
data language. It reads data values as input and has registers (or variables) for
storing them. When reading a data value, a register automaton can compare it
to one or more variables in order to determine, e.g., its next transition. In the
following sections, we will describe a register automaton model that recognizes
data languages parameterized on a set of binary relations.

Example. Let R = {<,=} and let data values be rational numbers. Consider
the data language L2, consisting of data words where the last data value is
the second-largest one in the entire data word. (Whenever the largest data value
occurs several times, we call a data value second-largest if it is equal to the largest
data value.) This language contains, for example, the data words α(3) α(4) α(4)
and α(9) α(1) α(4) α(2) α(8). In the first case, the last data value is equal to the
largest data value in the word. In the second case, the last data value is smaller
than the largest data value in the word.

A register automaton (A2) that recognizes L2 is shown in Figure 1. (For
brevity, we have omitted the actions in the figure.) The A2 automaton has three
locations, each with a set of associated variables. Accepting locations are de-
noted by two concentric circles, and the initial location is marked by an arrow.
Arcs represent transitions, and they are labeled with guards and variable as-
signments. Informally, at each transition, a new data value, represented by the
formal parameter p, is read by the automaton and compared to the existing loca-
tion variables (using the guards). Depending on the outcome of the comparison,
variables may be assigned new values, either the current data value or the value
of another variable.

The second-largest data value seen so far is always kept in the variable x2
and the largest data value seen so far in the variable x1. Thus after having read
the first two data values in any data word, the automaton will have reached
a ’steady-state’ where both variables x1 and x2 have stored data values, and
any new data values are compared to these. The automaton will then alternate
between locations l2 and l3 until the end of the data word is reached. This is
because whenever a new data value is read by the automaton, it needs only
distinguish between three cases: p is smaller than x2, p is larger than x1, or
x2≤p≤x1 in order to determine whether to transition to the accepting location
l2 or the rejecting location l3. ut

l0 l1

{x1}

l2 {x1, x2} l3 {x1, x2}
x1 :=p

x1<p
x2 :=x1, x1 :=p x1<p

x2 :=x1, x1 :=p

p≤x1

x2 :=p, x1 :=x1

x2≤p≤x1

x2 :=p, x1 :=x1

x2≤p≤x1

x2 :=p, x1 :=x1

p<x2

x2 :=x2, x1 :=x1

x1<p

x2 :=x1, x1 :=p

p<x2

x2 :=x2, x1 :=x1

Fig. 1. Running example: the A2 automaton

2.1 Data languages

Assume an unbounded domain D of data values, and a set R of binary relations
on D. Assume a set of actions, each with an arity that determines how many
parameters it takes from the domain D. In this paper, we assume that all actions
have arity 1; it is straightforward to extend the results to the general case.

A data symbol is a term of form α(d), where α is an action and d is a data
value from the domain D. A data word is a sequence of data symbols. Two
data words wd = α1(d1) . . . αn(dn) and w′d = α1(c1) . . . αn(cn), are equivalent,
denoted wd ≈R w′d, if di R di′ ↔ ci R ci′ whenever R ∈ R, for 1 ≤ i, i′ ≤ n and
1 ≤ i ≤ nj , 1 ≤ i′ ≤ nj′ . Intuitively, wd and w′d are equivalent if they have the
same sequences of actions and they cannot be distinguished by the relations in
R. A data language is a set L of data words, which respects R in the sense that
wd ≈R w′d implies wd ∈ L ↔ w′d ∈ L. We will often represent a data language
as a mapping from the set of data words to {+,−}, where + stands for accept
and − for reject.

2.2 Register automata

Assume a set of formal parameters, ranged over by p1, p2, . . ., and a finite set of
variables (or registers), ranged over by x1, x2,

A parameterized symbol is a term of form α(p), where α is an action and p is a
formal parameter. A parameterized word is a sequence of parameterized symbols
in which all formal parameters are distinct, i.e., we assume a (re)naming scheme
that avoids clashes. A guard is a conjunction of negated and unnegated relations
(from R) between formal parameters or variables.

Definition 1 (RA). A register automaton (RA) is a tuple A = (L, l0, X, T, λ),
where

– L is a finite set of locations,
– l0 ∈ L is the initial location,

– X maps each location l ∈ L to a finite set X(l) of variables, where X(l0) is
the empty set,

– T is a finite set of transitions, each of form 〈l, α(p), g, π, l′〉, where
• l is a source location,
• l′ is a target location,
• α(p) is a parameterized symbol,
• g is a guard over p and X(l), and
• π (the assignment) is a mapping from X(l′) to X(l)∪ p (intuitively, the

variable x ∈ X(l′) is assigned the value of π(x)), and
– λ : L 7→ {+,−} maps each location to either + (accept) or − (reject),

such that for any location l and action α, the disjunction of all guards g in tran-
sitions 〈l, α(p), g, π, l′〉 ∈ T is equivalent to true i.e., A is completely specified.

ut

Semantics of a register automaton. A register automaton A classifies data words
as either accepted or rejected. A standard way to describe how this is done is to
define a state of A as consisting of a location and an assignment to the variables
of that location. Then, one can describe how A processes a data word symbol by
symbol: on each data symbol, A finds a transition with a guard that is satisfied
by the parameters of the symbol and the current assignment to variables; this
transition determines a next location and an assignment to the variables of the
new location. When the last symbol has been processed, the word is accepted if
an accepting location has been reached, otherwise the word is rejected. We omit
a more formal account.

An RA is determinate (called a DRA) if no data word can be processed in
two different ways to reach both accepting and rejecting locations. A data word
is accepted (rejected) by a DRA A if processing the word reaches an accepting
(rejecting) location. We define A(wd) to be + (−) if the data word wd is accepted
(rejected) by A. The language recognized by A is the set of data words that it
accepts.

3 Symbolic representation of data languages

A given data language may be accepted by many different DRAs. In order to
obtain a succinct, canonical form of DRAs, we will in this section define a canon-
ical representation of data languages; in the next section we will describe how
to derive canonical DRAs from this representation.

We first introduce a symbolic representation for sets of data words, called
constrained words. These can also be regarded as representing runs of a reg-
ister automaton. We can then use sets of constrained words, together with a
classification of these words as “accepted” or “rejected”, as a representation of
data languages. Such classified sets will be called constraint decision trees. We
establish, as a central result (in Theorem 1), that any data language can be
represented by a minimal set of constrained words, corresponding to a mini-
mal constraint decision tree. This minimal set will correspond to the set of runs

of our canonical automaton, and will serve several purposes during automata
construction:

– it will allow us to keep only the essential relations between data values and
filter out inessential (accidental) relations between data values,

– from it, we can derive the parameters an automaton must store in variables
after processing a data word, and

– we can transform parts of it directly into transitions when constructing a
canonical DRA.

Constrained words. A parameterized word w = α1(p1) · · ·αk(pk) is a data word
where concrete data values are replaced by formal parameters. We let parameters
be indexed 1 · · · |w|, where |w| is the number of formal parameters in w, i.e., the
sequence of parameters is p1 · · · p|w|. A literal is of the form pi R pj or ¬(pi R pj),
where pi and pj are formal parameters andR ∈ R. A constraint φ is a conjunction
of literals. We say that a constraint φ is weaker than a constraint φ′, and that φ′

is stronger than φ if φ′ implies φ. A constrained word is a pair 〈w, φ〉 consisting
of a parameterized word w and a constraint φ over the formal parameters of w.
If l is a literal of form pi R pj or ¬(pi R pj), then the level of l in w is the
maximum of i and j. A constraint φ is k-level in w if it contains only literals of
level k in w, and it is ≤ k-level in w if it contains only literals of level ≤ k in w.
Let φw|k denote the conjunction of all k-level literals in 〈w, φ〉. Similarly, define
φw|<k as the conjunction of all literals of φ of level smaller than k in w. Define
φw|≤k, φw|>k, and φw|≥k analogously.

A constraint φ is a k-atom if all its literals are of level at most k, and φ
implies either pi R pj or ¬(pi R pj) for any R ∈ R whenever i, j ≤ k. Intuitively,
an atom is a maximal consistent constraint, i.e., it cannot be more specified
without becoming inconsistent. A constrained word 〈w, φ〉 is an atom if φ is a
|w|-atom.

A data word wd satisfies a constrained word 〈w, φ〉, denoted wd |= 〈w, φ〉, if
w and wd have the same sequence of actions, and the data values in wd satisfy φ
in the obvious way.

Example. Let w = α1(p1) α2(p2) α3(p3) be a parameterized word, and let
φ = p1≤p3≤p2 . Then 〈w, φ〉 is a constrained word. Let wd = α1(3) α2(7) α3(4)
be a data word. Then wd |= 〈w, φ〉, and that 〈w, φ〉 is an atom. ut

3.1 Constraint decision trees

We will now introduce constraint decision trees, and how they recognize data
languages. Let a k-branching be a set of k-level constraints whose disjunction is
equivalent to true. Let φ be a ≤ (k − 1)-level constraint. A k-level constraint ψ
is φ-admissible (or admissible after φ) if φ implies (φ∧∃pk ψ), i.e., if ψ does not
add any additional constraint between the parameters of φ. A k-branching Ψ is
φ-admissible if each k-level constraint in Ψ is φ-admissible.

A set Φ of constrained words is prefix-closed if 〈wv, φ〉 ∈ Φ implies 〈w, φwv|≤|w|〉 ∈
Φ. A set Φ is extension-closed if for any 〈w, φ〉 ∈ Φ and any action α, the set

of (|w| + 1)-level constraints ψ such that 〈wα(p|w|+1), φ ∧ ψ〉 ∈ Φ forms a φ-
admissible (|w|+ 1)-branching.

Definition 2 (CDT). A constraint decision tree (CDT) T is a pair 〈Dom(T), λT 〉
where Dom(T) is a non-empty prefix-closed and extension-closed set of con-
strained words, and λT : Dom(T) 7→ {+,−} is a mapping from Dom(T) to
{+,−}. ut

A CDT T is determinate (called a DCDT) if λT (〈w, φ〉) = λT (〈w, φ′〉) when-
ever wd |= 〈w, φ〉 and wd |= 〈w, φ′〉 for some data word wd. It is complete if all
constrained words in Dom(T) are atoms.

A DCDT defines a language λT defined by λT (wd) = λT (〈w, φ〉) whenever
wd |= 〈w, φ〉. Intuitively, a CDT can be thought of as a set of runs of a register
automaton. Each constrained word 〈w, φ〉 represents a path through the automa-
ton: the parameterized word w is the sequence of actions and formal parameters,
and φ is the conjunction of all guards that are tested along the path. A design
constraint for our canonical automaton model is that all essential tests concern-
ing the relationship between a parameter pi and previously received parameters
(i.e., parameters pj with j < i) should be performed when pi is processed. This
is reflected in the property of admissibility, which intuitively means that a guard
should not retroactively constrain the relation between previously received pa-
rameters. The property of extension-closed implies that the CDT is completely
specified in the sense that it can classify any data word as accepted or rejected.

In the following, we will show that for each language L, we can construct
a canonical CDT that faithfully represents L, and which is also minimal under
some restrictions. We will first try to provide some intuition for our construction.

Constructing a canonical DCDT. A first attempt at constructing a canonical
DCDT T could be to simply include all atoms in the domain Dom(T), thus
resulting in a complete DCDT. This DCDT will surely be able to correctly
classify a data language, but it will typically be prohibitively large. We need
to find ways to reduce the size of the CDT while still rendering it capable to
correctly classify the language it represents.

Example. Let D be the set of rational numbers, and let R = {<,=}. Assume
that T is a complete DCDT. The constrained words in Dom(T) of the form
〈a(p1)b(p2)c(p3), φ〉 would then be such that φ specifies some total order between
p1, p2, p3. The question is then whether we actually need a total order between
the parameters in order to correctly classify the data language represented by
T . Perhaps this language is insensitive to the ordering between p2 and p3, or it
simply does not distinguish the case p2<p3 from p2 =p3. We would like the CDT
to reflect this by replacing atoms by weaker constrained words. A constrained
word is weaker than an atom if the atom implies the constrained word. This
means that a constrained word can be used to represent several atoms, i.e., we
can ’merge’ the atoms.

Two atoms can be represented by the same constraint if any constraint that
is admissible after the one atom is also admissible after the second atom (and

vice versa), and their classifications (accept/reject) match. However, sometimes
we want to merge atoms that do not fulfill these conditions. Consider the atoms
p1<p2∧p2<p3 and p1<p2∧p2 =p3. We can not add the same set of constraints
after both atoms; for instance, the 4-level constraint p2<p4∧p4<p3 is admissible
after the atom p1<p2 ∧ p2<p3, but not after p1<p2 ∧ p2 =p3.

We can solve this problem by introducing an ordering vφ between exten-
sions of an atom. We then try to use the vφ-smaller extension to classify the
larger extension. This can be done if the classifications match and the resulting
constraints are admissible. In the above example, p2 < p3 and p2 = p3 extend
the atom p1 < p2. If we order them as p2 < p3 vφ p2 = p3, we can check if the
classification of the extensions of p1<p2 ∧ p2 = p3 matches the classification of
the extensions of p1 < p2 ∧ p2 < p3. If they do, we can merge the atoms into
p1<p2 ∧ p2≤p3. ut

3.2 Branching frameworks

Let us now describe the structure that must be predefined in order to define a
canonical DCDT. We assume that the set R of binary relations on D is fixed.

Let φ be a k−1-constraint. A guard hierarchy for φ is a set P of φ-admissible
k-level constraints, in which the set of maximally strong (wrp. to implication)
constraints ψ (called atomic branches of P) are such that φ∧ψ is an atom, and
such that the set of atomic branches of P forms a φ-admissible k-branching.

Definition 3 (Branching framework). A branching framework is a mapping
M which to each k−1-atom φ assigns a pair 〈P,vφ〉, where P is a guard hierarchy
for φ, and vφ is a partial order on the atomic branches of P. ut

Intuitively, the elements of P are the possible k-level constraints that test the
next parameter that follows after φ in a CDT. The atomic branches represent the
“most constrained” k-level constraints that completely characterize how the next
parameter pk is related to previous parameters p1, . . . , pk−1. Note that different
guards or atomic branches need not be mutually exclusive.

For any k-level constraint g in P, define the support of g after φ, denoted
suppφ(g), as the set of atomic branches ψ ∈ P such that (φ∧ψ) implies (φ∧ g).
Since the set of atomic branches forms a k-branching, it follows that any element
g in P represents the set of atomic branches in suppφ(g) in the sense that

(φ ∧ g)↔ (φ ∧
∨

ψ∈suppφ(g)

ψ) .

Definition 4. A branching framework M is adequate if whenever M(φ) =
〈P,vφ〉, then

– for each constraint g in P, the set suppφ(g) contains a unique minimal (wrp.
to vφ) atomic branch, called the principal atomic branch of g, and

– Whenever two constraints g, g′ in P have the same principal atomic branch,
then g ∨ g′ is in P. ut

The concept of principal atomic branch can be extended from k-constraints to
arbitrary constrained words as follows. For a CDT T , an adequate branching
framework M, and any constrained word 〈w, φ〉, define the principal atom of φ
inductively, as follows:

– The principal atom of the empty constraint true over the empty sequence of
parameters is true

– If φ is a constraint over p1, . . . , pk, let φ′ be the principal atom of φw|≤k−1,
let ψ be φw|k, and letM(φ′) be 〈P,vφ〉. Then the principal atom of φ over
p1, . . . , pk is the atom φ′ ∧ ψ′, where ψ′ is the principal atomic branch of ψ.

The branching framework determines what kinds of constraints we allow in
the CDT. For example, if we are dealing with data values that are rational
numbers and subject to some order <, we might allow constraints to specify
intervals (such as p2 < p4 < p1). Whenever we can extend a constraint φ by
some other constraint g, we must also be able to extend the principal atom of φ
by g, i.e., the constraints φ and g must be compatible.

Example. Consider the case where R is {=}. We can obtain the model in our
previous work [7], by a branching framework which assigns to a ≤ (k − 1)-atom
φ stating that the parameters p1, . . . , pk−1 are all different, the pair 〈P,vφ〉,
where

– P consists of all conjunctions of subsets of the literals p1 6=pk, · · · , pk−1 6=pk
(of these, only the maximal one is an atom), as well as the k−1 constraints
of form pi=pk for i = 1, . . . , k−1, and

– (p1 6= pk ∧ · · · ∧ pk−1 6= pk) vφ pi = pk for i = 1, . . . , k−1, but pi = pk and
pj=pk are not ordered for i 6=j.

Consequently, each k-level constraint with nontrivial support will have p1 6=
pk ∧ · · · ∧ pk−1 6=pk as principal atomic branch. ut

Example. Let us next consider the case where D is the set of rational numbers,
and R is {<,=} (it is important not to let D be some set of integers, since
that case is more complicated). An atom φ over p1, . . . , pk−1 will specify some
order between p1, . . . , pk−1, for example p1 < · · · < pk−1. A suitable branching
framework will assign to a ≤ (k − 1)-atom φ the pair 〈P,vφ〉, where

– Ψ contains all possible non-empty intervals between to parameters pi, pj
with 1 ≤ i ≤ j ≤ k, e.g., p2 ≤ pk < p5, or (some degenerate cases) pk = pi,
or pk<p1, or pk−1<pk. Among these, only the minimal intervals are atoms.

– The relation vφ will then be the smallest transitive relation that fulfills the
following conditions:

• pi<pk<pi+1 vφ pi−1<pk<pi (for i = 2, . . . , k−2), and
p1<pk<p2 vφ pk<p1, and
pk−1<pk vφ pk−2<pk<pk−1,

• pi−1<pk<pi vφ pk=pi (for i = 2, . . . , k−1), and
pk<p1 vφ pk=p1.

ut

Definition 5. Let T be a CDT, and let M be an adequate branching frame-
work. Then T is an M-CDT if for any 〈w, φ〉 ∈ Dom(T) with φ′ being the
principal atom of φ, it is the case that whenever ψ is a |w| + 1-level constraint
with 〈wα(p|w|+1), φ ∧ ψ〉 ∈ Dom(T), then ψ ∈ P, where 〈P,vφ〉 =M(φ′) ut

3.3 Minimal constraint decision trees

We will now show how to obtain a minimal constraint decision tree for a data
language.

Theorem 1 (Minimal DCDT). LetM be an adequate branching framework.
Then for any data language L, there is a unique minimalM-DCDT T such that
L = λT . ut

By minimal, we mean that if T ′ is any other M-DCDT with L = λT ′ , then
any constrained word in Dom(T ′) is contained in a constrained word in Dom(T).
Intuitively, this means that Dom(T) uses the weakest possible constraints that
are necessary in order to be able to correctly recognize the language L. We
will sometimes use the term L-essential (constrained) words (or just L-essential
words) for members of Dom(T) where T is the minimal DCDT with L = λT .

Proof. (Sketch.) We prove Theorem 1 by construction. The minimal DCDT for L
is constructed starting from the vφ-minimal atoms that serve as the leaf nodes.
Atoms are merged to form guards in a bottom-up fashion. This is only possible if
we assume a bounded length of words that are classified by L. We will therefore
assume a maximal length n of data words and construct a minimal “truncated”
DCDT Tn, which correctly classifies data words of length at most n. We can
then show that Tn “grows monotonically” with increasing n, so that T can be
taken as a limit of the trees Tn.

Example. We will now describe how to construct the canonical CDT for our
running example L2. Recall that a branching framework assigns a set of partially
ordered branches to each atom. The partial order determines in what order we
will add branches as guards in the minimal CDT, and also which branches can
be merged to form guards. We will consider atoms of increasing k-level. At
each level, we will construct the subtree (set of constraints) of each atomφ in
increasing vφ-order. We will then check if any of the atoms can be merged. At
the leaf level in the tree, atoms can be merged if they have the same classification.
For reasons of brevity, we will here only consider words of length 3 at most.

In the L2 example, the 1-level atom is true. We generate the set of 2-level
atomic branches, ordered as p1<p2 v∅ p2<p1 v∅ p1 =p2.

We apply the branching framework to the smallest branch p1<p2, and obtain
the set of 3-level atomic branches after p1<p2, ordered as {p2<p3 v(p1<p2)

p1<p3<p2 v(p1<p2) p3 =p2, p1<p3<p2 v(p1<p2) p3<p1 v(p1<p2) p3 =p1}.
The smallest branch is p2<p3, which is a rejecting leaf. We construct the first
3-level L2-essential constrained word as p2<p3.

The next smallest branch is p1<p3<p2 which is accepted. It can be merged
with the larger branches p1 =p3 and p2 =p3, since they are both also accepting.
(Because we are at the leaf level in the tree, this is sufficient to determine whether
branches can be merged.) We thus construct the second 3-level L2-essential con-
straint as p1 ≤ p3 ≤ p2. The only branch left is now p3<p1, which will become
the third L2-essential constraint.

There are no more 3-level branches to classify, so we go back to level 2. Since
we have already constructed the subtree after p1<p2, we proceed to construct
the subtree after the next smallest 2-level branch, p2<p1 in the same manner.
This results in the L2-essential constraints p2 ≤ p3 ≤ p1, p3<p2 and p1<p3.

The last remaining 2-level branch is p1 = p2. We construct the subtree, re-
sulting in the constraints p1 =p2 =p3, p3<p1 =p2 and p1 =p2<p3. It is possible
to use the subtree after p2 < p1 to classify the constraints after p1 = p2, so we
can merge these atoms into p2≤p1.

We obtain the set of L2-essential constrained words of length 3 as
{〈w, p3<p2≤p1〉, 〈w, p2≤p3≤p1〉, 〈w, p2≤p1<p3〉, 〈w, p3<p1<p2〉,
〈w, p1≤p3≤p2〉, 〈w, p1<p2<p3〉} where w = α(p1)α(p2)α(p3).

The L2-essential constrained words directly correspond to paths in the A2

automaton in Figure 1. For example, the path l0 → l1 → l3 → l3 corresponds to
the constrained word 〈w, p3<p1<p2〉. Since A2 always stores the largest data
value seen so far in the variable x1 and the second-largest seen so far in x2, this
path requires variables to be reassigned. The variable x1 will first store the first
data value. Then, because the second data value is larger than the first, x1 will
be re-assigned the second data value (and the first data value will be moved to
x2).

4 Nerode congruence

We will now define a Nerode-like congruence on constrained words. As in the
classical Nerode congruence for regular languages, we will define constrained
words to be equivalent if their suffixes are equivalent.

In order to describe how to fold a constraint decision tree into a register
automaton, we need to decide which parameters to store as variables in the
automaton. We associate a set of memorable parameters with each constrained
word. These are the parameters that occur in the word and are needed in some
guard in some of its suffixes. When the CDT is folded into a register automa-
ton, the memorable parameters of a node will become location variables at the
location that corresponds to that particular node.

Let us first define how a constrained word can be split into a prefix and a
suffix. Consider a constrained word 〈w, φ〉, where the parameterized word w is a
concatenation uv, and u has k parameters. We can make a corresponding split
of φ as φw|≤k ∧ φw|>k. Then 〈u, φw|≤k〉 (the prefix) is a constrained word, but
〈v, φw|>k〉 (the suffix) is in general not, since φw|>k refers to parameters that
are not in v. We therefore define a 〈u, φ〉-suffix as a tuple 〈v, ψ〉, where ψ is a
constraint over parameters of u and v, in which each literal contains at least one

parameter from v, and such that 〈uv, φ∧ψ〉 (which we often denote 〈u, φ〉; 〈v, ψ〉)
is a constrained word.

Definition 6 (Memorable). Let L be a data language, let M be an ade-
quate branching framework, and let T be the minimal M-DCDT recognizing L.
The L-memorable parameters of a constrained word 〈w, φ〉 ∈ Dom(T), denoted
memL(〈w, φ〉), is the set of parameters in w that occur in some 〈w, φ〉-suffix
〈v, ψ〉 such that 〈w, φ〉; 〈v, ψ〉 ∈ Dom(T). ut

In order for our canonical form to capture exactly the causal relations be-
tween parameters, we will allow memorable parameters to be permuted. when
comparing words. Two words will be considered equivalent if they require equiv-
alent parameters to be stored, independent of their ordering or their names.

Definition 7 (Nerode congruence). Let L be a data language, and let T
be the minimal DCDT recognizing L. We define the equivalence ≡L on con-
strained words by 〈w, φ〉 ≡L 〈w′, φ′〉 if there is a bijection γ : memL(〈w, φ〉) 7→
memL(〈w′, φ′〉) such that

– 〈v, ψ〉 is a 〈w, φ〉-suffix such that 〈wv, φ ∧ ψ〉 ∈ Dom(T) iff 〈v, γ(ψ)〉 is
a 〈w′, φ′〉-suffix such that 〈w′v, φ′ ∧ γ(ψ)〉 ∈ Dom(T), and then

– L(〈wv, φ ∧ ψ〉) = L(〈w′v, φ′ ∧ γ(ψ)〉),

where γ(ψ) is obtained from ψ by replacing all parameters in memL(〈w, φ〉) by
their image under γ.

Intuitively, two constrained words are equivalent if they induce the same resid-
ual languages modulo a remapping of their memorable parameters. The equiv-
alence ≡L is also a congruence in the following sense. If 〈w, φ〉 ≡L 〈w′, φ′〉 is
established by the bijection γ : memL(〈w, φ〉) 7→ memL(〈w′, φ′〉), then for any
memL(〈w, φ〉)-suffix 〈v, ψ〉 we have 〈w, φ〉; 〈v, ψ〉 ≡L 〈w′, φ′〉; 〈v, γ(ψ)〉.

By using the Nerode congruence, we can ’fold’ a constraint decision tree into
a register automaton, mapping constrained words that are equivalent by this
congruence to the same location.

We are now able to relate our Nerode congruence to DRAs.

Theorem 2 (Myhill-Nerode). A data language L is recognizable by a DRA
iff the equivalence ≡L on L-essential words has finite index.

Proof. (Sketch.) We will not detail the extension of the Myhill-Nerode theorem
here, but refer to the version stated in [7]For the if-direction, we construct a
DRA from a congruence. The locations of the resulting DRA will be given by
the finitely many equivalence classes of the Nerode relation on essential words.
Transitions will be extracted from the representative words in each equivalence
class. Location variables will be given by the memorable parameters of the rep-
resentative words. For the only-if direction, we assume any DRA that accepts
L. The proof idea then is to show that two L-essential constrained words cor-
responding to sequences of transitions that lead to the same location are also
equivalent w.r.t. ≡L, i.e., that one location of a DRA cannot represent more
than one class of ≡L. This can be shown using congruence properties. ut

Let us now reconsider our running example. In general, many different reg-
ister automata can be constructed that accept some given data language – for
example, one that simply stores each new data value in a location variable,
regardless of whether or not it will be referenced later. This leads to an unneces-
sary blowup in the number of location variables. Another automaton might only
store data values that will be referenced later, but perform all possible tests
on newly received data values. Such an automaton would distinguish between
the two cases x2 ≤ p < x1 and x2 = p < x1 in the self-loop at location l2 in
the automaton of Figure 1. In general, canonical models are easier to define if
strong restrictions are imposed on their form. In previous proposals, typical such
restrictions include to maintain a priori relations between stored variables (e.g.,
that x2 < x1), or that guards always be as strong as possible (thus duplicating
the self-loop at location l2). In this paper, we have lifted several such restrictions,
while still producing canonical automata.

Example. Consider the A2 automaton in Figure 1. Here, the locations l2 and
l3 both have two location variables x1 and x2. The variable x1 always stores
the largest data value seen so far, and the variable x2 stores the second-largest
data value seen so far. There is no uniqueness restriction on the variables, so it
may well be that x1 and x2 store equal data values. Imposing the uniqueness
restriction on the location variables of this automaton will lead to l2 and l3
being duplicated. The automaton will thus have two accepting states and two
rejecting, depending on whether the two largest data values seen so far are equal
or not. (The ’initial’ state l0 has no location variables; l1 only has one location
variable, and they will both stay that way.) ut

5 Conclusions and future work

In this paper, we have presented a succinct canonical register automaton model
for data languages, in which data values can be compared by an arbitrary given
set of relations. This construction consistently and significantly generalizes our
previous work [7], which considered only the equality relation. Our construction
gives rise to automata that are often considerably more succinct than those of
previous proposals.

The main technical contribution of the paper is the symbolic treatment of
data languages using branching frameworks to organizate relations on the data
domain canonically. This allows us to extend our ideas from [7] resulting in a
Myhill Nerode-like theorem for this larger class of data languages.

Our immediate plans are to use these results to derive canonical models of
realistic protocols, services, and interfaces, as well as generalizing Angluin-style
active learning to this class of systems.

References

1. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

2. D. Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75(2):87–106, 1987.

3. M. Benedikt, C. Ley, and G. Puppis. What you must remember when process-
ing data words. In Proc. 4th Alberto Mendelzon Int. Workshop on Foundations
of Data Management, Buenos Aires, Argentina, volume 619 of CEUR Workshop
Proceedings, 2010.

4. H. Björklund and T. Schwentick. On notions of regularity for data languages.
Theoretical Computer Science, 411:702–715, January 2010.

5. M. Bojanczyk, C. D. andA. Muscholl, T. Schwentick, and L. Segoufin. Two-variable
logic on data words. ACM Trans. Comput. Log., 12(4):27, 2011.

6. M. Bojanczyk, B. Klin, and S. Lasota. Automata with group actions. In LICS,
pages 355–364. IEEE Computer Society, 2011.

7. S. Cassel, F. Howar, B. Jonsson, M. Merten, and B. Steffen. A succinct canonical
register automaton model. In ATVA, volume 6996 of Lecture Notes in Computer
Science, pages 366–380. Springer Verlag, 2011.

8. N. Francez and M. Kaminski. An algebraic characterization of deterministic regular
languages over infinite alphabets. Theoretical Computer Science, 306(1-3):155–175,
2003.

9. E. M. Gold. Language identification in the limit. Information and Control,
10(5):447–474, 1967.

10. O. Grumberg, O. Kupferman, and S. Sheinvald. Variable automata over infinite
alphabets. In A. Dediu, H. Fernau, and C. Mart́ın-Vide, editors, LATA, volume
6031 of Lecture Notes in Computer Science, pages 561–572. Springer, 2010.

11. J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

12. F. Howar, B. Steffen, B. Jonsson, and S. Cassel. Inferring canonical register au-
tomata. In VMCAI, volume 7148 of Lecture Notes in Computer Science, pages
251–266. Springer Verlag, 2012.

13. M. Kaminski and N. Francez. Finite-memory automata. Theoretical Computer
Science, 134(2):329–363, 1994.

14. P. Kanellakis and S. Smolka. CCS expressions, finite state processes, and three
problems of equivalence. Information and Computation, 86(1):43–68, May 1990.

15. R. Lazic and D. Nowak. A unifying approach to data-independence. In
C. Palamidessi, editor, Proc. CONCUR 2000, 11th Int. Conf. on Concurrency
Theory, volume 1877 of Lecture Notes in Computer Science, pages 581–595, 2000.

16. A. Nerode. Linear Automaton Transformations. Proceedings of the American
Mathematical Society, 9(4):541–544, 1958.

17. R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM Journal of
Computing, 16(6):973–989, 1987.

18. A. Petrenko, S. Boroday, and R. Groz. Confirming configurations in EFSM testing.
IEEE Trans. on Software Engineering, 30(1):29–42, 2004.

19. R. Rivest and R. Schapire. Inference of finite automata using homing sequences.
Information and Computation, 103(2):299–347, 1993.

20. L. Segoufin. Automata and logics for words and trees over an infinite alphabet.
In CSL: Proc. 20th Int. Workshop on Ccomputer Science Logic, Szeged, Hungary,
volume 4207 of Lecture Notes in Computer Science, pages 41–57. Springer, 2006.

21. T. Wilke. Specifying timed state sequences in powerful decidable logics and timed
automata. In Proc. FTRTFT, volume 863 of Lecture Notes in Computer Science,
pages 694–715. Springer, 1994.

