
A Succinct Canonical Register Automaton
Model?

Sofia Cassel1, Falk Howar2, Bengt Jonsson1, Maik Merten2 and Bernhard
Steffen2

1 Dept. of Information Technology, Uppsala University, Sweden
{sofia.cassel,bengt.jonsson}@it.uu.se

2 Chair of Programming Systems, University of Dortmund, Germany
{falk.howar,maik.merten,steffen}@cs.tu-dortmund.de

Abstract. We present a novel canonical automaton model, based on
register automata, that can easily be used to specify protocol or program
behavior. More concretely, register automata are reminiscent of control
flow graphs: they comprise a finite control structure, assignments, and
conditionals, allowing to assign values of an infinite domain to regis-
ters (variables) and to compare them for equality. A major contribution
is the definition of a canonical automaton representation of any lan-
guage recognizable by a deterministic register automaton, by means of a
Nerode congruence. Not only is this canonical form easier to comprehend
than previous proposals, but it can also be exponentially more succinct
than these. Key to the canonical form is the symbolic treatment of data
languages, which overcomes the structural restrictions in previous for-
malisms, and opens the way to new practical applications.

1 Introduction

Automata models that process words or trees over infinite alphabets are becom-
ing increasingly important in many areas, including specification, verification,
and testing (e.g., [2, 21]), databases [1], and user modeling [5]. A natural form
for such models consists of a finite control structure, augmented by a finite set
of registers (aka state variables), processing input symbols using a predefined
set of operations (tests and updates) over input data and registers. Specialized
classes, such as timed automata [2], counter automata, and data-independent
transition systems [17] have long been used for specification and verification.
From a language-theoretic perspective, decision problems and connections with
logics have been studied (e.g., [10, 8, 7, 23]).

Modeling and reasoning with automata models can be made much more effi-
cient if it is possible to transform models into a canonical form. Transformation
into a canonical form is heavily used in verification, equivalence checking, and
refinement checking, e.g., using (bi)simulation based criteria [16, 20]. While for
finite automata, there are standard algorithms for determinization and mini-
mization, based on the Myhill-Nerode theorem [13, 19], it has proven difficult to

? Supported in part by the European FP7 project CONNECT (IST 231167).

carry over such constructions and define canonical forms for automata models
over infinite alphabets, including timed automata [24]. Often, canonical forms
are obtained at the price of (re-)encoding extensive information about the rela-
tion between parameter values in the state space (e.g., [18, 3]).

In this paper, we present a novel canonical automaton model, based on a
form of register automata (RA). We define a form of RAs that are particu-
larly suited to faithfully model a large class of systems that do not compute
or manipulate data but manage their adequate distribution, e.g., protocols, as
well as certain mediators and connectors. This class of systems is the backbone
to support the large-scale, seamless integration and orchestration of, e.g., (Web)
services to complex business applications running on the (Inter)net. One concrete
current example for the application of such automata models is the CONNECT
Project [14], which aims at dynamically synthesizing required connectors based
on descriptions of component behavior in the form of automata.

RAs have a finite control structure. They process words over an infinite al-
phabet consisting of terms with parameters from an infinite domain. RAs can
thus can be regarded as a simple programming language, with variables, parallel
assignments, and conditions. In contrast to other types of automata that have
been suggested for data languages [23, 6], our form of RAs does not restrict the
access to variables to a specific order or pattern, nor do they constrain the con-
tents of the variables (e.g., by uniqueness). This supports a much more intuitive
modeling of data languages, while leaving the expressiveness untouched.

We present a Nerode congruence for RAs that yields a canonical form. Key to
this generalization of Nerode’s right congruence ([13, 19]) to RAs is the symbolic
treatment of data languages in a way that abstracts from concrete data values
and rather concentrates on the relations between parameter values. This allows
for the required flexibility, and also leads to a more elegant canonical form,
which may even be exponentially more succinct than other suggested canonical
forms. This is very important in many applications. For instance, in automata
learning, the complexity of the learning procedure directly depends on the size
of the minimal canonical form of the automaton.

We could compare the difference between the automata of [11, 3] and our
canonical form to the difference between the region graph and zone graph con-
structions for timed automata. The region graph considers all possible combina-
tions between constraints on clock values, be they relevant to acceptance of the
input word or not, whereas the zone graph construction aims to consider only
relevant constraints. Our form of RAs is, however, always more succinct than
those of [11, 3].

In summary, the contribution of this paper is a succinct and intuitive RA
formalism that can easily be used to specify protocol or program behavior, with
a canonical representation of any (deterministic) RA-recognizable data language
by means of a Nerode congruence.

Related Work Generalizations of regular languages to infinite alphabets have
been studied previously. Kaminski and Francez [15] introduced finite memory
automata (FMA) that recognize languages with infinite input alphabets. Since

then, a number of formalisms have been suggested (pebble automata, data au-
tomata, . . .) that accept different flavors of data languages (see [23, 8, 6, 7] for an
overview). Most of these formalisms recognize data languages that are invariant
under permutations on the data domain. In [9] a logical characterization of data
languages is given plus a transformation from logical descriptions to automata.

While most of the above mentioned work focuses on non-deterministic au-
tomata and are concerned with closedness properties and expressiveness results
of data languages, we are interested in a framework for deterministic RAs that
can be used to model the behavior of protocols or (restricted) programs. This
includes in particular, the development of canonical models on the basis of a
new Myhill Nerode-like theorem.

In [11, 3], a Myhill-Nerode theorem for a form of register automata is pre-
sented. Canonicity is achieved by restricting how state variables are stored, which
leads to complex and hardly comprehensible models, as argued in [12]. These
complications are overcome in our structurally much easier RA-based approach.

Organization. In the next section we introduce the RA model as a basis for
representing data languages. In Section 3, we introduce a succinct representa-
tion of data languages, which suppresses non-essential tests, in the form of a
novel, decision tree-like structure called constraint decision trees (CDTs). Based
on this representation, in Section 4 we define a Nerode congruence, and prove
that it characterizes minimal canonical forms of deterministic RAs, called (right-
invariant) DRAs. In Section 5 we relate our canonical form to previously sug-
gested ones, and establish some exponential succinctness results before we con-
clude in Section 6.

2 Data Languages and Register Automata

In this section, we introduce formally the notions of data languages and register
automata. While a very general definition of data languages would define them
simply as sets of data words, for our modeling purposes, focus is on data lan-
guages that are closed under permutations on the data domain. Such languages
are agnostic to the concrete identitiy of data values, which they all treat alike.
With this restriction, data languages are ideal to describe the flow of data as
required for an adequate modeling of systems, whose behavior does not depend
on the data content they distribute.

We assume an unbounded domain D of data values and a set I of actions.
Each action has a certain arity which determines how many parameters it takes
from the domain D. A data symbol is a term of form α(d1, . . . , dn), where α is
an action with arity n, and d1, . . . , dn are data values in D. A data word is a
(finite) sequence of data symbols. A data language is a set of data words, which
is closed under permutations on D. We will often represent a data language as
a mapping from the set of data words to {+,−}, e.g. accept and reject.

We will now present an automaton model that recognizes data languages.
Assume a set of formal parameters, ranged over by p1, . . . , pn, and a finite set

of variables (or registers), ranged over by x1, . . . , xn. A parameterized symbol is
a term of form α(p1, . . . , pn), consisting of an action α and formal parameters
p1, . . . , pn (respecting the arity of α). A guard is a conjunction of equalities and
inequalities (here, an inequality means a negated equality, e.g., x2 6= p3) over
formal parameters and variables. We write p for p1, . . . , pn and d for d1, . . . , dn.

Definition 1. A Register Automaton (RA) is a tuple A = (L, l0, X, T, λ), where

– L is a finite set of locations,

– l0 ∈ L is the initial location

– X maps each location l ∈ L to a finite set X(l) of variables, where X(l0) is
the empty set,

– T is a finite set of transitions, each of which is of form 〈l, α(p), g, π, l′〉, where
l is a source location, l′ is a target location, α(p) is a parameterized symbol,
g is a guard over p and X(l), and π (the assignment) is a mapping from
X(l′) to X(l) ∪ p (intuitively, the value of x ∈ X(l′) is assigned to the value
of π(x)), and

– λ : L 7→ {+,−} maps each location to either + (accept) or − (reject),

such that for any location l and action α, the disjunction of all guards g in
transitions of form 〈l, α(p), g, π, l′〉 in T is equivalent to true (i.e., A should be
completely specified). ut

Example: We model the behavior of a fragment of the XMPP protocol [22]
as a running example (shown in Figure 1). XMPP is widely used in instant
messaging. In our fragment of XMPP, a user can register an account (providing
a username and a password), log in using this account, change the password,
and delete the account. In the figure, arcs are labeled with actions, guards,
and assignments. Actions and guards are written above the horizontal delim-
iter; assignments are written below it. Accepting locations (where the user is
logged in) are denoted by two concentric circles. For example, the user Bob
could register his account with the action register(Bob, secret) (providing his
username and password), and then log in with the action login(Bob, secret).
Once logged in, he could change his password to boblovesalice with the action
pw(boblovesalice). (For reasons of brevity, several transitions are omitted.)

ut

l0

l1

l2

register(p1,p2) | true
x1:=p1,x2:=p2

login(p1,p2) | x1=p1∧x2=p2
−

logout() | true
−

delete() | true
−

pw(p1) | true
x2:=p1

Fig. 1. Partial model for a fragment of XMPP

A register automaton A classifies data words as either accepted or rejected.
One way to describe how this is done is to define a state of A as consisting of
a location and an assignment to the variables of that location. Then, one can
describe howA processes a data word symbol by symbol: on each symbol,A finds
a transition with a guard that is satisfied by the parameters of the symbol and the
current assignment to variables; this transition determines a next location and an
assignment to the variables of the new location. For the purposes of this paper,
it will be more convenient to use a different but equivalent definition. A run of
A is defined as a pair consisting of a sequence of parameterized symbols and a
guard over its formal parameters. Each run is extracted from some sequence of
transitions, and is used to classify the data words that match its sequence of
symbols and satisfy its guards. We will now discuss this in more detail.

A parameterized word w is a sequence of parameterized symbols in which
all formal parameters are distinct; we assume a (re)naming scheme that avoids
clashes. For a mapping π from a set X of variables, let π̃ denote the mapping
obtained by extending the domain of X to include the set of formal parameters;
these are all mapped to themselves (i.e., π̃(x) = π(x) if x is a variable, and
π̃(p) = p if p is a formal parameter); we extend π̃ to expressions and guards in
the natural way.

A sequence σ of transitions of A from l0 to lk is of form

σ = 〈l0, α1(p1), g1, π1, l1〉 〈l1, α2(p2), g2, π2, l2〉 · · · 〈lk−1, αk(pk), gk, πk, lk〉 ,

which starts in l0 and ends in lk. We define

– the parameterized word of σ as α1(p1)α2(p2) · · ·αk(pk), and
– the guard of σ as g = g1∧ π̃1(g2∧ π̃2(g3∧ π̃3(· · ·∧ π̃k−1(gk)))), i.e., essentially

as the conjunction the guards g1, . . . , gk in σ, where the result of applying
the mappings π̃1, . . . , π̃k−1 is that each variable is replaced by the formal
parameter from which it originally received its value.

A run of an RA A is a pair 〈w, g〉 such that w is the parameterized word and g is
the guard of some sequence of transitions σ from the initial location l0 to some
lk. A run is accepting if λ(lk) = +. It is rejecting if λ(lk) = −. (A run may be
both accepting and rejecting if it can be extracted from two different sequences
of transitions.)

A data word wd = α1(d1) · · ·αk(dk) satisfies a run 〈w, g〉, denoted wd |= 〈w, g〉,
if wd has the same sequence of actions as w, and the parameters of wd satisfy
g in the obvious way (i.e., dip = djq whenever pip = pjq is a conjunct in g, and
dip 6= djq whenever pip 6=pjq is a conjunct in g).

Example: The data word register(Bob, secret)login(Bob, secret) takes the
automaton in Figure 1 from l0 to l2. The sequence σ of transitions is of the form
〈l0, register(p1, p2), true, π, l1〉〈l1, login(p3, p4), (x1 = p3 ∧ x2 = p4), id, l2〉, where
π is (x1 := p1, x2 := p2) (note that parameters have been renamed to avoid
clashes). The guard of σ is g = (true ∧ π̃(x1 = p3 ∧ x2 = p4)), i.e., g = (p1 =
p3 ∧ p2 =p4). Then 〈register(p1, p2)login(p3, p4), g〉 is a run of A. ut

An RA is determinate (called a DRA) if no data word satisfies both accepting
and rejecting runs. A data word is accepted (rejected) by a DRA A if all runs

that it satisfies are accepting (rejecting). We define A(wd) to be + (−) if wd is
accepted (rejected) by A. The language recognized by A is the set of data words
that it accepts.

We have chosen to work with determinate, rather than deterministic, RAs,
since a determinate RA can be easily transformed into a deterministic RA by
strengthening its guards, and a deterministic RA, by definition, is also deter-
minate. Our construction of canonical automata in Theorem 2 will generate
determinate RAs which are not necessarily deterministic. They can easily be
made deterministic, but this conversion can be done in several ways.

We call two variables xi, xj ∈ X(l) in the same location of a DRA independent
if the behavior of the DRA does not depend on the relation between the values
of xi and xj . Technically, this means that (1) no guard of any transition may
compare xi and xj when l is the source location, and (2) no combination of a
guard and an assignment may imply the equality of xi and xj when l is the target
location of a transition. If all variables of a DRA are pairwise independent, i.e.,
no relation between variables influences the DRA’s branching behavior, we refer
to it as a right-invariant DRA (in reminiscence of the right-congruence that is
represented in the locations of the automaton).

For the remainder of this paper we will restrict our attention to right-invariant
DRAs. Any DRA A can be transformed into an equivalent right-invariant DRA
by expanding locations with dependent variables into sub-locations representing
different valuations of the variables. This may, however, result in an exponential
(in the number of variables) blow-up of the number of locations.

3 Symbolic Representation of Data Languages

A given data language may be accepted by many different DRAs. In order to
obtain a succinct, canonical form of DRAs, we will in this section define a canon-
ical representation of data languages; in the next section we will describe how
to derive canonical DRAs from this representation.

Our plan for this section is to first introduce a canonical form for runs of a
DRA, called constrained words, which can only contain equalities (no inequali-
ties) between parameters. Since now constrained words are less expressive than
runs, each data word typically satisfies several constrained words. We therefore
define a new notion of satisfaction between sets of constrained words and data
words, which intuitively selects a “best matching” constrained word for a given
data word. We can then use sets of constrained words, together with a classi-
fication of these words as “accepted” or “rejected”, as a representation of data
languages. We establish, as a central result (in Theorem 1), that any data lan-
guage can be represented by a minimal set of constrained words. This minimal
set will correspond to the set of runs of our canonical automaton, and will serve
several purposes during automata construction:

(1) it will allow us to keep only the essential relations between data values and
filter out inessential (“accidental”) relations between data values, (2) from it, we
can derive the parameters an automaton must store in variables after processing

a data word, and (3) we can transform parts of it directly into transitions when
constructing the canonical DRA.

Constrained Words A constraint is a conjunction of equalities over formal pa-
rameters (i.e., without any inequalities). We always write constraints as ordered
lists of equalities without parentheses (using associativity). We use true to de-
note the empty constraint. For a parameterized word w, let p @w p′ denote that
p and p′ are formal parameters in w such that p occurs before p′.

A constrained word is a pair 〈w,ϕ〉 consisting of a parameterized word w and
a constraint ϕ of form p1 =p′1∧p2 =p′2∧ · · ·∧pk=p′k over the formal parameters
of w, in which the constraint ϕ satisfies the following conditions:

– pi @w p′i for each i = 1, . . . , k,
– p′1 @w · · · @w p′k, and
– all p1, . . . , pk are distinct.

In other words, in each equality the arguments are ordered, the right-hand sides
of ϕ are ordered, and each parameter occurs at most once as a left-hand side.
Constrained words that differ only by permutation of formal parameters are
regarded as equivalent. We can easily see that for each pair 〈w,ϕ〉 of a parame-
terized word w and constraint ϕ, there is a unique equivalent constrained word.

Since a constrained word is a special case of a run, we directly inherit a defini-
tion of satisfaction between data words and constrained words. Let cw[wd] be the
’strongest’ (w.r.t. number of equalities) constrained word that wd satisfies, i.e.,
cw[wd] contains exactly the equalities that wd satisfies, put on the special form of
constrained words. For example, cw[register(Bob, secret)login(Bob, secret)] =
= 〈register(p1, p2)login(p3, p4), p1 =p3 ∧ p2 =p4〉.

Constraint Decision Trees We will now define how sets of constrained words
can be used to classify data words as accepted or rejected. This view of a set of
constrained words is called a constraint decision tree (CDT). A CDT consists of
a set of constrained words together with a mapping from this set to {+,−}, and
classifies a data word by finding a “best matching” constrained word.

A set Φ of constrained words is prefix-closed if 〈wv, ϕ∧ψ〉 ∈ Φ implies 〈w,ϕ〉 ∈
Φ whenever 〈w,ϕ〉 is a constrained word. (We recall that constraints are regarded
as ordered lists of equalities, so that 〈wv, ϕ ∧ ψ〉 is a constrained word when
equalities appear exactly in the order defined by ϕ and ψ.) It is extension-closed
if 〈w,ϕ〉 ∈ Φ implies 〈wv, ϕ〉 ∈ Φ for any parameterized word v. It follows that
any non-empty prefix-closed and extension-closed set of constrained words also
contains 〈w, true〉 for each parameterized word w.

Definition 2. A constraint decision tree (CDT) T pair 〈Dom(T), λT 〉 where
Dom(T) is a non-empty prefix-closed and extension-closed set of constrained
words, and λT : Dom(T) 7→ {+,−} is a mapping from Dom(T) to {+,−}. ut

For a constraint ψ, let p @w ψ denote that p @w pj whenever pi = pj is an
equality in ψ (note that ψ may also be empty). We define a strict partial order

< on constrained words by defining 〈w,ϕ〉 < 〈w′, ϕ′〉 if w = w′ and there are
constraints ϕ′′, ψ, and ψ′, such that

– ϕ is of form ϕ′′ ∧ ψ, and
– ϕ′ is of form ϕ′′ ∧ p=p′ ∧ ψ′, with p′ @w ψ.

Example: For w = register(p1, p2)login(p3, p4) we have 〈w, p1 =p3〉 < 〈w, p1 =
p2〉 since p1 =p2 is not present in 〈w, p1 =p3〉, and since p2 @w (p1 =p3). ut

For a set Φ of constrained words, define a relation �Φ between constrained
words in Φ and data words, by letting 〈w,ϕ〉 �Φ wd iff 〈w,ϕ〉 is a maximal (w.r.t.
<) constrained word in Φ such that wd |= 〈w,ϕ〉.

Intuitively, if 〈w,ϕ〉 �Φ wd, then 〈w,ϕ〉 can be viewed as a constrained word
in Φ which “best matches” wd, obtained by adding equalities in ϕ from left to
right. More precisely, given wd, we successively build 〈w,ϕ〉 as the limit of a
sequence of constrained words in Φ. We start with 〈w, true〉, and whenever we
have built 〈w,ϕ〉 we extend it to some 〈w,ϕ∧pi=pj〉, where pi=pj is chosen such
that wd satisfies the equality pi = pj , and such that there is no other extension
〈w,ϕ ∧ p′i = p′j〉 with p′j @w pj , where wd satisfies p′i = p′j . If there is no such
extension (of form 〈w,ϕ ∧ pi=pj〉), we know that 〈w,ϕ〉 �Φ wd.

We call a CDT T determinate (a DCDT) if λT (〈w,ϕ〉) = λT (〈w,ϕ′〉) when-
ever 〈w,ϕ〉 �Dom(T) wd and 〈w,ϕ′〉 �Dom(T) wd for some data word wd.

Example: A partially specified prefix of a DCDT for our running exam-
ple can be seen in Figure 2. Here, the root node is the leftmost one, and the
ordering < is from top to bottom in the figure (i.e., lower nodes are bigger
w.r.t. <). Let us illustrate the process of finding the maximal (w.r.t. <) con-
strained word 〈w,ϕ〉 that wd = register(Bob, secret)login(Bob, secret) satisfies.
The idea is to start from the root node and then successively add equalities
to the constraint ϕ, until we have obtained the maximal one. We start with
〈w,ϕ〉 = 〈register(p1, p2)login(p3, p4), true〉 and add the equality p1 = p3 which
wd satisfies. We can finally add the equality p2 = p4, and we see that 〈w, p1 =
p3∧p2 =p4〉 �Φ wd. (In fact, we also see that 〈w, p1 =p3〉 < 〈w, p1 =p3∧p2 =p4〉.)

ut
We can now define the data language represented by a DCDT, i.e., as a

mapping from the set of data words to {+,−}.

Definition 3. For a DCDT T , define λT (wd) = λT (〈w,ϕ〉) whenever
〈w,ϕ〉 �Dom(T) wd. ut

We now establish as a central result that for any data language λ there is a
unique minimal DCDT that recognizes λ.

Theorem 1 (Minimal DCDT). For any data language λ, there is a unique
minimal DCDT T such that λ = λT . ut

By minimal, we mean that if T ′ is any other DCDT with λ = λT ′ , then
Dom(T) ⊆ Dom(T ′). We will sometimes use the term λ-essential (constrained)
words for members of Dom(T) where T is the minimal DCDT with λ = λT .

−

− −
−

+

register(p1, p2)
true

login(p3, p4)
p1 = p3

true

p2 = p4

true

Fig. 2. Partially specified prefix of minimal DCDT for the XMPP language

Proof. (Sketch) We prove Theorem 1 by defining how a minimal set Dom(T)
of constrained words can be constructed incrementally for any data language λ.
We first extend the ordering < so that it relates constrained words of different
lengths, by defining 〈w,ϕ〉 < 〈w′, ϕ′〉 if w is a prefix of w′ or vice versa and
〈w′′, ϕ〉 < 〈w′′, ϕ′〉, where w′′ is the longest of the two words w and w′. We
construct Dom(T) incrementally, starting with the set of constrained words of
form 〈w, true〉, and then considering constrained words in increasing <-order
(using the extended definition of <). Each such constrained word is added to
Dom(T) if it is needed in order to classify some data word correctly.

More precisely, consider a constrained word 〈w,ϕ〉, and let ϕ′ be such that
〈w,ϕ〉 is of form 〈w,ϕ′∧p=p′〉. Let Φ<〈w,ϕ〉 be the set of λ-essential constrained
words that are less than (w.r.t. <) 〈w,ϕ〉. Then 〈w,ϕ′ ∧ p = p′〉 is λ-essential
if 〈w,ϕ′〉 is λ-essential (by prefix-closure), and if there is a data word wd, a
constraint ψ, and some extension w′ = wv of w such that

– cw[wd] = 〈w′, ϕ′ ∧ p=p′ ∧ ψ〉,
– 〈w′, ϕ′′〉 �Φ<〈w,ϕ〉 wd for some λ-essential constrained word 〈w′, ϕ′′〉 ∈ Φ<〈w,ϕ〉,
– and λ(〈w′, ϕ′′〉) 6= λ(wd).

The incremental construction works, because only the set Φ<〈w,ϕ〉 of λ-essential
constrained words is needed to determine whether 〈w,ϕ〉 is λ-essential. ut

Example: To illustrate the above procedure, we will partially sketch how
to obtain the λ-essential constrained words of the form 〈w1, ϕ〉 where w1 =
register(p1, p2), and of the form 〈w2, ϕ〉 where w2 = register(p1, p2)login(p3, p4).
Initially, the words 〈w1, true〉 and 〈w2, true〉 are λ-essential.

We then consider constrained words in increasing <-order, beginning with
a smallest constrained word, say 〈w2, p2 = p4〉. We find a data word wd =
register(Bob, secret)login(Alice, secret) such that cw[wd] = 〈w2, p2 = p4〉. We
also find a λ-essential word 〈w2, true〉 such that 〈w2, true〉 �Φ<〈w2,p2=p4〉 wd. Since

λ(wd) = − and λ(w2, true) = − we see that wd is already correctly classified and
thus 〈w2, p2 =p4〉 is not λ-essential.

Next, we pick the constrained word 〈w2, p1 =p3〉 which is larger than 〈w2, p2 =
p4〉 w.r.t.<. Consider the data word w′d = register(Bob, secret)login(Bob, secret)
such that cw[w′d] = 〈w2, p1 =p3 ∧ p2 =p4〉. We find a λ-essential word 〈w2, true〉
such that 〈w2, true〉 �Φ<〈w2,p1=p3〉 w′d. Since λ(w′d) = + but λ(〈w2, true〉) = − we

see that w′d is incorrectly classified and thus 〈w2, p1 =p3〉 is λ-essential.

We now test the constrained word 〈w2, p1 = p3 ∧ p2 = p4〉 with w′d. However,
since the set of λ-essential constrained words has increased, we get a different
λ-essential word 〈w2, p1 = p3〉 such that 〈w2, p1 = p3〉 �Φ<〈w2,p1=p3∧p2=p4〉 w′d. We

see that λ(w′d) = + but λ(〈w2, p1 = p3〉 = −, so 〈w2, p1 = p3 ∧ p2 = p4〉 is also
λ-essential.

The λ-essential constrained words are now 〈w2, p1 =p3∧p2 =p4〉, 〈w2, p1 =p3〉,
〈w2, true〉, and 〈w1, true〉. Note that these (together with the empty word) are
exactly the constrained words in the DCDT of Figure 2. ut

4 Nerode Congruence and Canonical Form

In this section, we define a Nerode-type congruence on the set of constrained
words of some (minimal) DCDT, which is then used to construct a succinct
DRA that recognizes a data language.

Following standard Nerode, we will define equivalence of words w.r.t. suffixes.
When splitting a constrained word into a prefix and a suffix, however, the equal-
ities between parameters in the prefix and parameters in the suffix are also split.
In the resulting RA, the “loose” connections will be represented by variables.
These will be derived from the concept of memorable parameters, which is the
set of parameters that need to be remembered after processing a prefix. Based
on the minimal DCDT representation, this will guarantee that the number of
variables stored by a canonical DRA is minimal. Similar definitions of data val-
ues that need to be remembered after a sequence of input symbols are also found
in [4, 3].

In order for our canonical form to capture exactly the causal relations be-
tween parameters, we will allow memorable parameters to be re-shuffled when
comparing words. Two words will be considered equivalent if they require equiv-
alent parameters to be stored, independent of their ordering or their names.

Let us first see how a constrained word can be split into a prefix and a suffix.
Consider a constrained word 〈w,ϕ〉, where w is a concatenation uv. We can make
a corresponding split of ϕ as ϕ′ ∧ ψ, where the right-hand sides of equalities in
ϕ′ are parameters of u and the right-hand sides of equalities in ψ are parameters
of v. Then 〈u, ϕ′〉 (the prefix) is a constrained word, but 〈v, ψ〉 (the suffix) is in
general not, since ψ refers to parameters that are not in v. We therefore define
a 〈w,ϕ〉-suffix as a tuple 〈v, ψ〉, where ψ is a constraint in which right-hand
sides of equalities are parameters of v, and such that 〈uv, ϕ∧ψ〉 (which we often
denote 〈u, ϕ′〉; 〈v, ψ〉) is a constrained word.

We define the potential of a constrained word 〈w,ϕ〉, denoted pot[〈w,ϕ〉],
as the set of formal parameters in w that do not occur as the left argument
of any equality in ϕ; for example, pot[〈α1(p1, p2)α2(p3, p4), p1 =p2 ∧ p2 =p3〉] =
{p3, p4}.

Definition 4 (Memorable). Let λ be a data language, and let T be the min-
imal DCDT recognizing λ. The λ-memorable parameters of a constrained word
〈w,ϕ〉 ∈ Dom(T), denoted memλ(〈w,ϕ〉), is the set of parameters in pot[〈w,ϕ〉]
that occur in some 〈w,ϕ〉-suffix 〈v, ψ〉 such that 〈w,ϕ〉; 〈v, ψ〉 ∈ Dom(T). ut

We are now ready to define our Nerode congruence on constrained words.

Definition 5 (Nerode Congruence). Let λ be a data language, and let T
be the minimal DCDT recognizing λ. We define the equivalence ≡λ on con-
strained words by 〈w,ϕ〉 ≡λ 〈w′, ϕ′〉 if there is a bijection γ : memλ(〈w,ϕ〉) 7→
memλ(〈w′, ϕ′〉) such that

– 〈v, ψ〉 is a 〈w,ϕ〉-suffix with 〈w,ϕ〉; 〈v, ψ〉 ∈ Dom(T) iff 〈v, γ(ψ)〉 is a
〈w′, ϕ′〉-suffix with 〈w′, ϕ′〉; 〈v, γ(ψ)〉 ∈ Dom(T), and then

– λ(〈w,ϕ〉; 〈v, ψ〉) = λ(〈w′, ϕ′〉; 〈v, γ(ψ)〉),

where γ(ψ) is obtained from ψ by replacing all parameters in memλ(〈w,ϕ〉) by
their image under γ. ut

Intuitively, two constrained words are equivalent if they induce the same residual
languages modulo a remapping of their memorable parameters. The equivalence
≡λ is also a congruence in the following sense. If 〈w,ϕ〉 ≡λ 〈w′, ϕ′〉 is established
by the bijection γ : memλ(〈w,ϕ〉) 7→ memλ(〈w′, ϕ′〉), then for any memλ(〈w,ϕ〉)-
suffix 〈v, ψ〉 we have 〈w,ϕ〉; 〈v, ψ〉 ≡λ 〈w′, ϕ′〉; 〈v, γ(ψ)〉.

Example: In the data language that is accepted by the DRA of Figure 3,
the word 〈register(p1, p2)login(p3, p4)pw(p5), p1 = p3 ∧ p2 = p4〉 and the word
〈register(p1, p2)login(p3, p4), p1 = p3 ∧ p2 = p4〉 are equivalent w.r.t. ≡λ. For
the remapping γ(p4) = p5, and γ(p3) = p3 the residuals become identical.
E.g., the suffix 〈logout()login(p6, p7), p3 = p6 ∧ p4 = p7〉, will become the suf-
fix 〈logout()login(p6, p7), p3 =p6∧p5 =p7〉 under remapping. Concatenation with
the original words will lead to accepted words in both cases. ut

Guard transformation We will introduce a transformation from suffixes to guards,
which will be needed in Theorem 2 when constructing DRAs from DCDTs.

Let Φ be a set of constrained words, with 〈w,ϕ〉 ∈ Φ. We say that pi 6=pj is
an implicit inequality of 〈w,ϕ〉 w.r.t. Φ if ϕ is of form ϕ′ ∧ ψ for some ψ with
pj @w ψ, and Φ contains a constrained word of form 〈w,ϕ′ ∧ pi = pj ∧ ψ′〉. Let
ineqsΦ(〈w,ϕ〉) be the conjunction of all implicit inequalities of 〈w,ϕ〉 w.r.t. Φ.

Define the guard g
〈w,ϕ〉
Φ as g

〈w,ϕ〉
Φ ≡ ϕ ∧ ineqsΦ(〈w,ϕ〉). Then, g

〈w,ϕ〉
Φ has the

property that wd |= 〈w, g〈w,ϕ〉Φ 〉 iff 〈w,ϕ〉 �Φ wd
Example: Consider the DCDT from Figure 2. Let Φ contain 〈w, true〉, 〈w, p1 =

p3〉, and 〈w, p1 = p3 ∧ p2 = p4〉, and let w = register(p1, p2)login(p3, p4). Then
p1 6= p3 is an implicit inequality of 〈w, true〉, because p3 @w true, and because
〈w, p1 = p3〉 contains p1 = p3. Similarly, p2 6= p4 is an implicit inequality of

〈w, p1 =p3〉. We then obtain the guard g
〈w,true〉
Φ as p1 6=p3, the guard g

〈w,p1=p3〉
Φ

as p1 =p3 ∧ p2 6=p4, and the guard g
〈w,p1=p3∧p2=p4〉
Φ as p1 =p3 ∧ p2 =p4. ut

We now state the main result of our paper, which relates our Nerode con-
gruence to DRAs.

Theorem 2 (Myhill-Nerode). A data language λ is recognizable by a DRA
iff the equivalence ≡λ on λ-essential words has finite index.

Proof. If: The if-direction follows by constructing a DRA from a given ≡λ, as
the DRA A = (locs, l0, X, T, λ), where

– L is given by the finitely many equivalence classes of the equivalence relation
≡λ on λ-essential words. For each equivalence class, we choose a representa-
tive λ-essential constrained word.

– l0 is [〈ε, true〉]≡λ , with the empty word as representative element.

– X maps each location [〈w,ϕ〉]≡λ with representative word 〈w,ϕ〉 to the set
X([〈w,ϕ〉]≡λ) of λ-memorable parameters of 〈w,ϕ〉. Note that we here use
parameters as variables.

– T is constructed as follows. For each location l = [〈w,ϕ〉]≡λ in L with repre-
sentative element 〈w,ϕ〉 and each λ-essential one-symbol extension of 〈w,ϕ〉
of form 〈w,ϕ〉; 〈α(p), ψ〉, there is a transition in T of form 〈l, α(p), g, γ, l′〉,
where

• l′ = [〈w,ϕ〉; 〈α(p), ψ〉]≡λ ; let 〈w′, ϕ′〉 be the representative element of the
equivalence class [〈w,ϕ〉; 〈α(p), ψ〉]≡λ ,

• γ is the bijection γ : memλ(〈w′, ϕ′〉) 7→ memλ(〈w,ϕ〉; 〈α(p), ψ〉) which is
used to establish 〈w′, ϕ′〉 ≡λ 〈w,ϕ〉; 〈α(p), ψ〉 in Definition 5,

• g is obtained as gψΦ , where Φ is the set of all λ-essential extensions
of 〈w,ϕ〉 by the action α, i.e., the set of λ-essential words of form
〈w,ϕ〉; 〈α(p), ψ′〉.

– λ([〈w,ϕ〉]≡λ) = λ(wd) whenever 〈w,ϕ〉 = cw[wd].

The constructed DRA is well defined: it has finitely many locations since the
index of ≡λ is finite, the initial location is defined as the class of the empty
word, and λ is defined from λ for the representative elements of the locations. The
transition relation is total and determinate. This is guaranteed by construction
of guards from DCDTs, and by construction of DCDTs.

To complete this direction of the proof, we need to show that the constructed
automaton A indeed recognizes λ. Consider an arbitrary sequence of transitions
of A, of form

〈l0, α1(p1), g1, π1, l1〉 · · · 〈lk−1, αk(pk), gk, πk, lk〉 ,

which generates a run of form 〈α1(p1) · · ·αk(pk) , g〉, where g is g1 ∧ π̃1(· · · ∧
π̃k−1(gk))). Let w = α1(p1) · · ·αk(pk), and let ϕ be the ordered sequence of
equalities in g (i.e., omitting inequalities). By construction, 〈w,ϕ〉 is a λ-essential

constrained word such that g is equivalent to g
〈w,ϕ〉
Dom(T), which implies that wd |=

〈w, g〉 iff 〈w,ϕ〉 �Dom(T) wd for any data word wd. In summary, this implies that
A correctly classifies data words that satisfy any of its runs.

Only if: For the only-if direction, we assume any (right-invariant) DRA that
accepts λ. The proof idea then is to show that two λ-essential constrained words
corresponding to sequences of transitions that lead to the same location are also
equivalent w.r.t. ≡λ, i.e., that one location of a DRA cannot represent more than
one class of ≡λ. This can be shown straight-forwardly using right-invariance. ut

l0

l1

l2

register(p1,p2) | true
x1:=p1,x2:=p2

login(p1,p2) | p1=x1∧p2=x2
−

logout() | true
−

delete() | true
− pw(p1) | p1 6=x1

x2:=p1

l1
′

l2
′

register(p1,p2) | p1=p2
x1:=p2

login(p1,p2) | p1=x1∧p2=x1
−

delete() | true
−

pw(p1) | p1=x1
−

logout() | true
−

pw(p1) | p1 6=x1
x2:=p1

pw(p1) | p1=x1
−

Fig. 3. Partial DURA model for a fragment of XMPP

We get as a corollary result from the only-if direction of the proof that the
automaton generated in the first part of this proof is in fact a minimal (in the set
of locations) right-invariant DRA recognizing λ. As stated already, minimality of
the DCDT representation guarantees that the automaton will also use a minimal
number of variables.

5 Comparison between Different Automata Models

In this section we will compare our register automata to previously proposed
formalisms. We will show that our models can be exponentially more succinct.

There are already proposals for DRAs that accept data languages, which,
however, fail to be simple and do not exactly match the flavor of data languages
we are using [15, 3]. For instance, in these automata, variables have to be unique,
or can only be accessed in a queue-like fashion. A Myhill-Nerode-like theorem
has been proposed for these data languages and automata [11, 3]. It is, however,
formulated on the level of concrete data words. This makes it difficult to identify
essential relations between parameters in the corresponding canonical form.

Both the design of the DRAs and the Nerode congruence on the level of
data words thus require encoding information about accidental relations between
parameters into the set of locations. This makes the models harder to understand
and work with. We will show that in the worst case the resulting canonical models
can be exponentially bigger than our canonical models.

Let us define a class of RAs that resembles the automata of [3]. An RA is
unique-valued (called a URA) if the valuation σ in any reachable state 〈l, σ〉
is injective, i.e., two variables can never store the same data value. An RA is
ordered (called an ORA) if state variables are ordered (we will use < to represent
this ordering), and data values are stored only in order of appearance. That is
if xi and xj are two state variables with xi < xj , then in any reachable state,
either xj is undefined, or the transition at which xi was assigned a value must
coincide with or precede the transition at which xj was last assigned a value. We
will also define an OURA, which is both ordered and unique-valued. We will refer

to the automata resulting from our Nerode congruence as DRAs. The automata
of [3] correspond to deterministic OURAs (DOURAs).

In the worst case, there are two exponential blow-ups: between DRAs and
DURAs, and between DURAs and DOURAs. The first exponential blow-up be-
tween DRAs and DURAs can be shown by constructing a DRA that can store
n independent variables, while the corresponding DURA has to maintain in the
set of locations which of the n variables have the same value. The second expo-
nential blow-up between DURAs and DOURAs can be shown by constructing
a DURA that allows random (write) access to n variables. The corresponding
DOURA has to maintain in the set of locations the order in which the variables
are written.

These blow-ups will not always be exponential. We will illustrate the dif-
ference between DURAs and our canonical form using our running example.
Figure 3 shows a partial DURA model for the DRA from Figure 1. The DURA
has to maintain if provided username and password (p1, p2 from register(p1, p2))
accidentally coincide. In this case this leads to replication of each location from
which these two data values can be accessed, namely l1 and l2. A DOURA in
this case would look the same as the DURA. Adding a primitive to change the
username, however, would lead to another blow-up in the DOURA: the order in
which username and password have been set would have to be encoded in the
set of locations.

6 Conclusions and Future Work

In this paper, we present a novel form of register automata, which also has
an intuitive and succinct minimal canonical form, which can be derived from a
Nerode-like right congruence.

Our immediate plans are to use these results to generalize Angluin-style
active learning to data languages over infinite alphabets, which can be used to
characterize protocols, services, and interfaces. Another obvious problem is to
generalize the canonical model to more expressive signatures with other simple
operations on data values, e.g., including comparisons of various forms.

References

1. N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. XML with data values:
typechecking revisited. J. Comput. Syst. Sci., 66(4):688–727, 2003.

2. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

3. M. Benedikt, C. Ley, and G. Puppis. What you must remember when process-
ing data words. In Proc. 4th Alberto Mendelzon Int. Workshop on Foundations
of Data Management, Buenos Aires, Argentina, volume 619 of CEUR Workshop
Proceedings, 2010.

4. T. Berg, B. Jonsson, and H. Raffelt. Regular inference for state machines using
domains with equality tests. In J. L. Fiadeiro and P. Inverardi, editors, FASE,
volume 4961 of LNCS, pages 317–331. Springer, 2008.

5. M. Bielecki, J. Hidders, J. Paredaens, J. Tyszkiewicz, and J. V. den Bussche.
Navigating with a browser. In Proc. ICALP ’2002, 29th International Colloquium
on Automata, Languages, and Programming, volume 2380 of LNCS, pages 764–775.
Springer, 2002.

6. H. Björklund and T. Schwentick. On notions of regularity for data languages.
Theoretical Computer Science, 411:702–715, January 2010.

7. M. Bojanczyk. Data monoids. In STACS, pages 105–116, 2011.
8. M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-

variable logic on data words, 2011. ACM Transactions on Computational Logic,
to appear.

9. P. Bouyer. A logical characterization of data languages. Information Processing
Letters, 84:200–2, 2001.

10. P. Bouyer, A. Petit, and D. Thérien. An algebraic approach to data languages and
timed languages. Information and Computation, 182(2):137–162, 2003.

11. N. Francez and M. Kaminski. An algebraic characterization of deterministic regular
languages over infinite alphabets. Theoretical Computer Science, 306(1-3):155–175,
2003.

12. O. Grumberg, O. Kupferman, and S. Sheinvald. Variable automata over infinite
alphabets. In LATA, pages 561–572, 2010.

13. J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

14. V. Issarny, B. Steffen, B. Jonsson, G. S. Blair, P. Grace, M. Z. Kwiatkowska,
R. Calinescu, P. Inverardi, M. Tivoli, A. Bertolino, and A. Sabetta. CONNECT
Challenges: Towards Emergent Connectors for Eternal Networked Systems. In
ICECCS, pages 154–161, 2009.

15. M. Kaminski and N. Francez. Finite-memory automata. Theoretical Computer
Science, 134(2):329–363, 1994.

16. P. Kanellakis and S. Smolka. CCS expressions, finite state processes, and three
problems of equivalence. Information and Computation, 86(1):43–68, May 1990.

17. R. Lazic and D. Nowak. A unifying approach to data-independence. In
C. Palamidessi, editor, Proc. CONCUR 2000, 11th Int. Conf. on Concurrency
Theory, volume 1877 of LNCS, pages 581–595, 2000.

18. O. Maler and A. Pnueli. On recognizable timed languages. In Proc. FOSSACS04,
Conf. on Foundations of Software Science and Computation Structures, LNCS,
pages 348–362. Springer Verlag, 2004.

19. A. Nerode. Linear Automaton Transformations. Proceedings of the American
Mathematical Society, 9(4):541–544, 1958.

20. R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM Journal of
Computing, 16(6):973–989, 1987.

21. A. Petrenko, S. Boroday, and R. Groz. Confirming configurations in EFSM testing.
IEEE Trans. on Software Engineering, 30(1):29–42, 2004.

22. P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Instant
Messaging and Presence. RFC 6121 (Proposed Standard), Mar. 2011.

23. L. Segoufin. Automata and logics for words and trees over an infinite alphabet.
In CSL: Proc. 20th Int. Workshop on Ccomputer Science Logic, Szeged, Hungary,
volume 4207 of LNCS, pages 41–57. Springer, 2006.

24. T. Wilke. Specifying timed state sequences in powerful decidable logics and timed
automata. In Proc. FTRTFT, volume 863 of LNCS, pages 694–715. Springer, 1994.

