
Industrial Evaluation of Test Suite Generation
Strategies for Model-Based Testing

Johan Blom
Blossom Grove AB

Email: johan.blom@blossomgrove.se

Bengt Jonsson
Uppsala University

Dept. Information Technology
Email: bengt.jonsson@it.uu.se

Sven-Olof Nyström
Uppsala University

Dept. Information Technology
Email: sven-olof.nystrom@it.uu.se

Abstract—We report on a case study on model based testing
for a commercially available telecom software system. A main
purpose is to investigate how different strategies for test suite
generation affect quality attributes of the generated test suites,
in a realistic industrial environment. We develop a functional
model in the form of an extended finite state machine, from which
we generate test suites using several different (model) coverage
criteria, alongside with randomly and manually generated test
suites. We compare test suites with respect to fault-detection
capability, incurred (source) code coverage, and test generation
and execution time. The system under test is a commercially
released version, not seeded with any faults, implying that
exposed faults are “real” faults that passed previous testing. We
did not find clear difference between coverage-based and random
test suites. Test suite generation and execution is performed using
the tool ERLY MARSH, developed by the first author.

I. INTRODUCTION

Model Based Testing aims to make testing more system-
atic and more automated. It has been applied to the testing
of control-intensive software applications, such as commu-
nication and control software in various embedded systems
domains [1], [2]. The basic idea in model based testing
is to construct a formal executable model, which captures
the intended behavior of the system under test. From this
model, test cases can be systematically generated as execution
traces. Since the model is formal, test generation can be
automated. With adequate tool support one can automatically
generate very large test suites. There are several academic
and commercial tools that support modeling and model based
testing, including ConformiQ Qtronic [3], JTorX [4], and Spec
Explorer [5].

Given available tool support for automated generation of
test suites, an obvious question is how test suites should be
generated to optimize important quality attributes, such as
capability to detect faults, cost of generation and execution,
etc. In a given situation, the best trade-off between these partly
conflicting attributes depends on the desired level of quality,
the cost (time) of executing each test case, the available
test environment, etc. It is therefore important to understand
how different strategies for test suite generation affect quality
attributes of test suites. Test suites can be generated, e.g.,
using different (model) coverage criteria, using random input
generation, from manually supplied test purposes, or manu-
ally. They can be evaluated based on their size, capability

to detect faults (implementation defects), provoke failures,
incur (source) code coverage, time needed for execution,
etc. For white-box structural testing, these issues have been
well studied, e.g., concerning the relationship between code
coverage and fault detection capability (e.g., [6], [7]). For
model based testing, which is a form of black-box functional
testing, the corresponding relationships have been studied to a
significantly lesser degree. There are some case studies on
industrial safety-critical systems, which use mutated faults
to evaluate detection capability (e.g., [8], [10]), with not so
clear results. We are not aware of such studies on industrial
software that use “real” bugs, as opposed to seeded ones. One
reason is that such studies need a significant effort for building
functional models, and for evaluating test results.

In this paper, we investigate the relationship between test
suite generation strategies and test suite quality attributes, for a
real industrial benchmark. The investigation is performed as a
case study on model based testing of a commercially available
telecom software system, Mobile Arts Advanced Location
Center (A-MLC). As System Under Test (SUT) we used a
version of A-MLC which had been manually tested, but still
contained a significant number of faults (“bugs”). We did not
seed the SUT with any faults. Thus, all faults found are “real”
faults that occur in actual industrial software development.
We developed a model of the intended functionality of A-
MLC in a formalism for extended finite-state machines [11].
From this model, we generated test suites of different sizes
and with different strategies. Some test suites were generated
using different (model) coverage criteria, some were generated
randomly, and some were manually generated. We applied
each test suite to the SUT and measured resulting quality
attributes, including size, number of exposed failures, number
of exposed faults, (source) code coverage, and time needed
for test suite generation and execution. We then analyzed the
results to better understand the relationship between test suite
generation strategies and test suite quality attributes. Test suite
generation and execution was performed using the tool ERLY
MARSH, developed by the first author.

As mentioned, the case study is performed on A-MLC.
A-MLC is to a large extent implemented in the ERLANG
programming language. The first author has contributed to its
development, and we had access to a sequence of snapshots
of its implementation. As a basis for testing, we developed



a model of its functionality in the modeling language ER-
LANG/EFSM, which is a formalism for extended finite-state
machines (EFSMs) [11], [12], where guards and actions are
described in ERLANG syntax. To support model based testing
based on ERLANG/EFSM models, we have developed a tool
chain, ERLY MARSH, which supports automated test genera-
tion, test execution, and test report generation. The tool ERLY
MARSH supports specification of a range of test suite coverage
criteria, described using a formalism based on observers [13].
It employs symbolic execution techniques to generate test
suites, with coverage criteria specified by observers. From the
ERLANG/EFSM model of A-MLC, we used ERLY MARSH to
generate differently sized test suites satisfying various (model)
coverage criteria. For comparison, we also generated random
test suites of similar size. We also had access to a manually
generated test suite, developed prior to our modeling effort.

We evaluated the test suites according to quality attributes,
including size, number of exposed failures, number of exposed
faults, (source) code coverage, and time for test suite genera-
tion and execution. In the evaluation, particular emphasis was
given to the number of faults detected. As system under test
(SUT), we used a snapshot from the development of A-MLC,
which had been manually tested, but could still be expected to
contain faults. We did not seed the SUT with any artificially
generated faults. Our ambition to use “real” faults forced
us to trace the cause of each exposed failure in the source
code. This sometimes required significant effort. In order to
understand precisely which faults were exposed by a particular
test suite, we developed a mechanism of applying bug fixes,
for automatically detecting which faults are revealed by a
particular test suite. This means that our evaluation measures
the test suites’ capability to detect faults that occur in industrial
settings.

With the ERLY MARSH tool for test suite generation and
the bug fix system for counting faults in place, we could then
proceed with the experiment. We start from the hypothesis
that test suites can have a measurable quality. We executed
each test suites on the implementation, in order to measure its
quality. which can be controlled by techniques for generating
test suites. We were particularly interested in questions such
as

• the relationship between test suite size and fault detection
capability for coverage-based, random, and manual test
suites,

• comparing the fault-detection capability of coverage-
based, random, and manual test suites, for comparable
test suite sizes,

• the relationship between (model) coverage, test suite size,
and implementation code coverage, and

• to understand which kinds of faults are revealed by
model based testing, in comparison with faults detected
by standard manual testing.

Following [14], we organized the evaluation by letting param-
eters that control the generation and execution of test suites
be independent variables and the observable effects, such as

number of detected errors, be dependent variables.
We note that using (model) coverage criteria to generate

test suites yields a good trade-off between fault-detection
capability and test suite size, for moderate-to-large size test
suites. A Particularly favourable relationship is exhibited by
the All-Edges criterion. We also note that a more detailed
coverage criterion detects more faults than a less detailed one.
For very large test suites, the coverage is so complete that
the difference between different test strategies (for example,
coverage based vs. random) is not so prominent. Another
finding was that, at least in our case study, model-based testing
discovered faults also in previously well-tested parts of the
application, partly because previous testing had involved a
relaxed validation of requirements. These findings complement
findings by other studies, as discussed in Section V.

Since our evaluation is performed on only a single SUT,
it is of course not clear how well our results generalize to
other software systems. Since a case study of this form is
a very time-consuming endeavour, where significant effort is
required for building a model and for tracing faults, it was
not possible for us to perform similar experiments on other
software modules. We hope that the literature on related case
studies will expand to allow better understanding of strategies
for model-based test suite generation.

Notes on terminology We define a failure to be an observed
deviation between the behavior of the system under test (SUT)
and the A-MLC model. We define a fault to be a cause of a
failure. A modification to the SUT to remove a fault is referred
to as a bug fix.

Outline The paper is organized as follows. Section II presents
the setup of the case study surveying the SUT, the ER-
LANG/EFSM specification of the SUT, and the test execution
environment, Section III contains a description of how faults
are quantified using our framework of bug fixes. In Section IV,
we describe the independent variables, which are test suite
generation strategy (coverage-based, random, or manual) and
the dependent variables, which are number of exposed failures,
number of exposed bug fixes, source code coverage, test suite
size, and execution time. Main results of the experiment are
summarized in Section V, which also contains a summary
of the main findings. We survey related work, in particular
on similar industrial case studies, in Section VI, we report
on related case studies in the literature. Conclusions are
summarized in Section VII.

II. MOBILE ARTS ADVANCED MOBILE LOCATION CENTER

Mobile Arts A-MLC (Advanced Mobile Location Center)
is a middle-ware product to allow Mobile Network Operators
to provide presence data (details about the location, current
status and capabilities) about mobile devices. For example,
an emergency center (i.e., a presence dependent application)
may want to know where a calling user is located, in order to
send the closest available ambulance to the caller. Applications
using A-MLC communicate via MLP [15], an XML based
protocol, over HTTP. A-MLC in turn uses the SS7 protocol



stack to communicate with GSM/UMTS/LTE core network.
See Figure 1 for an illustration. Since AMLC is important for
many applications and the requirements on availability and
fault tolerance are high, careful testing is necessary. A-MLC
is commercially available and has been deployed with several
mobile network operators in Europe and Asia.

GSM/UMTS/LTE
core network

A−MLC

Operator

Presence

Application
Dependent

Fig. 1. An outline of how Mobile Arts A-MLC can communicate with
a presence dependent application and mobile devices using a number of
GSM/UMTS/LTE core network nodes.

The implementation of A-MLC was made mainly in ER-
LANG, utilizing ERLANG OTP, with approximately 130,000
lines of ERLANG code and 5,500 lines of C code. Development
was made in a standard fashion by first creating a requirement
specification. From the set of requirements, a detailed func-
tional specification consisting of a textual description and a
set of Message Sequence Diagrams was created. Finally, the
implementation was based on the detailed functional specifica-
tion. Still, the functional specification evolved simultaneously
with the implementation, sometimes creating problems to keep
the system consistent. Development was also characterized
by lack of resources for testing. It was therefore decided
to formalize the functional specification and complement a
manually created (hand-crafted) test suite with a test suite
based on the formalization.

Before the evaluation A-MLC had been tested in coopera-
tion with a customer and deployed. After deployment followed
development of new functionality before a snapshot was made
for this evaluation.

A. The A-MLC ERLANG/EFSM specification

As a specification language of the SUT we used ER-
LANG/EFSM [12], due to its ability to express communication
behavior at a high level of abstraction. ERLANG/EFSM is
based on the functional language ERLANG and retains fea-
tures such as pattern matching, dynamic typing, and single
assignment variables. For the specification of state machines,

IN:atir/4 OUT:slia/5

IN:atir/4 OUT:ati/1

updating

IN:fsmr/0 OUT:ati/1

IN:atir/4 OUT:slia/5
IN:fsmTimerr/0 OUT:ati/1

IN:atir/4 OUT:slia/5IN:slir/6 OUT:ati/1

IN:slir/6 OUT:sri/1 IN:atir/4 OUT:sri/1IN:slir/6
OUT:fsm/3,fsmTimer/0

IN:srir/3 OUT:fsm/3,fsmTimer/0

idle

last pos

access netparam

force update updated

IN:fsmr/0 OUT:slia/5

IN:fsmr/0 OUT:ati/1

IN:atir/4 OUT:

maybe updated donetimer trig

IN:fsmr/0 OUT:
IN:fsmr/1 OUT:

Fig. 2. A graphical representation of a part of the state machine created for
A-MLC. Note that due to space restrictions some edges are omitted.

ERLANG/EFSM additionally includes constructs for control
locations, state variables, and structured messages.

The (iterative) process of creating the formal specification
took a significant amount of effort. Interpreting the functional
specification and creating an initial model was a tedious
work, caused by the detailed functional specification con-
taining unclear, wrong, or missing information. Additionally,
after executing a test suite, a revealed failure often could be
attributed to an error in the created formal specification.

The A-MLC ERLANG/EFSM specification covers all of the
functionality provided by the detailed functional specification.
Interfaces between A-MLC and its environment (the presence
dependent application and the core network) are implemented
with standard protocols, modeled at the application level. Only
relevant messages in these standard protocols were modeled.
The reaction to non-well-formed messages, was also not
modeled, since it is assumed that they are rejected directly
by the interface. Likewise, the operation and maintenance
interface (for example: counters, alarms, and GUI) is omitted.

The A-MLC ERLANG/EFSM specification also includes a
number of configuration parameters to represent subscriber-
and session-specific data, such as preferred billing method.
These parameters are retrieved from a database at session
initiation.

The resulting A-MLC ERLANG/EFSM specification cap-
tures all possible traffic sequences through A-MLC towards a



presence dependent application, and all relevant operations to-
wards the GSM/UMTS/LTE core network. In total, the model
contains 12 locations, 15 configuration parameters, 11 input
event types and 8 output event types where each event type
have between 0 and 6 event parameters. In total, the model
contains 85, mainly boolean, symbolic input parameters.

The model represent an abstraction of the actual behavior
of the A-MLC. For example, status codes are abstracted to
a few equivalence classes and collected age information on
a location is abstracted into “true” if acceptable and “false”
otherwise.

The model represents the behavior of a single session of
the protocol. It does not model several concurrent sessions,
since ERLANG provides native support for concurrency and
fault isolation between threads.

Figure 2 outlines a part of the state machine created for
A-MLC. Execution starts in idle when an incoming slir/6
occurs. This message includes parameters to control quality of
present data returned, request positioning method and provide
cached address data. In particular it is possible to request the
last cached, or current, presence data. Assuming we want the
current position data we must first force an update by sending a
fsm/3 and move to the force update location. Now assuming
the response fsmr/0 was received in a timely manner we can
request the presence data with a ati/1 message and move to
updated. Finally, when atir/4 is received we are done and can
respond with a slia/5 message back to the presence dependent
application.

B. Test Suite Generation

ERLY MARSH is a tool for model-based test suite generation
and test suite execution. that we use to generate test suites from
from ERLANG/EFSM models. In principle, we can generate
test cases as executions of the ERLANG/EFSM model. Since
the ERLANG/EFSM model is an abstraction of the actual
behavior of a SUT, it follows that the generated test cases
will be at the same level of abstraction. We use the term
abstract test case for such test cases. Actual (concrete) test
cases can be generated from abstract test cases by appropriate
concretization/abstraction functions that are applied during test
execution.

Since abstract test cases correspond to executions of the
ERLANG/EFSM model, we can in principle generate (abstract)
test suites (i.e., sets of abstract test cases) by enumerating
such executions. However, this approach will run into the
well-known state-space explosion problem for large test suites.
We therefore use a symbolic approach, in which symbolic
execution is applied to the ERLANG/EFSM model to generate
so-called symbolic test cases. A symbolic test case essen-
tially consists of a path in the ERLANG/EFSM model and
a symbolic path constraint on the parameters of occurring
input messages. A symbolic test case compactly represents
the set of abstract test cases that can be obtained by assigning
values to input parameters that satisfy the path constraint. For
compact representation of symbolic test cases we use NDDs
(Numerical Decision Diagrams [16]), since many parameters

in the A-MLC ERLANG/EFSM specification range over small
finite domains.

We provide a mechanism for specifying coverage criteria
using observers [13]. Given an observer and a specification, a
test suite can be generated automatically. Essentially, observers
can be seen as an instrumentation of a ERLANG/EFSM model,
given in a defined syntax, which monitor the execution of test
cases and report desired properties, such as contributing to
some coverage criterion. Observers can in principle specify
any coverage criterion, and are therefore a versatile tool for
generating a range of different test suites.

Input events in the abstract test cases in an abstract test suite
are concretized by a SUT specific call-back module, which
replaces abstract parameter values by concrete ones. Similarly,
abstraction of concrete events to abstract output events are
handled by the same call-back module.

C. Test Execution and Verification

For efficient execution of a generated test suite, we must set
up a test harness. When testing the A-MLC, this is complicated
by the fact that the test harness must handle concurrent test
cases. In order to identify which test case each incoming
message belongs to, each test case is assigned a test case
identifier that is embedded within the messages exchanged
between the SUT and its environment.

Messages to/from the core network are simulated by utiliz-
ing ERLANG remote procedure calls between the SUT and
the test harness. Messages to/from the presence dependent
application utilize full implementations of that protocol.

After the test case has finished executing, results are col-
lected and all relevant data stored in a database. Later, after
executing the test suite, this data is used to present the results
to the user via a HTML based user interface.

Use of configuration data, requires the SUT to handle many
concurrent configuration data sets with concurrent execution of
test cases. Fortunately A-MLC supports concurrent execution.

III. MEASURING FAILURES AND FAULTS

One goal of our case study is to evaluate test suites by the
number of detected errors. Moreover, we intend the occurring
errors be errors that remain after some amount of testing in a
realistic industrial project. Therefore, our SUT was not seeded
with any faults. All occurring faults are “real” faults, not (yet)
detected by any other kind of testing. In our view, this allows
a more realistic evaluation of test suites. It also implies that
the errors were not known to us before the case study. Since
our testing is black-box, a test suite can only reveal observable
effects of errors, not the mistake in the source code that caused
the error. We therefore had to trace down the causes of all
observed failures manually. In order to quantify the number of
errors revealed by each test suite, we developed a technique for
automatically determining the number of programming errors
that are exposed by a test suite or test cases, in the form of
bug fixes.

When executing a concrete test case we assume a black-box
view of the SUT and therefore initially only observe failures



(when bug-fixes are introduced they can also be observed).
Recall that a failure is defined to be an observed deviation
between the behavior of the SUT and the A-MLC model and a
fault to be a cause of a failure. Each fault may cause multiple
failures, and each failure may be caused by multiple faults.
Thus, the existence of a failure indicates a need to fix one or
more faults.

In our experiments we wish to study programs containing
multiple faults. This causes additional difficulties as the faults
may be dependent. Thus we cannot decide which faults a
particular test case reveals as the presence of one fault may
prevent another from being detected. Our approach to this
problem is to construct a bug fix for each fault that was
revealed by some observed failure. We also developed a system
for applying any combination of these bug fixes to the SUT,
and rerunning a test suite to see whether failures disappeared.
Then we measure the number of faults detected by a test suite
as the number of bug fixes needed to remove the failures
exposed by the test suite. Thus we use bug fixes as a way
to characterize and quantify faults.

Let us provide some more details on the granularity of bug
fixes. We define an executable statement to be an ERLANG
expression, such as a matching or function call, that may be
executed when the program is executed. A fault must originate
in some executable statement. Thus, we define a bug fix as a
change of an executable statement, to which a fault can be
attributed, into a correctly behaving ERLANG expression.

We used source code coverage as another measure of test
suite effectiveness. To measure source code coverage we used
the COVER tool [17], which measures source code coverage
of ERLANG programs. COVER counts how many times each
executable line of source code is executed when a program is
run. An line is considered to be executable if it it contains an
ERLANG expression such as a matching, guard or a function
call, but lines only containing a comment or a pattern are not
considered to be executable.

IV. PREREQUISITES FOR CASE STUDY

Our case study is based on the hypothesis that test suites
may be of a measurable quality, and that the quality can be
controlled by techniques for generating test suites. Inspired by
Rothermel et al. [14], we therefore organized the evaluation
by defining independent variables, i.e., parameters that control
the generation and execution of test suites, and dependent
variables that measure the quality of a test suite, called
observable effects, such as the measured quality of a test suite,
of the different values of the independent variables.

The independent variables are (A) Test case selection
techniques and (B) Test execution strategies. The dependent
variables are (1) number of failures detected, (2) number of
bug fixes required to remove all faults causing the failures,
(3) source code coverage, (4) size of abstract test suites, and
(5) execution time (for test suite generation and execution). In
the following subsection we discuss the independent variables
in more detail, the dependent variables are further discussed
in Section V.

Hardware used for all test suite generation and test suite
execution was an Asus V1S laptop (Intel Core 2 Duo T7300
2 GHz and 2 GB RAM).

A. Test case selection techniques

In the evaluation, we generated test suites satisfying dif-
ferent coverage criteria. For comparison, we also included a
number of randomly generated test suites of similar sizes, and
a hand-crafted manual test suite.

Coverage-based test suites were generated using the follow-
ing criteria:

• All paths (All-Paths) cover all possible paths by making
an exhaustive unfolding of the branching structure of the
model.

• All locations (All-Locs) cover each location in the source
code at least once.

• All edges (All-Edges) cover each possible edge at least
once; here and “edge” correspond to an exit point of some
transition in the ERLANG/EFSM model.

• All Definition-Use pairs (Def-Use) cover all possible pairs
of definition and usage of a pair of occurrences of a state
variable in the ERLANG/EFSM model.

Each test suite was generated by first generating a suite of
symbolic test cases, from which an abstract test suite with the
chosen coverage can be obtained by instantiating the symbolic
parameters (i.e., input parameters and configuration data) with
values that satisfy the corresponding path constraint. In the
evaluation, the parameter values were chosen at random from
the set of possible satisfying assignments, using a uniform
distribution.

Randomly generated test suites are intended to emulate a
test execution strategy in which the next input message to
A-MLC is chosen at random with a uniform distribution.
Since, at each point during test execution, a vast majority of
input messages are unspecified, it would lead to poor results
to perform random testing by just supplying a sequence of
random input messages. Instead, we let the next input message
be chosen at random from the set of legal inputs at that stage
of test execution. An input is legal if its effect is specified
in the A-MLC specification. Thus, the random test suites can
be said to emulate a ”model-based random test selection”, in
which test selection uses the A-MLC model to obtain the set
of next legal inputs and choose a random next input following
uniform distribution. We first generate the symbolic test suites.
To obtain the effect of selecting among the next input messages
according to a uniform distribution we assign a weight to
each symbolic test case, proportional to the probability that
a randomly generated abstract test case is an instance of this
symbolic test case. Thus abstract test cases are selected in
two steps: (1) Randomly select a symbolic test case with
some probability and (2) from the selected symbolic test case,
randomly chose an abstract test case among those covered by
the selected symbolic test case. In order to make this selection
correspond to a selection in actual random test generation,
we assigned a weight to each symbolic test case, which



is proportional to the probability that a randomly generated
abstract test case (according to the distribution obtained by
selecting each input at random from the set of legal inputs) is
an instance of this symbolic test case.

For comparison, we also created random test suites, where
the selection of test cases used a uniform distribution over all
feasible abstract test cases. This distribution typically gives a
strong bias towards long test cases with many possible values
of input parameters.

Manually generated test suites At the time the evaluated
snapshot of A-MLC was made, not all of the traffic scenarios
found in the functional description had been deployed at a
customer. Therefore, the test suite used at Mobile Arts for
testing A-MLC was limited to 20 test cases, and covered 6 out
of 11 traffic scenarios defined in the functional specification,
representing the most frequently occurring use cases. We will
refer to this limited test suite as Manlim. Manual test cases for
the additional traffic scenarios, were constructed by the first
author following the same patterns as in the Manlim test suite.
The full manual test suite is referred to as Man. Only a few
of these test cases represented error cases.

For the evaluation, these test cases were translated into a
format suitable for ERLY MARSH so that automatic test case
execution, including validation, could be applied. As with the
Randomly generated test suites above, we then first generated
the symbolic test suite with all symbolic test cases (All-Paths),
and then selected matching abstract test cases.

B. Test execution strategies

Since the execution of one test case entails waiting for
(for example) I/O and time-outs, concurrent execution of the
test cases gives a significant speed up, even on single-core
platforms. Each test suite was executed both sequentially (only
a single ERLANG process in the execution of the test cases
could run at any time), and concurrently. Concurrent test
execution was made significantly easier by ERLANGs support
for concurrency and fault isolation.

V. SUMMARY OF EXPERIMENTAL RESULTS

In this section, we summarize the results of our case study.
The purpose of the experiment is to investigate how different
test generation and test execution strategies, represented by
independent variables, influence different properties of test
suites (i.e., failures, faults, source code coverage, abstract
test suite size, and execution time), represented by dependent
variables. Table I summarizes the results for coverage-based
test suite generation, and Table II summarizes the results for
randomly generated test suites. In these tables, we use the
following terminology.

• Failures is the number of different failures exposed,
• Bug fixes is the number of bug fixes required to correct

detected faults; we use this as the number of exposed
faults,

• Code Coverage is the fraction of lines of code covered
for selected ERLANG modules on the SUT, after exclud-
ing code out of scope of the functional model,

TABLE I
SUMMARY OF TEST RESULTS FOR COVERAGE BASED TEST SUITES

GENERATED FOR A-MLC.

Test suite name: All-Locs All-Edges Def-Use All-Paths
Symbolic TC 5 422 6292 82423
Failures 2 12 12 15
Bug fixes 13 78 83 96
Code cov 59.21% 95.49% 94.27% 97.18%
Time gen symb 00:00:17 00:00:19 01:18:23 00:10:57
Time gen abs 00:00:01 00:00:01 00:00:10 00:13:26
Time exe seq 00:00:04 00:06:50 03:54:23 62:00:40
Time exe con 00:00:01 00:00:12 00:03:18 00:55:33

• Test Cases is the number of test cases executed,
• Time gen symb is the time measured for generating the

symbolic test suite,
• Time gen abs is the time measured for generating the

abstract test suite from the obtained symbolic test suite,
• Time exe seq is the time measured to execute the test

suite sequentially, and
• Time exe con is the time measured to execute the test

suite concurrently.

Table I shows the results for coverage based test generation
strategies, for the coverage criteria All-Locs (All locations),
All-Edges (All edges), Def-Use (All Definition-Use pairs), and
All-Paths (All paths). Since, as described in Section II-B, we
only select one abstract test case from each symbolic test case,
and one concrete test case from each abstract, the number of
executed test cases is identical to the number of symbolic test
cases in the test suite. On the other hand, it is interesting to
note, that for our model of A-MLC, there are around 4 ∗ 1011
possible abstract cases that can be generated from the 82, 423
symbolic test cases.

Table II shows the results for a selection of randomly
generated test suites. The notation in the top row is that RndwN
is a random test suite emulating a distribution of type w (where
ew denotes a distribution obtained by selecting each next
input uniformly among legal inputs and tcw denotes a uniform
distribution over all 4 ∗ 1011 abstract test cases), with N test
cases. Here Symbolic TC denotes the number of different
symbolic test cases that are “covered” by the random test
suite, essentially the number of covered paths referred to by the
All-Paths coverage criterion. The reported results are the mean
values of three independently created test suites. Random test
suites were created for several different sizes, for brevity only
a subset are reported in Table II.

The results of running the manually generated tests suites
are shown in Table III.

TABLE III
SUMMARY OF TEST RESULTS ON THE A-MLC FOR MANUAL TEST SUITE.

Test suite name: Man Manlim All-Pathsred

Test cases 50 20 581
Failures 2 2 7
Bug fixes 31 15 41
Code Coverage 80.98% 66.70% 66.33%



TABLE II
SUMMARY OF TEST RESULTS FOR CREATING AND EXECUTING A SELECTION OF THE RANDOM TEST SUITES ON THE A-MLC.

Test suite name: Rndtcw
1k Rndtcw

12k Rndtcw
48k Rndtcw

100k Rndew
1k Rndew

12k Rndew
48k Rndew

100k

Test cases 1000 12,000 48,000 100,000 1000 12,000 48,000 100,000
Symbolic TC 968 8,464 20,276 28,583 313 1195 2361 3283
Failures 12 13 15 15 13 15 15 15
Bug fixes 48 53 57 60 83 98 98 98
Code Coverage 83.08% 86.84% 89.13% 90.76% 96.20% 97.58% 97.55% 97.79%
Time exe con 00:00:46 00:09:02 00:31:59 01:02:00 00:00:14 00:02:56 00:11:01 00:23:55

We were initially surprised by the large number of bug fixes
exposed by Manlim, considering that it had previously been
applied to an earlier version of the SUT. After investigations,
we concluded that the main reason was that previous testing
at Mobile Arts had been concentrated to limited parts of the
SUT, and that the values of several parameters in output events
had not been validated during testing.

In order to better understand the coverage obtained by the
manual test suite, we created a reduced model from the original
specification, by excluding functionality which had previously
been incompletely tested, and relaxing the validation of param-
eters in output events. From this reduced model, we derived
a test suite All-Pathsred with full path coverage, using ERLY
MARSH. The results of applying All-Pathsred are also included
in Table III.

A. Investigation into Exposed Failures

During test suite execution, 15 different failures were ex-
posed. Of the 15 failures, 13 failures consisted in a deviation
in the output generated by the SUT and the output expected
by the model. That is, the SUT either did not generate an
output although one was expected, generated the wrong output
type, or generated an output although none was expected.
Two of these failures were deviations in parameter values.
The effect of these deviations mostly concerned the quality
of reported data: for example, the actual quality of returned
presence data could be incorrectly reported (the age reported
was more recent than the actual age), additional unnecessary
requests for updated presence data would be performed. Thus,
we judged these deviations to have low or middle severity.
The two remaining failures were of high severity. One failure
was essentially a memory leak, which would cause the SUT
to crash after some time, and one failure was an uncaught
exception, which would cause the concerned session to crash
without notifying the environment.

Different test suites found different subsets of the failures
and only the largest, most complete test suites, found all. It can
be noted that the (minimal) All-Locs test suite did not find any
of the highly severe failures. The All-Edges test suite found
almost as many failures as the Def-Use test suite, despite that
test suite included 93% less executed test cases. However, it
did not find the severe memory leak, since this required the
size of the test suite to be at least 1000 test cases.

B. Investigation into Exposed Faults

The number of different exposed faults, measured as bug
fixes, is reported in Tables I, II, and III. In total we found 102
different bug fixes exposed by some test suite. No test suite
found all of these bug fixes.

All-Locs

Def-Use
All-Edges All-Paths

Manlim

Man

Fig. 3. Relative number of different bug fixes exposed when running the
coverage based test suites with the original base model and biased and random
abstract test case selection, random test suites generated using tcw distribution
(Rndtcw100k), and random test suites generated using ew distribution (Rndew100k).
The x-axis shows the number of test cases executed, and the y-axis shows the
percentage of exposed bug fixes (of all 102) that were exposed.

In order to compare test suites by their relation between
cost and benefit, we related the percentage of all 102 bug fixes
exposed by a test suite with the size of that test suite, measured
as the number of test cases. Figure 3 summarizes the results
for the coverage based test suites, a number of random test
suites, and the manually generated test suite. As can be seen in
Figure 3 the coverage-based test suites, with the exception of
All-Locs, performed rather well. We note that the random test
suite using a uniform distribution over all test cases performs
clearly worse than all other test suites for test suites larger
than a few hundred test cases; this is is to be expected since
its bias will leave some parts of the model unexplored. Of
the coverage-based test suites, the All-Edges test suite stands
out by a comparatively good relationship between exposed
faults and test suite size. There was no clear difference in
fault-detection capability between coverage-based and random
test suites of similar size. It should then be remembered that
the random test suites base the selection of next input on
information provided by the A-MLC specification. As the size
of test suites increase, the law of decreasing marginal utility
sets in; larger test suites only give a small improvement in the
number of exposed faults.



It should also be noted that both types of random test
suites detected faults not detected by the manual or any of the
coverage based test suites. Also, the Man test suite exposed
relatively few bug fixes.

Fig. 4. Number of test cases exposing each bug fix when running the All-Paths
test suite with random abstract test case selection. The x-axis shows bug fixes,
each enumerated with a unique integer, and the y-axis shows the number of
test cases exposing a bug fix.

In order to understand whether some faults were harder to
detect than others, Figure 4 shows how many times each bug
fix was exposed when executing the All-Paths test suite. It
can be noted that 9 bug fixes are only exposed by a single test
case. These represent faults than can be assumed to be hard
to detect. On the other hand, a majority of the bug fixes are
exposed by more than a thousand test cases. The most easily
detected bug fix was exposed by 55, 446 test cases.

We also made a further investigation into when, during
the execution of a test suite, new bug fixes were exposed.
Due to the quite different results, with respect to exposing
bug fixes, of the two types of random test suites in Ta-
ble II we expected test case length to influence the results.
To investigate, we executed three of the larger test cases
(All-Paths,Rndew100k,Rndtcw100k) in order of increasing length.
After each test case finished executing, we noted the total
number of bug fixes exposed by the test suite and compared
these results with unsorted test suites. From these executions
it was clear that a sorted All-Paths test suite was clearly
most efficient on exposing bug fixes out of the compared test
suites. Reason for this is likely that there exists faults in many
different parts of the SUT. The All-Paths ensure we visit all
these parts, and by ordering test cases with shortest first we
also visit these parts more randomly than when not sorted.

C. Code coverage

Code coverage of the SUT was measured using the COVER
tool on a set of ERLANG modules, selected because the
functionality described in the A-MLC ERLANG/EFSM was
mainly implemented by these modules. The code coverage tool
measured covered lines in the complete modules, including
e.g., test functions and debugging utilities. After investigation,
we excluded code that could not be exercised by our specifica-
tion, such as unreachable code, diagnostic code, etc. We then
renormalized the code coverage in relation to the test suite

with the reported highest coverage (All-Paths). The results are
shown in Figure 5, presented in a way analogous to Figure 3.

All-Locs

Def-Use
All-Edges All-Paths

Fig. 5. Relative source code coverage when running the random test suites
and the coverage based test suites with the original base model. The x-axis
shows the measured relative coverage and the y-axis shows the number of
test cases executed.

It can be seen that the correlation between test case size
and code coverage is similar to that for number of exposed
faults. In particular, All-Edges stands out as yielding high code
coverage.

All-Locs

Def-Use
All-Edges

All-Paths

Fig. 6. Relation between source code coverage and number of exposed bug
fixes. with the original base model. The x-axis shows the measured relative
coverage and the y-axis shows the percentage of exposed bug fixes.

Figure 6 shows the relation between exposed bug fixes and
source code coverage. As expected, there exists a correlation
such that test suites with large source code coverage also
expose more bug fixes. In general it is also the larger test
suites that perform best, although both Def-Use and All-Edges
perform comparatively well with rather limited sizes of the test
suites.

D. Test Generation and Execution Times

We also briefly comment on the times needed for generation
and execution of test suites as reported in Tables I and II. One
observation is that the generation of the test suite Def-Use
takes significantly longer than the generation of, e.g., the
larger test suite All-Paths. The explanation is that our generic
mechanism for handling coverage, using observers, incurs a
significant overhead, in particular for this coverage criterion.
Another observation is that concurrent test execution saves up
to two orders of magnitude in total test execution time. Such
differences are especially prominent for test cases that involve
timeouts before the test case can continue, which is quite



common in test suites for A-MLC. A deployed A-MLC will
have many concurrent requests running. Thus, in this sense,
by running test cases concurrently the SUT operates in a more
realistic environment.

E. Summary of Main Findings

Let us here summarize main observations and findings from
the results of the case study.

• The test suite All-Edges had a comparatively good rela-
tionship between number of exposed faults and test suite
size; a stronger coverage criterion increases the fault-
detection capability marginally.

• We found no clear difference in power between coverage-
based test suites and randomly generated test suites of the
same size, as measured by the number of detected faults
and source code coverage.

• As the size of test suites increase, the differences between
different test suites decreases.

• Traditional manual testing often does not check that test
outputs correspond completely to requirements. Formal-
izing requirements by a model, and using it for automated
testing, can reveal deficiencies of earlier “sloppy” testing.
We note that this observation need not generalize to other
contexts.

During the evaluation, we found that tool support is essential
for effective test suite generation, test execution, and model
validation. The observation that at least one severe failure was
dependent on the size of the test suite indicates that testing
functional requirements by model-based testing should be
complemented with other types of testing for finding resource
and other non-functional errors, such as memory leaks.

F. Relationship with Other Studies

Let us also compare our findings regarding the power of
coverage-based test suites with findings from other related
studies. Such studies include [8], [10], which differ in that
faults are injected by mutation. Heimdahl et al. [8] generate
coverage-based test suites using a different technique (model
checking) than in our tool. This results in an abundance of
very short test cases, with a modest ability to detect faults.
They explain the poor fault detection ability by observing that
the structure of the system does not well match the coverage
criterion, and that criteria based on decision coverage may be
deficient if they to not force the test suite to exercise relevant
data flows. The findings by Heimdahl et al contrast with the
findings from our case study, in which the coverage-based test
suites perform comparatively well. Contrasting with [8], we
note that our test generation technique, using observers, does
not have an excessive bias towards short test cases, and that the
data flow coverage criterion of Def-Use gives excellent fault
detection power. Poor performance of only coverage-based test
suites was again observed in [10]. Reading this, one possible
explanation is that their counterexample-based technique for
test suite generation creates some bias. It could be the case
that our observer-based technique avoids such bias, but deeper
investigations are needed before this can be confirmed.

VI. RELATED WORK

The literature on model based testing in general is vast,
covering, e.g., supporting techniques for modeling and test
generation (e.g., [18]), tools (e.g., [20]) and integration into
industrial practice (e.g., [22]).

Several works report on industrial case studies with the
aim of comparing it to existing traditional testing approaches.
Among these, the study [23] reports that Spec Explorer is used
extensively internally at Microsoft; among preliminary results
it reports that the application of model based testing techniques
to 125 protocols with an investment of 50 person years
has resulted in a 42% productivity gain when compared to
traditional (manual) testing. Another industrial case study [24],
at Siemens, compares Spec Explorer [5] to ConformiQ Qtronic
[3]; it concludes that these tools deserve to be considered in
industrial projects and identifies some shortcomings, such as
integration with different types of testing (e.g., performance
testing and unit testing), possibilities to optimize test suites
(e.g., by prioritizing test cases and designing better coverage
criteria), and support for round-trip engineering (including
tracing of faults). Pretschner et al. [25] compare model-
based testing with manual testing. They report that test suites
generated from a model found significantly more requirements
faults than manual testing, while the number of detected
programming faults was approximately equal.

In the literature, we did not find too many works that
evaluate different strategies for test suite generation in model
based testing. Many of these evaluate test suites using seeded
faults. Five different case studies are reported in [26], with
test suites ranging from 10 to several hundred test cases.
These case studies use a UML specification and mutated
implementations to compare 5 different coverage criteria. A
conclusion is that a combination of coverage criteria often
performs best. A mutated implementation is also used in
the industrial case study presented by Heimdahl et al. [8].
They find that coverage-based test suites can be poor in
detecting faults, and that randomly generated test suites may
perform better. This study and subsequent work, partly by the
same authors [10], contrast to our findings, as discussed in
Section V-F.

In [27], compares a technique called fault-based testing with
random and manual testing. Fault-based testing is designed to
detect certain specified faults in an implementation, and the
case study confirms that the technique is indeed more effective
than other techniques.

For white-box testing without a model, there are several
comparisons between coverage-based and random testing. As
an example, [28] compares coverage based testing with ran-
dom testing on declarative programs. The results indicate that
random testing is quite ineffective for some benchmarks, while
coverage based techniques catch faults more consistently.

VII. CONCLUSIONS

We have reported from a case study on model-based testing.
The main goals of the case study was to investigate how
different quality attributes of test suites, generated from a



formal model, depend on the strategy used for their generation.
Our intention was to perform this investigation under realistic
industrial conditions. We therefore chose as our object of study
an industrially deployed software component of significant
size, which had been subjected to traditional testing. Moreover,
we wanted detected faults to be faults that typically remain
after some amount of traditional testing. Thus, the case study
was not seeded with any faults: all faults in the test software
were “real” faults, not (yet) detected by traditional testing.

Among our findings was that using (model) coverage criteria
to generate test suites yields a good trade-off between fault-
detection capability and test suite size, for moderate-to-large
size test suites, which outperforms that of randomly generated
test suites. Another finding was that, in our case study,
model-based testing discovered faults also in previously well-
tested parts of the application, partly because previous testing
had involved a relaxed validation of requirements. We could
validate findings by other works concerning the prerequisites
and advantages of model based testing, such as the importance
of automated tool support, including support for presentation
of test results, support for manually defining additional test
cases, etc. The literature also contains studies with findings
that are not consistent with those of ours, although there
are differences that may plausible explain the differences in
findings.

Performing a case study of this form requires a significant
effort for modeling building and tracing of faults. Thus, it has
not been possible to repeat this experiment for other software
modules, implying that our results do not necessarily gener-
alize to other software modules. We hope that the literature
will provide additional reports on case studies that will lead
to a more solid understanding of strategies for test generation
in model based testing.

REFERENCES

[1] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner,
Eds., Model-Based Testing of Reactive Systems, ser. Lecture Notes in
Computer Science. Springer-Verlag, 2004, vol. 3472.

[2] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools
Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2007.

[3] A. Huima, “Implementing Conformiq Qtronic,” in Testing of Software
and Communicating Systems, ser. Lecture Notes in Computer
Science, A. Petrenko, M. Veanes, J. Tretmans, and W. Grieskamp,
Eds., vol. 4581. Springer Berlin / Heidelberg, 2007, pp. 1–12,
10.1007/978-3-540-73066-8 1. [Online]. Available: http://dx.doi.org/10.
1007/978-3-540-73066-8\ 1

[4] A. Belinfante, “Jtorx: A tool for on-line model-driven test derivation
and execution,” in Proceedings of the 16th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, ser.
TACAS’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 266–270.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-12002-2 21

[5] M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N. Tillmann,
and L. Nachmanson, “Model-based testing of object-oriented reactive
systems with Spec Explorer,” in Formal Methods and Testing,
ser. Lecture Notes in Computer Science, R. Hierons, J. Bowen,
and M. Harman, Eds. Springer Berlin / Heidelberg, 2008, vol.
4949, pp. 39–76, 10.1007/978-3-540-78917-8 2. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-78917-8\ 2

[6] H. Zhu, P. Hall, and J. May, “Software unit test coverage and adequacy,”
ACM Computing Surveys, vol. 29, no. 4, pp. 366–427, Dec. 1997.

[7] J. Andrews, L. Briand, Y. Labiche, and A. Namin, “Using mutation
analysis for assessing and comparing testing coverage criteria,” Software
Engineering, IEEE Transactions on, vol. 32, no. 8, pp. 608–624, 2006.

[8] M. P. Heimdahl, D. George, and R. Weber, “Specification test coverage
adequacy criteria=specification test generation Inadequacy criteria?” in
Proc. Eighth IEEE International Symposium on High Assurance Systems
Engineering (HASE ’04), 2004.

[9] M. Staats, G. Gay, M. Whalen, and M. Heimdahl, “On the danger of
coverage directed test case generation,” in Fundamental Approaches
to Software Engineering, ser. Lecture Notes in Computer Science.
Springer, 2012, vol. 7212, pp. 409–424.

[10] J. Blom and B. Jonsson, “Automated Test Generation for Industrial
ERLANG Applications,” in Proc. 2003 ACM SIGPLAN workshop on
Erlang, Uppsala, Sweden, Aug. 2003, pp. 8–14.

[11] J. Blom, “Model-Based Protocol Testing in an ERLANG Environment,”
Ph.D. dissertation, Dept. of Computer Systems, Uppsala University,
Sweden, Uppsala, Sweden, 2016.

[12] J. Blom, A. Hessel, B. Jonsson, and P. Pettersson, “Specifying and
generating test cases using observer automata,” in Proc. FATES, 4th.
International Workshop on Formal Approaches to Testing of Software,
ser. Lecture Notes in Computer Science, vol. 3395. Springer-Verlag,
2004, pp. 125–139.

[13] G. Rothermel, S. Elbaum, A. G. Malishevsky, P. Kallakuri, and X. Qiu,
“On test suite composition and cost-effective regression testing,” ACM
Trans. Softw. Eng. Methodol., vol. 13, no. 3, pp. 277–331, 2004.

[14] Mobile Location Protocol, OMA, Apr. 2004, version 1.1. [Online].
Available: http://openmobilealliance.org/

[15] E. Asarin, M. Bozga, A. Kerbrat, O. Maler, M. Pnueli, and A.
Rasse, “Data structures for the verification of timed automata,” in
Hybrid and Real-Time Systems, O. Maler, Ed. Grenoble, France:
Springer Verlag, LNCS 1201, 1997, pp. 346–360. [Online]. Available:
citeseer.ist.psu.edu/asarin97datastructures.html

[16] Erlang Open Telecom Platform, Ericsson, Oct. 2015. [Online].
Available: http://erlang.org/

[17] J.-C. Fernandez, C. Jard, T. Jéron, and C. Viho, “An experiment
in automatic generation of test suites for protocols with verification
technology,” Science of Computer Programming, vol. 29, 1997.

[18] J. Tretmans and E. Brinksma, “Torx: Automated model-based testing,”
in First European Conference on Model-Driven Software Engineering,
A. Hartman and K. Dussa-Ziegler, Eds., December 2003, pp. 31–43.
[Online]. Available: http://doc.utwente.nl/66990/

[19] P. Santos-Neto, R. F. Resende, and C. Pádua, “An evaluation of a
model-based testing method for information systems,” in Proceedings
of the 2008 ACM symposium on Applied computing, ser. SAC ’08.
New York, NY, USA: ACM, 2008, pp. 770–776. [Online]. Available:
http://doi.acm.org/10.1145/1363686.1363865

[20] W. Grieskamp, N. Kicillof, K. Stobie, and V. Braberman, “Model-based
quality assurance of protocol documentation: Tools and methodology,”
Softw. Test. Verif. Reliab., vol. 21, no. 1, pp. 55–71, Mar. 2011.
[Online]. Available: http://dx.doi.org/10.1002/stvr.427

[21] M. Sarma, P. V. R. Murthy, S. Jell, and A. Ulrich, “Model-based
testing in industry: a case study with two MBT tools,” in Proceedings
of the 5th Workshop on Automation of Software Test, ser. AST ’10.
New York, NY, USA: ACM, 2010, pp. 87–90. [Online]. Available:
http://doi.acm.org/10.1145/1808266.1808279

[22] A. Pretschner, W. Prenninger, S. Wagner, C. Kühnel, M. Baumgartner,
B. Sostawa, R. Zölch, and T. Stauner, “One evaluation of model-based
testing and its automation,” in ICSE ’05: Proceedings of the 27th
international conference on Software engineering. New York, NY,
USA: ACM, 2005, pp. 392–401.

[23] S. Weißleder, “Test models and coverage criteria for automatic model-
based test generation with uml state machines.” Ph.D. dissertation,
Humboldt University of Berlin, 2010.

[24] M. Weiglhofer, B. K. Aichernig, and F. Wotawa, “Fault-based confor-
mance testing in practice.” Int. J. Software and Informatics, vol. 3, no.
2-3, pp. 375–411, 2009.

[25] T. Janhunen, I. Niemelä, J. Oetsch, J. Pührer, and H. Tompits, “Random
vs.structure-based testing of Answer-Set programs: An experimental
comparison,” in Logic Programming and Nonmonotonic Reasoning,
ser. Lecture Notes in Computer Science, J. Delgrande and W. Faber,
Eds. Springer Berlin / Heidelberg, 2011, vol. 6645, pp. 242–247,
10.1007/978-3-642-20895-9 26.


