
ARTES Course 2007. Homework til May 29

Szymanski’s protocol

This problem consists in transferring the pseudocode of a complicated N -way mutual
exclusion algorithm into a model of its implementation. The algorithm in question is the
algorithm by Szymanski. It is intended for an arbitrary number of identical processes,
ordered in a linear array. The process behaviours are defined through a finite set of actions.
An action represents a change of local state of a process. An action may be conditioned
on both the local state of the process, and the context in which it may take place. The
context represents a global condition on the local states of the rest of processes inside the
system. The processes are distinguished by unique indexes (e.g., from 0 to N − 1, where
N is the number of processes.

An idealized pseudo-code for Szymanski’s mutual exclusion algorithm can be given as
follows. In the algorithm, an arbitrary number of processes compete for a critical section.
The local state of each process consists of a control state ranging over the integers from
1 to 7 and of two boolean flags, w and s. A pseudo-code version of the actions of any
process i could look as follows:

1 : await ∀j : j 6= i : ¬sj

2 : wi, si := true, true
3 : if ∃j : j 6= i : (pcj 6= 1) ∧ ¬wj

then si := false, goto 4
else wi := false, goto 5

4 : await ∃j : j 6= i : sj ∧ ¬wj then wi, si := false, true
5 : await ∀j : j 6= i : ¬wj

6 : await ∀j : j < i : ¬sj

7 : si := false, goto 1

For instance, according to the code at line 6, if the control state of a process i is 6, and
if the context is that the value of s is false in all processes to the left, then the control
state of i may be changed to 7. In a similar manner, according to the code at line 4, if
the control state of a process i is 4, and if the context is that there is at least another
process (either to the right or to the left of i) where the value of s is true and the value
of w is false, then the control state and the values of w and s in i may be changed to 5,
false, and true, respectively.

Your problem is to realize this pseudocode by a model of implementation, where the
atomic actions are realistic. I.e., an atomic action may only read or write a single local
variable of one process. Note that the algorithm may work or not work, depending on
how this is done. To check that you have a correct translation, use SPIN to check that the
algorithm enforces mutual exclusion at line 7. Also investigate which guarantees of non-
starvation are given by the algorithm. Of course, SPIN can do this only for a configuration
of a bounded number of processes.

1

Exercise on Temporal Operators.

Since. Consider the new binary temporal operator S , pronounced “since”. Intuitively,
since is the “backwards” analogue of (strong) until. That is, φ1 S φ2 means that the last
occurrence of φ2 was followed by a period of φ1 up to the present from the state after that
where φ2 held. The formal semantics can be described as

• (σ, i) |= φ1 S φ2 iff ∃j ≤ i : (σ, j) |= φ2 and ∀k : j < k ≤ i (σ, k) |= φ1

Your problem is the following:

a) Express 2 (p =⇒ p S q) as a formula containing p, q, and the other temporal
operators that we have used (◦ , 2 , 3 , U , W).

b) Draw a Büchi automaton that accepts the language that satisfies 2 (p =⇒ p S q).

c) Make a never-claim in PROMELA that will check whether a program satisfies
2 (p =⇒ p S q).

Validity of Temporal Formulas

Which of the following temporal logic properties are valid (i.e., holds for any possible
computation)? Here p and q are arbitrary state formulas.

a) 3 p ∧ 2 q ⇔ 3 (p ∧ 2 q)

b) (2 p ∨ 3 q) ⇔ p W (3 q)

c) 3 2 (p =⇒ 2 q) ⇔ (3 2 q ∨ 3 2 (¬p))

d) 3 2 p ∧ 3 2 q ⇔ 3 (2 p ∧ 2 q)

e) 3 p ∧ 2 q ⇔ 2 (3 p ∧ q)

Note that you can use SPIN to do this problem for you (so no risk for mistakes!). Describe
how to do that.

2

