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Abstract—Sensor network macroprogramming methodologies
such as the Abstract Task Graph hold the promise of enabling
high-level sensor network application development. However,
progress in this area is hampered by the scarcity of tools, and
also because of insufficient focus on developing tool support for
programming applications aware of performance requirements.

We present ProFuN TG (Task Graph), a tool for designing sen-
sor network applications using task graphs. ProFuN TG provides
automated task mapping, sensor node firmware macrocompila-
tion, application simulation, deployment, and runtime mainte-
nance capabilities. It allows users to incorporate performance
requirements in the applications, expressed through constraints
on task-to-task dataflows. The tool includes middleware that uses
an efficient flooding-based protocol to set up tasks in the network,
and also enables runtime assurance by keeping track of the
constraint conditions.

We show that the adaptive task reallocation enabled by our
approach can significantly increase application reliability while
decreasing energy consumption: in a network with unreliable
links, we achieve above 99.89 % task-to-task PDR while keeping
the maximal radio duty cycle around 2.0 %.

I. INTRODUCTION

Wireless sensor network (WSN) application developers are
faced with a number of challenges in the process of moving
from a specification of a system to its functioning deployment:

• Create a tailored firmware image for each sensor node in
the network depending on its hardware components and
software configuration.

• Partition the model of the network in logical regions based
on node properties (configuration and other).

• Set up specific application-level tasks on sensor nodes in
the network; control and change them during the network’s
lifetime to improve the reliability and energy efficiency of
the system, e.g. after node failures, sensor hardware failures,
and radio link failures.

• Determine the mappings from these tasks to nodes that have
good probability to satisfy the performance requirements of
the application.

• Throughout the application’s lifetime, either assure the user
that it is still meeting its performance requirements, or report
their violations.

These challenges are typically solved in an application-specific
way; an approach that is both tedious and error prone.

In this paper, we build on the dataflow programming
paradigm and adopt the Abstract Task Graph (ATaG) [1]
WSN macroprogramming methodology. We implement ATaG in

ProFuN TG 1 , a tool that addresses the needs of sensor network
programming, deployment and maintenance. ProFuN TG not
only allows users to describe the functionality of an application
with a task graph, but also comes with support for mapping
these task graphs on network nodes, for macrocompilation of
their code, and for their deployment both on simulated and
real networks.

We go beyond the original specification of the ATaG-based
compilation framework [2] and enable performance-aware
ATaG applications. Our tool supports user-defined application-
level performance requirements that are expressed in form of
constraints on delay and packet delivery rate (PDR), and set on
dataflows between tasks. In this way, we join together existing
ideas about runtime assurance through performance monitoring
[3] with high-level programming support for WSN.

This extension has two implications. Firstly, at the design
stage, these requirements are used by the task mapping
algorithm to rule out potential task mappings that have
insufficient probability to satisfy them. Secondly, during run
time, these requirements are used to enable efficient (i.e.
reactive, rather than continuous) feedback from the network
to the central system. We implement a middleware for the
runtime support; it sets up tasks in the network, manages task-
to-task communication, and determines whether the conditions
of the constraints hold, enabling runtime assurance through
maintenance alert notifications. If configured to do so, it also
periodically collects application performance statistics in the
central system. The alerts and statistics are used for adaptive
task remapping with the dual purpose to satisfy the constraints
and to optimize the system.

We show that the desire for efficiency is not a reason to
eschew high-level programming. Using trace-based evaluation
on a 17-node network with unreliable links, we show that the
tool can set up a unique task on each of nodes in less than 30
seconds, and, by making use of task reallocation on redundant
sensor nodes, keep task-to-task PDR above 99.89 % with the
average radio duty cycle close to 1.0 % and the maximal duty
cycle around 2.0 %. To the best of our knowledge, this is
the first implementation of an ATaG macrocompiler for the
low-power msp430-class motes, as opposed to existing toolkits
that generate Java byte code [4] and have significantly higher
runtime requirements.

1http://parapluu.github.io/profun/
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ProFuN TG is customizable and flexible: we allow the users
to define their own tasks and their own task mapping functions,
and we include support for joining together tasks written in
several distinct programming languages.

The focus of this paper is on the ProFuN TG tool itself. For
a more complete technical explanation and evaluation we refer
the reader to the accompanying technical report [5] and to our
previous work [6] on this topic that covers the middleware
and automated reasoning aspects in more detail. The rest of
this paper includes a conceptual background (Section II); a
high-level description of the tool (Section III); its architectural
overview and a brief description of its main components
(Section IV); an evaluation of the runtime performance (Section
V), and a comparison with related work (Section VI).

II. CONCEPTUAL FOUNDATIONS

A. Programming model

The core concept of ATaG is the task graph (Fig. 1), a
user-defined graph where vertices correspond to abstract tasks
and edges denote dataflows between these tasks. An abstract
task is a clearly defined chunk of functionality with a fixed
interface, such as the number of inputs and outputs. It is similar
to a function in most programming languages. However, tasks
communicate exclusively by message passing; they do not share
state and cannot execute other tasks by using synchronous
function calls. Tasks are annotated with properties, such as its
firing rule (periodic or event-based), its firing period, and
the number of copies to instantiate. Each abstract task is
instantiated on one or more sensor nodes. An abstract dataflow
is a link that connects a pair of abstract tasks. All dataflows
have scope: a property that restricts the maximal distance (in
number of intermediate hops or network regions) between the
source and destination in a communicating pair of instantiated
tasks. A dataflow may also have several constraint properties
(Section II-C), a number of retransmissions property, a datarate
property, and others.

ATaG is a hybrid programming model: the high-level
specification is visual and declarative, while the low-level
code inside the tasks typically is textual and imperative: the
code of the predefined tasks of ProFuN TG is written in C.
However, we also include support for tasks written in another,
declarative, WSN application-specification language SEAL [7].

ProFuN TG provides a number of predefined task types in
several categories: sensors, actuators, data processing tasks,
and other data I/O. While users are free to introduce their
own types of tasks of any category by extending the tool, the
two predefined function task types are unique in the sense that
they can be used to include application-specific code in task
graph instances by using just the visual interface of the tool.
To do that, the user has to provide the name of the function, its
properties (such as the number of inputs and outputs), and its
code. The code of a C function task consists of several separate
blocks, possibly empty, instantiated as separate C language
functions. The functions are: initialization, called when the
task is created; periodic action, called when a timer with the
task’s period expires; data item received, called when a new

input appears; and cleanup, called on termination. All types
of tasks, including the predefined ones, share this division of
runtime functionality.

The second type of supported function task is ProFuN TG
is the SEAL function. SEAL is a WSN-specific node-level
programming language that is compiled to C. SEAL comes
with its own middleware library that implements commonly
required functions, such as logical and arithmetic operations,
data filtering and aggregation functions. Developing tasks in
SEAL has a number of benefits:

• it does not require knowledge of the middleware C API;
• the user is not required to partition the code into several

distinct functions; this is done behind the scenes by the
SEAL compiler;

• it is comparatively much simpler to implement advanced
functionality, e.g. conditional self-rescheduling of the task;

• some classes of potential programming errors are completely
prevented. This includes some errors that would freeze the
whole sensor node; for example, it is not possible to write
a non-interruptible loop in SEAL.

B. Network model

ProFuN TG allows the user to interactively create and refine
a model of the network and its environment (Fig. 2). In this way
the user is able to incorporate not only his initial knowledge
and design assumptions (coming from maps and plans, on-site
surveys and remote sensing, expert opinions etc.), but also
on-going measurements of the network and its environment.

The core of a network model is a set of sensor nodes
connected with radio links. The location of each node is
specified visually, by placing it on a background map. A node
also has a number of other properties, such as its hardware
platform and hardware components. In addition, user defined
properties (in name:value syntax) can be set. For example, the
user may specify one or more location properties, such as the
room and the building in which the node is located.

Each radio link has a number of properties that describe
its quality (e.g. transmission success probability and transport-
layer delay). In the absence of explicit configuration, link
existence and quality parameters are estimated by a network
simulator. They can also be manually entered by the user, or
collected from the network by observing its performance.

We do not restrict these properties to their mathematically
expected values (averages), but instead recognize that they are
random variables, best described by probability distributions.
For a motivating example, consider two imperfect network
links with the same average PDR, one of which has bursty
packet loss, while the other has independently distributed packet
loss. It is clear that the first one is likely to have far higher
variance. Now consider a constraint that bounds the maximal
delay on a dataflow over a link. Since the end-to-end delay
of retransmitted packets is dependent on PDR, this difference
must be taken into account for this constraint.



Fig. 1: The task graph view of ProFuN TG, showing a heating control application

Fig. 2: The network view of ProFuN TG, showing the instantiated task graph of the application mapped on a test network

C. Constraints

One of the novel features of ProFuN TG is its support for end-
to-end data flow constraints between source and destination
tasks. A constraint is described by the minimal acceptable
probability P with which it is predicted to hold in the task-
mapping stage, and a bound C. For an example, let us take
P = 0.98 and Cdelay = 3000 & CPDR = 90%, respectively:

P(Delay < 3000ms) ≥ 0.98

P(PDR > 90%) ≥ 0.98

These constraints serve two roles:
• Predictive: the mapping algorithm takes the constraints

into account and will not produce mappings that violate them.
• Diagnostic: the runtime system continuously tests whether

constraint conditions are met. If this test fails on a node, that
node notifies the central system, which then reallocates tasks.

III. PROFUN TG FUNCTIONALITY

Consider an example application: an indoor heating control
system (Fig. 1). This application has two sensing tasks: tem-
perature and slider (for desired T◦ adjustments), one actuation
task: heater, and several data processing tasks: a function
that averages multiple sensor values, and a PI (proportional-
integral) controller [8] that outputs the intensity of the required
heating, using the difference between the input data and a
reference value describing the desired T◦.

We assume the application is deployed in a building with
several regions (in this example, a region is defined as several
co-located rooms), each of which has several sensor nodes.

The requirements of this application include:
• several types of nodes should be supported: a node equipped

with sensors and a node connected to a heater actuator;
• each region should have at least one active heater task;
• each PI controller should receive input averaged from at

least three temperature tasks located in the same region;
• the delay between the sensor tasks and the processing tasks

should be < 30 s with at least 99.5 % probability;
• the energy consumed by the network should be minimized,

as long as the constraints above are satisfied.
The bulk of the support that ProFuN TG provides to the

user can be separated in three distinct stages: node setup, task
graph design & mapping, and task setup & maintenance. The
tool is designed for and supports iterative development process
(Fig. 3), as observing the operation of a real network will
lead to changes in the network model, additional functional
requirements to modification of the task graph, and hardware
failures to reallocation of tasks.

A. Node setup

In the node programming stage firmware images are created
and programmed on network nodes. ProFuN TG helps to
automate this process by allowing the user to describe the
platform of each network node (from a pre-defined palette),
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Fig. 3: Using ProFuN TG for iterative development workflow

and then to configure the nodes — to specify their hardware
components, their constant properties, and the default values of
their variables. Both template-based configuration of multiple
nodes at once and configuration of a single node are supported.
Taking into account this configuration, ProFuN TG produces
a firmware image for each node and automatically deploys it
on directly connected nodes; over-the-air reprogramming is an
expected future extension of our system.

In the example application, the user starts by defining
templates for sensing nodes and actuating nodes. The descrip-
tions of these templates contain the list of enabled hardware
component drivers and may also contain properties common
to all or most of nodes, such as the identifier of the building.
Then the user defines constant properties on each node, for
example, region identifiers (a scalar property region), and
also variables, such as the desired temperature in a region.

B. Task graph design and mapping

In this stage the user designs the application by connecting
a number of abstract tasks with specific functionality. Sub-
sequently, the tool maps the task graph to a model of the
network. The result is a mapping from the desired application-
level functionality to the available nodes.

Tool support is beneficial when specific relations are desired
between the tasks. For instance, in the example application
the user may want at least three distinct temperature sensor
nodes sending data to each heater node. ProFuN TG allows
to configure these high-level relations easily (i.e., once per
network, not once per each pair of nodes), as well as to
enforce that these relations are met everywhere in the network.
Furthermore, it allows to map tasks only to nodes with a specific
configuration. To do that, the user writes a binary predicate
for a task (i.e., a logical expression on node’s properties); the
predicate is evaluated at the design time and operates as a filter
to produce the set of nodes eligible to host the task.

It is typical for WSN applications to have specific task-to-task
reliability requirements. In the general case it is not possible to
reduce these requirements to a simple metric such as number of
hops between nodes, because there are situations when a single
bad link fails to deliver acceptable PDR, whereas a multihop
path consisting of several good links succeeds. ProFuN TG
combines the user-defined constraints with user-defined network
model to automatically determine optimal mappings of task
pairs that are within bounds of these constraints.

Once the set of nodes suitable for a task has been decided,
that abstract task is mapped on one or more of these nodes
(depending on the number of copies desired) — in other words,
it is instantiated in the model.

In the example application, the user creates a task graph
for the application (Fig. 1) that includes predefined tasks for a
temperature sensor and a PI controller. The parameters of the
controller (Kp and Ki) as well as its default reference value
all are set from the ProFuN TG interface; the reference value
can also be changed by user input at runtime, for example
by using a slider sensor. The user also implements a task for
averaging readings of multiple sensors (including application-
specific decisions on how to handle missing and faulty data),
and task that takes the output of the PI controller and turns
it into a PWM signal (SEAL code in Listing 1). The PWM
signal is used to control the intensity of heating, assuming a
simple heater device that only has two states (on/off ).

Listing 1: Implementation of the heater actuator task
1 // input is received from the PI controller task
2 input TaskGraph(heaterIntensity);
3 // define mapping from 16-bit range to 0%..100% range
4 define heaterIntensityPercent
5 map(heaterIntensity, 0, 0xffff, 0, 100);
6 // define the output pin and mode
7 define HeaterPWM AnalogOut, port 1, pin 2;
8 // read the last received value from cache,
9 // apply the mapping transform, and output result
10 read heaterIntensityPercent, period 15s, out HeaterPWM;

Then the user creates a new constraint describing the bound
on the maximally acceptable delay, and puts it on the dataflow
between the temperature sensor and the average calculator.

Subsequently, the user specifies task frequency properties.
First he must partition the network in regions. Partitioning
is done by writing a Python expression on node properties
(these expressions are evaluated by the Python interpreter). In
the example, the expression is simply region; however, in
contrast to the original ATaG framework [2], more complex
expressions are supported, including arithmetic and tuple
expressions; for example, the pair (building_number,
room_number) is a valid expression — given that both
of these properties are defined on each node. Each of the
(possibly many) partitioning expressions completely separates
the network in non-overlapping regions; all nodes in each
region have the same value of the evaluated expression.

Once the partitioning expression is written, it is named (for
example, “rooms”) and subsequently referenced by its name.



The user completes his design by specifying that all dataflows
are region-local, and, for each task, the number of desired
copies per region: three-per-region frequency for temperature
tasks, one-per-region for all other tasks.

C. Task setup and maintenance

When all the abstract tasks have been mapped on the network
model in a way that satisfies the user, he issues the “Deploy”
command that creates runtime state for the instantiated tasks on
the network nodes, which at this point are executing firmware
images created in the node programming stage. This step is
done both on nodes connected by a cable and wirelessly; it is
automated by the tool. If desired, the complete model can also
be tested in a simulation environment. In this way, the user
can see whether the constraints hold in the simulator.

The following management command types are used: {add,
remove} a task; set parameters for a task; {add, remove} a
dataflow; {add, remove} a constraint; {add, remove} binding
of a task on a node. The commands are sorted in classes
to guarantee that, for example, a constraint condition on a
dataflow is not evaluated before the dataflow itself has been set
up. All commands from a single class must be acknowledged
by destination nodes before commands from the next class may
be sent. The order of the classes are: (1) commands that remove
constraints; (2) commands that instantiate dataflows; (3) all
other commands, except (4) commands that add constraints.
Additionally, if an existing task is reallocated on a different
node, an attempt to remove it from the old node is only made
after an ACK has been received from the new node. As message
loss is possible and probable in a WSN, all commands of
the task setup protocol are designed to be idempotent: i.e.,
receiving and processing the same command more than once
has no effects on the application functionality.

To assure that the application is working correctly, the
ProFuN TG runtime middleware running on the nodes gathers
application performance statistics and determines whether con-
straint conditions hold, enabling maintenance alert notifications,
as well as automated maintenance through task remapping.

Alternatively, more computationally and data-intensive fault
detection can be done on server-side hardware, by using either
application-specific or third party tools, such as The Universal
Translator (UT3) [9]. ProFuN TG provides an HTTP API
through which these tools can: (1) continuously poll the gateway
server instance for sensor data, and (2) send alert notifications
directly to the front-end, requesting sensor blacklisting and
task remapping in case a fault is detected.

IV. ARCHITECTURE AND COMPONENTS

The main software components of ProFuN TG are: (1) fron-
tend web interface; (2) task allocator daemon; (3) gateway
server; (4) runtime middleware; (5) WSN simulator. Under the
hood, ProFuN TG uses a number of well-known software tools
and libraries: Contiki for system-level functionality, Cooja [10]
for network simulation and as a generic interface to platform-
specific firmware compilers, Gecode 2 for constraint solving

2http://www.gecode.org
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(used in the task allocation algorithm), and an adapted version
of Node-RED 3 for the visual frontend.

ProFuN TG joins these components in a distributed microser-
vice architecture (Fig. 4). The components communicate by
passing asynchronous JSON requests through HTTP, with the
exception of the WSN middleware, which uses an efficient
binary data format. Each of the main components can be run
on a separate computer as long as they can reach one another.

Since an HTTP message may time out at any point, the
system must remain reliable under presence of lost messages.
Furthermore, we want the system to be able to transparently
handle component restarts. These properties is achieved by
periodically (by default, every second) exchanging the whole
model 4 between the components. It is feasible due to the
compact JSON data format: for example, a 100 node network
with 20 tasks is described by just a 12 KB large JSON file.

A. Automated task allocation

The task allocation takes place in two stages. First, the input
model is validated and preprocessed by a Python daemon
that evaluates the user-defined predicates and partitioning
expressions. Then, the daemon executes a C++ application
that takes the preprocessed model as its input. The role of
this C++ application is to utilize the Gecode search API to
find one of the globally optimal solutions to the task mapping
problem; the details of the allocation algorithm are described
in the accompanying technical report [5].

By default, the objective function that the allocation algo-
rithm attempts to minimize is the total energy consumption for

3http://nodered.org
4Documented in http://parapluu.github.io/profun/files/profun-schema.json
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communication in the network. It is calculated as the sum of
costs of all active dataflows. The cost of a dataflow is defined
as the sum of the costs of all links the dataflow has to cross
(according to pre-computed shortest path information) to get
from the node on which the source task is mapped to the
node on which the destination task is mapped. The shortest
path algorithm uses an abstract metric supplied in the network
model for each link; it may be simple hop count or ETX.

A few other predefined objective functions are available,
such as: “minimize the maximal energy consumption for nodes
in the network”, and “maximize the least remaining energy after
a user-defined time period”. The users can supply their own
objective functions by writing C++ code in the web interface.

B. Macrocompilation of node firmware images
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Fig. 5: The macroprogramming process in ProFuN TG

We use two-stage compilation (Fig. 5 ) to build the
configuration-dependent firmware images of the WSN nodes.
The first stage takes templatized C source files and C code
build scripts (Makefiles) and evaluates them using Jinja2
templating library, replacing the template patterns in the files
with variables supplied by the frontend. The result of this first
stage is a main.c file and a Makefile for each type of
firmware image. If SEAL functions are present in the task
graph, their code is also compiled to C files in this stage.

The second stage is a regular compilation process that
generates the hardware-specific executable images. This process
is outsourced to the Cooja simulator, which is capable of
building arbitrary applications given a build script and source
files. Briefly put, it compiles and links together the generated
C files, the ProFuN TG middleware library, and Contiki system
code to create a distinct firmware image for each node type.

C. ProFuN TG middleware

The runtime middleware (see also [6]) is a C library built
on top of Contiki OS. It manages the runtime state of the task
graph and also includes hardware-specific implementations of
predefined tasks. The initial implementation is tailored towards
msp430 MCU based sensor nodes.

There are three distinct traffic patterns in our system: data
dissemination, data collection, and node-to-node traffic. The
first pattern is used to set up tasks and other dynamic state
on network nodes. The second pattern is used to send data
and status messages from the network to the gateway node.
The third pattern is used by application-specific task-to-task
dataflows described by the task graph.

ProFuN TG uses a Glossy [11] based scheduler for the
data dissemination and data collection traffic patterns, and
Contiki Rime stack for the task-to-task traffic pattern. The
scheduler is completely gateway-controlled. It has support for
two phases: periodic schedule phase, in which all nodes can
originate messages to gateway periodically, and target-specific
traffic phase, in which only the gateway originates messages
periodically, while nodes originate messages only if they have
data to send and the gateway has explicitly scheduled them to
do so. The periodic schedule phase is suitable for the initial
setup of the task graph and for collection of alert and data
messages coming from nodes en masse. The target-specific
phase is suitable for making minor adjustments to the task
graph, and is significantly more energy efficient. Setting up
a task on a single node in this phase is much faster, as the
node sends an ACK immediately, without waiting up to several
seconds for its periodic schedule slot. However, when in this
phase, nodes may have to use other protocols (such as collect)
to send data to the gateway on their own initiative.

The middleware uses Contiki timing events to schedule
execution of periodic tasks, and a custom Contiki process
event to notify event-based tasks about incoming new data.
The functions of tasks must run to completion; in other words,
they are not interruptible by other tasks and are not allowed to
voluntarily yield during execution. However, this limitation can
be overcomed at the level of task implementations: task code is
allowed to make use of WSN operating system services, such
as threads or protothreads, to provide asynchronous interface
to access long-running operations.

To detect violations of constraint conditions, the middleware
keeps track of performance history for each constraint on each
active dataflow at its destination node. The history is kept either
as bit-buffer marking which packets have been received, or as a
scalar EWMA (exponentially weighted moving average) value
of past performance, depending on a configuration option.
There is also a compile-time option to collect hop-by-hop
performance statistics in the central system.

V. EVALUATION OF THE RUNTIME SYSTEM

We attempt to answer two questions: (1) what is the overhead
and timing characteristics of the centrally managed task setup
mechanism, and (2) what are the gains from task reallocation
in a network with unreliable and dynamically changing links?

We use trace based simulations of the test network (Fig. 2):
with the help of the RealSim plugin [12] we replay packet traces
from IEEE 802.15.4 channel 20 we recorded [5] in a typical
working day (27th January 2015) when heavy WiFi activity was
present in some regions during daytime and caused significant
WSN link quality deterioration because of interference.
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Fig. 6: Performance of the task management protocol

A. Task setup

We compare the time required to set up tasks in the test
network (Fig. 2) when using the Rime mesh-based and a Glossy-
based implementations of the management protocol. For the
former, we compare the performance of two cases: (1) all
nodes start with empty routing tables, and (2) static routes are
pre-installed along the forwarding path. The second approach
leads to higher performance, but it is not going to scale, as
nodes do not have enough RAM to keep routing tables for large
networks in memory. We use Glossy with 4-second rounds,
each of which has 14 flooding slots: 6 for the gateway and 8
for a maximum of 4 nodes.

We perform two types of experiments: (1) set up a single
task on a specific node, (2) set up a single, but unique task on
each of nodes. We run each test for 5 minutes (using traces
starting at 12:00, 27th January), and repeat each test 3 times
for each node. All “create task” messages are continuously
retransmitted by the gateway until they are ACKed by the
endpoint. The end-to-end retransmission timer is set to 15
seconds; each of these end-to-end messages additionally are
allowed to use up to 15 hop-to-hop retransmissions. Otherwise
we use the Contiki default settings, and report the duty cycles
of the whole 5-minute period.

Figure 6 shows that the performance of Glossy is more
predictable: the maximum time required to set up a single
task (4.2 sec and 16.0 sec) is smaller than that for Rime with
static routes (47.5 sec), even though the average time is longer.
Unlike Glossy, static routing would neither scale nor be able
to handle changes in network topology. Furthermore, Glossy is
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Fig. 7: The effect from adaptations via task reallocation

also capable on setting up a task on each of the nodes in less
than 30 seconds, something that Rime without static routes is
not capable of doing within the 5 minute cutoff time (therefore
not included in Fig. 6).

The benefits of Glossy come with a larger energy cost
(average, not maximal!) unless the one-direction-only target-
specific schedule is used. To counter this, we have also
implemented an adaptive version in which the gateway turns off
Glossy on nodes after the tasks have been set up; it demonstrates
the best energy efficiency of all (Fig. 6); however, the current
evaluation does not take into account the energy consumption
required to adaptively start Glossy on all the nodes. It remains
to be seen whether the cost of starting up Glossy when-needed
in the whole network is small enough for this approach to be
feasible in realistic applications.

B. Task reallocation for constraint satisfaction

We use the example application (Section III) mapped on the
network similarly as shown in Figure 2. However, in contrast to
the figure, we assume that temperature data is highly correlated
within each region, so that receiving data just from one sensor
node is sufficient for the actuator node. This models a scenario
with redundant hardware nodes. We assume that to ensure the
comfort of inhabitants the heater node requires T◦ data with
delay no larger than 30 sec. To adaptively keep the application
within this constraint, we instantiate a more strict (2000 ms)
delay constraint in order to predict the performance of the
30-second constraint, as this approach gives good results [5].

We select three actuator nodes (105, 107, and 110 in Fig. 2),
each having three potential sensor nodes as data sources. On



violation of the 2000 ms constraint, the actuator node sends an
alert to the central system and resets the state of the constraint
(to avoid excessive alert flooding). The central system then
reallocates the source task to another candidate node; less
frequently and less recently failing nodes are preferred.

We repeat the test 3 times for each of the nine candidate
nodes, producing temperature data messages with 15 s interval,
and present simulation results (Fig. 7) using packet traces from
a 24-hour period (January 27th, 2015) for each test.

Without either task reallocation or duplication, only 60 %
of the experiments show “good” results (do not violate the
constraint for >1% of time). With reallocation, the maximal
violation is below 0.1 %. Non-adaptive task duplication on
two nodes increases the probability that the constraint is
satisfied; however, that technique is not sufficient in the
3 out of 27 experiments when both active sensor nodes
happen to have bad links. In contrast, the adaptive approach
achieves very high PDR (99.89 %) even in the worst case.
Furthermore, it also demonstrates much better energy efficiency
compared to the others, as the overhead for control traffic is
negligible: 0.30 application-level end-to-end messages (not
counting retransmissions) per hour per actuator on average,
and 0.38 during the most erratic experiment.

We note that ProFuN TG is capable of making use of
dynamically constructed link metrics to implement better
and more sophisticated reallocation policies; however, these
experiments show that the reallocation approach leads to
application performance boost even when a very small amount
of network state is transferred to the central system. Here it is
just a single bit of information: the constraint failure status.

Arguably, the results are dependent on the existence of at
least one good path from a sensor node and an actuator node
in each region of the network. The redundant sensor nodes
should be placed in a way that provides spatial diversity while
still keeping the environmental variables of interest sufficiently
correlated on all of them. If this setup is not possible, or the
redundant nodes have not been installed, then ProFuN TG is
not capable of delivering good performance; however, it still
makes itself useful by delivering alert messages to the central
system, where they can be observed by a human operator and
used to make control decisions.

C. The performance of the frontend

The user interface as such is capable of handling large
networks, as long as the task graph remains relatively simple.
For example, if a single task is set up on each node, the time for
full task allocation from sending a JSON data to the reception
of the reply is 249 ms for a 100-node 1000-link network. (This
and other results in this subsection are obtained on a desktop
system with Intel Core i7 3.4 GHz CPU.)

For larger networks the time to calculate the shortest-path
routing tables is the main bottleneck. We use the Floyd-Warshall
algorithm, which has O(|N |3) complexity for calculating the
routing tables (where N is the set of nodes). For a 1000-node
network the whole process takes approximately one minute.

Specifically the visual interface is also capable of handling
large networks. It redraws a 1000-node network (without any
links) in 6.4 ms, and a 100-node 1000-link network in 60.4 ms.

VI. RELATED WORK

There is a large body of work on high-level programming
for sensor networks; however, tolerance to failures has been
noted as an open research issue [13].

We chose ATaG as the underlying formalism because
it naturally allows to increase dependability of sensornet
applications: at runtime, by remapping tasks to other nodes in
case of failure, and at design time, by allowing the programmer
to use redundant hardware nodes for additional copies of tasks.
makeSense [14] is a high-level WSN programming toolkit

that includes dynamic runtime adaptation to application goals.
The adaptations are relevant to specific parts of the system,
and are based on performance annotations expressed by users
in the application code. Dynamic information about the state
of the network is collected in a central system, which then
attempts to maximize an objective function defined on the
network. However, makeSense does not use constraint solving,
but instead relies on Monte Carlo reinforcement learning [14]
through repeated simulations, therefore is a black-box approach
in which integration of expert knowledge is not easily possible.
Furthermore, it requires more extensive information about the
network state to enable adaptations, while our solution in the
typical case of periodic task-to-task traffic requires sending of
only a single alert message from the network.

Srijan toolkit [4] is a graphical ATaG macroprogramming
system. In contrast to ProFuN TG, it is missing the features
introduced by the constraints: both the predictive aspect at
design time and the diagnostic aspect at runtime. Unlike
ProFuN TG, in Srijan it is not possible to express even simple
dataflow instantiation rules, e.g. require that the endpoints
are directly connected. Furthermore, in Srijan, tasks must
be implemented in Java and require the presence of JVM
at runtime.

Both Srijan and makeSense support the LogicalNeighbor-
hoods (LN) [15] programming abstraction that includes support
for data-dependent routing. In contrast, the dataflows and
regions in ProFuN TG are determined by the central system, and
routing is managed by the Contiki OS. LN both requires a more
heavyweight runtime system and complicates the reasoning
about the network state, therefore conflicts with our goals to
support performance prediction and monitoring.

We took the general idea of user-defined probabilistic end-
to-end constraints from Bijarbooneh et al. [16]. However, their
model does not include probabilistic properties on network
links, and their design-time constraint satisfaction checker
cannot differentiate between single-hop and multihop dataflows.

As opposed to the original ATaG, we do not include Abstract
Data Items in our task graphs, so our model loses the ability
to visually specify more advanced relationship between tasks,
such as the parent-child aggregation relationship. The gain
from this simplification is a less cluttered visual layout: for
example, the example application (Section III) is described by



just 9 visual elements (5 tasks and 4 dataflows) in ProFuN TG,
but would require additional 4 data items and 4 dataflows if the
original ATaG was used. In contrast to the lost functionality,
this gain is relevant to all task graphs with any connected tasks.

The user interface of the task graph design view is adapted
from Node-RED. However, Node-RED does not include
predictive or adaptive aspects. Also, its runtime requires a
JavaScript interpreter, therefore is not feasible on sensor nodes.

Redundancy in conjunction with a centralized control plane is
heavily exploited by the two competing standards in the area of
WSN for industrial monitoring and automation: WirelessHART
[17] and ISA100.11a [18]. However, these systems do not
have the concept of a task, therefore they are not able
to offer automated application-level task reallocation and
duplication. Furthermore, they are much more heavyweight,
while our runtime system uses a reactively-adaptive approach
and therefore does not require collection of extensive network
state in a central controller.

There are also deployment and experimentation support
systems such as DREAMS [19] and MakeSense [20], and
runtime assurance systems such as the ones developed by
Wu et al. [21] and Fairbairn et al. [3], but they all lack the
abstraction of a task, therefore do not enable performance
adaptations through task reallocation.

VII. CONCLUDING REMARKS

ProFuN TG joins together support for high-level program-
ming using ATaG with performance prediction and runtime
assurance capabilities. It achieves that by allowing the user
to write PDR and delay constraints on dataflows between
tasks. The tool enables deployment and maintenance of WSN
applications by providing a middleware that manages the
runtime state of tasks and constraint conditions, and triggers
reallocation in case a constraint violation is detected.

Our trace-based evaluation using data from a 17-node
interference-exposed test network shows that the task setup pro-
tocol instantiates runtime tasks on all nodes within 30 seconds,
making the reallocation approach feasible in hard-to-predict,
erratic real-world environments, and that our adaptive task
reallocation approach improves application-level performance
in presence of unreliable links by exploiting node redundancy.
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