
SEAL: a Domain-Specific Language for Novice
Wireless Sensor Network Programmers

Atis Elsts∗†, Janis Judvaitis∗† and Leo Selavo∗†
∗Faculty of Computer Science

University of Latvia
†Institute of Electronics and Computer Science

Riga, Latvia
Email:{atis.elsts,janis.judvaitis,selavo}@edi.lv

Abstract—A lot of the prospective wireless sensor
network users are novice programmers. Their expe-
rience in general-purpose programming languages is
either limited or completely nonexistent. There are
both financial and scientific incentives to empower
these users and allow them to write sensor network
applications on their own, rather than having to rely
on a qualified computer science professional.

We present SEAL, a sensor network programming
language designed for novice programmers. SEAL
manages to avoid computer science concepts that are
hard to grasp for novices, while remaining suitable
for typical sensor network application scenarios. The
language is extensible in application-specific way,
has easy-to-learn syntax and allows to implement
common sensor network tasks by writing compact,
readable code. It is also shown to have high run-time
efficiency.

I. Introduction

Wireless sensor networks (WSN) is a technology envi-
sioned as a practical tool for a broad range of applica-
tions and target audiences. Nevertheless, sensor network
applications at the moment are usually developed by
the computer science professional. This approach is both
cost-ineffective and restrictive to the sensor network
end user, who has limited programming skills. First, it
requires participation of a qualified computer scientist
in the sensor network development and deployment pro-
cesses. Second, it requires constant availability of the
professional to perform maintenance operations on-site.
Finally, it puts the domain expert in the role of a passive
user rather than an active contributor.

Up to this date no single novice-friendly programming
toolkit, abstraction or methodology has gained signif-
icant recognition. There are several possible reasons.
First, the early research had theoretical emphasis. From
28 WSN programming abstractions reviewed in a recent
survey [17] only approximately half have real hardware
implementations, and only one has been used in a real-
world deployment [17]. Second, many of the abstractions
require prerequisites that are not realistic for application
domain experts; for instance, knowledge of functional

programming, logical programming, or the C program-
ming language. Third, many are either limited by design
to only a particular kind of WSN applications [7] [14],
or only solve a particular programming problem.

Inspired by the work done in novice programming
research [15] [18] [19] [20], we propose SEAL: a program-
ming language and development environment for WSN
application development.

Our contribution is to show that even a very restricted
language with no loops or recursion can handle the
domain requirements well enough, enabling WSN appli-
cation programming for people who do not want to learn
numerous computer science concepts first.

SEAL features novel declarative syntax that allows
to describe typical sensor network applications [22] in
compact code with low complexity (Section V-A). SEAL
transparently includes common control flow elements of
WSN applications, such as setting up event handlers and
switching to low-power modes, and allows the program-
mer to focus on the application logic itself: sensor data
reading, processing, and dissemination (Fig. 1).

Data collection Data processing Data storage &
dissemination

Light

Analog inputs

Temperature

Humidity

Digital inputs

Network packets

Data flow direction

File system

Serial interface

SD card

Flash chip

Network

Actuators

Figure 1: Typical data flow in a sensor node
A SEAL application consists of component use cases

and their parameters (Section IV). SEAL allows the
domain expert to think in terms that either are already
familiar to her, or have concrete real-world counterparts
(such as physical sensors). For example, SEAL has sup-
port for numeric literals with custom suffixes, allowing
the user to specify constants in physical units (such as
degrees or luxes) rather than raw sensor readings.

SEAL code is compiled to C and typically adds only a
small overhead (Section V-B). Therefore the code writ-
ten by novice users can be used not only for prototypes
and for learning, but also for real world deployments.

II. Approach
This paper implements ideas discussed in Elsts et

al. [9]. We briefly reiterate them here and present new
aspects, such as the need for extensibility, concluding
with a set of design decisions.

A. Novice programmers
Many of the prospective sensor network users are not

only experts of their respective application domains, but
also novice programmers. It takes about 10 years to
turn into an expert programmer [20]. Therefore, the gap
between beginners and experts is huge. However, many
of the issues that novices face are related explicitly to
imperative languages: “poor grasp of the basic sequential
nature of program execution”, loops and conditionals,
the use of arrays, recursion, and especially “issues re-
lating to flow of control”. Most of these issues are not
present in a declarative language without recursion.

Design of SEAL is also influenced by other issues faced
by the novice programmers [19], and by programming
tools suitable for them [15] [18].

B. Domain specific languages
Three common approaches for domain-specific pro-

gramming exist: software libraries, embedded domain-
specific languages, and domain-specific languages (DSL).
It is generally believed that “programs written in a
DSL [..] can often be written by non-programmers”
[11]. DSL allows direct mapping between domain objects
& processes and language elements. The result is the
desired: abstractions with real-world counterparts.

In contrast, a general purpose programming language
such as C would confuse the novice user by low-level
details, for example, pointer semantics or alignment of
fields in structures. Higher-level languages like Java or
Python still require understanding of computer science
concepts, such as loops and recursion.

One common problem from which DSL suffer is that
of extensibility [23]. This is especially important because
a lot of WSN applications use custom hardware [22].
Therefore the DSL should be designed in away that
custom extensions can be added easily (without compiler
modifications).

C. Separating user code from system code
Some aspects of WSN system programming are likely

to remain complex. Nevertheless, the application logic of
real-world WSN applications often is trivial [22]. There-
fore, there is a need for clear demarcation line between
system code and user code. The system code is written
by the WSN professional; it describes internal mech-
anisms of the WSN operating system, device drivers,
and distributed algorithms. The user code describes
application logic for sense-and-send or event detection,

as well as basic data processing, such as aggregation and
filtering. It uses the system code to achieve its goals, but
abstracts away from low level details of the latter.

D. Declarative or imperative?
Imperative languages (such as BASIC) are common

for teaching novice programmers. They allow to have
clear mapping between the source code and the execu-
tion flow. However, we argue that a declarative language
is preferable in the context of our work.

First, many WSN applications are event-based, which
means that an imperative language will fail to reflect the
execution flow as well. Rather, such a language would
require explicit setup of event handling functions. If an
imperative language and a polling-based approach is
used, there are other issues: in this case a global exe-
cution loop is required, and low power mode semantics
becomes explicit. A WSN-specific declarative language
can hide all of the three: low level details of event
handling, the global loop, and low-power mode usage.

Second, there is the question of efficiency. In an im-
perative language, the behavior of a WSN node (e.g. the
radio channel) can be set by modifying a variable or by
changing some hardware state. This requires run-time
overhead, code memory overhead, and, in the former
case, RAM overhead as well. Declarative language allows
to declare the behavior of the system. An advanced
compiler can analyze this declaration and implement it
in the compile time, avoiding any run-time overhead,
except for hardware initialization. For embedded soft-
ware, efficiency is often more important than run-time
flexibility!

At the same time, several typical WSN applications
(for example, event detection based on sensor readings)
are naturally expressed using finite state-machine ab-
straction, which is hard to implement in a declarative
fashion. Therefore, a hybrid language that allows to
describe global system states is preferable.

E. The design decisions of SEAL
• It should be a DSL. Rationale: minimize client effort.
• Low level concepts should not be available (from the

language). Rationale: limit the number of choices.
• Concepts with steep learning curves should be absent

or not mandatory. Rationale: the novice user should
be able to learn the toolset “on the fly”.

• The expressiveness should be limited to application
logic, not system logic. Rationale: see Section II-C.

• Make commonly used patterns (the global loop, event
handler setup, using low-power modes) implicit. Ra-
tionale: shorter, cleaner code. Studies show that novice
users are confused by the semantics of low-power
modes [16].

• Make examples easy to access. Rationale: see [18].
• Do as much as possible at compile time. Rationale: see

Section II-D.
• There should be a choice between textual and visual

programming. Rationale: none of the two choices are
superlative [19].

III. Related work
There are few sensor network programming languages

that take into account novice programming research.
From these, SensorBASIC [16] is an imperative language
with large interpreter overhead. WASP [7] is limited to
a single application archetype.

TinyScript [13] is imperative, event-driven and re-
quires use of multiple source files even for simple ap-
plications.

makeSense [8] is a new development with objectives
similar to ours, but their target audience is different:
users familiar with Business Process Modelling Language
(BPML), rather than domain scientists & practitioners.

Multiple integrated, higher-level programming and
data querying interfaces for sensor networks exists,
TinyDB [14] being the most prominent, but they lack
the generality we are looking for.

Similar arguments stand against sensor network pro-
gramming using Web service architectures. (At least
the currently existing.) For example, TinySOA [6] is
too limiting as it offers no support for in-network data
processing.

Sensor networks can be programmed in general pur-
pose high-level languages such as Java [21] or Python
[5], but none of these options have gained high accep-
tance. First, they are heavyweight; second, unsuitable
for novice programmers, as they presuppose existing
programming language knowledge.

As for the existing WSN macroprogramming and
distributed processing abstractions [17]: they can be put
on layers below or above SEAL. We aim to complement,
rather than to replace them.

IV. Design and implementation

Listing 1: Temperature monitoring application
1 read Temperature , period 10s;
2 output Network ;
3 when Temperature > 40C:
4 use RedLed , on;
5 end

Consider the example application in Listing 1. The
code reads temperature with 10 second period and out-
puts the result to the network. It also monitors whether
the temperature is above 40° Celsius and turns the red
LED on when this alarm condition is reached. Predefined
suffixes, such as ’s’ and ’C’ are used to specify physical
units. The code generator automatically converts from

these human-readable values to raw sensor readings.
(Similar conversions cannot always be done with, for ex-
ample, the C preprocessor, as it is not Turing-complete.)

A. Overview
The SEAL code is characterized by periodic execution

flow. At the high level, the code is structured in branches:
groups of statements. An active branch is a branch
whose statements are executing (periodically). An in-
active branch starts execution whenever all conditions
that enclose it are satisfied. An active branch finishes
execution either when all the statements in the branch
have executed fixed number of times (as specified in
parameters), or some of the conditions enclosing the
branch are not satisfied anymore. Subbranches are cre-
ated and controlled using specific statement types: when
statements and do statements.

There are only two types of executable statements:
component use cases and set statements. The former
are executed periodically by default, the latter: just once.
The rest of statements define or structure something.

Table I shows language elements and their usage. The
complete grammar of SEAL is available at [4].

There are three component types in SEAL: sensors
(their “use” action is to read and return a value), actu-
ators (their action: component-specific activation), and
outputs (action: print, store or send sensor values, once
they become available). Active outputs process values
of all currently active sensors (unless specific subset of
sensors is listed in parameters of the output’s use case).

SEAL is ultimately constrained by the fact that it is
not Turing-complete. Predefined functions can be used
and parametrized, but no new functions can be defined
at the language level.

B. Component library and runtime
The code written in SEAL relies on an operating

system services for runtime execution support. The OS
behind SEAL at the moment is MansOS, and the C
code generated by SEAL compiler uses MansOS net-
working services, sensor drivers, permanent data storage
library etc. However, there are no conceptual obstacles
why another WSN OS could not be used, as long as
implements at least software timers and a few of SEAL
components. There is a proof-of-concept implementation
of SEAL subset in Contiki [9].

Between the operating system and the elements of
SEAL there is a middle layer: a component library, writ-
ten in Python. Each SEAL component corresponds to a
Python class, and each hardware platform corresponds
to a Python module; class inheritance is heavily used. If
a new component has to be added, only 5–10 additional
lines of Python code are required. Furthermore, the new
code is not required to be placed in the main component

Element Description Templatized examples

Component
use case

Specifies that the named component should be used (read
or activated) in the current code branch, using the specific
parameters supplied in parameter list. Starts with keyword
use (can be replaced by read as a synonym for sensors, and
by output as a synonym for system outputs), followed by the
name of the component and list of parameters. The comma-
separated parameters may include usage period, number of
times to execute, and component-specific parameters.

// light up the default LED
use Led, period 1000ms, once;
// “use” (i.e. read) temperature sensor periodically
read Temperature;
// “use” (i.e. output to) the network;
// enable checksumming and select TDMA MAC protocol
output Network, checksum, protocol TDMA;

when
statement

Determines which subbranches to execute depending on con-
ditional expressions. A subbranch of a when statement is active
whenever the condition that is associated with it (defined
immediately after the opening when/elsewhen keyword) is sat-
isfied, and no conditions associated with previously defined
subbranches of this when statement are satisfied. There must be
exactly one when subbranch, and can be zero or more elsewhen
subbranches as well. The else subbranch has no associated
condition. If present, it always must be the last.
SEAL is flexible with regard to what can be used as a con-
ditional expression. It can be a literal, a symbolic constant,
system state, a (function of) sensor value, or any syntactically
valid combination of the options, constructed using compari-
son operators and logical connectives. In the end, any nonzero
integer value maps to Boolean true, zero – to false.

when <condition_1>:
// executed when <condition_1> is true
use <component1>;

elsewhen <condition_2>:
// executed when <condition_1> is false
// and <condition_2> true
use <component2>;

else:
// executed when both conditions are false
use <component3>;

end

do
statement

Determines the execution order of subbranches depending on
their order in source code. The do subbranch that is first in the
code becomes active immediately after the whole do statement
itself starts executing. The subsequent then subbranches are
optional; each of them becomes active after all the previous
do/then subbranches have finished execution.

do, once:
use <component1>; // executed just once

then, times 2:
use <component2>; // executed afterwards, twice

then:
// executed infinitely, after 1st & 2nd subbranch
use <component3>;

end

define
statement

Defines a new, “virtual” sensor as a function (possibly
parametrized) of the currently defined sensors. The new sensor
can be from now on used as any other sensor would be.

// temperature maximum during application lifetime
define MaxTemp max(Temperature);
// a parametrized analog input
define MyInput AnalogInput, port 2, pin 6;

const state-
ment

Defines a symbolic constant. The name of the constant can be
used in place of numerical literals.

const MAX_TEMP 40C;

set
statement

Initializes or changes a system state. A state can take any
integer or Boolean values. Their value can be set from a literal,
a sensor, a function, and a state (the same or another).

set temperatureCritical False; // assign a constant
set counter add(counter, 1); // increment

load
statement

Loads a component library extension code (a Python file) or
runtime extension code (a C file).

load “ExtensionLibrary.py“; // component definitions
load “ExtensionLibrary.c“; // runtime implementation

Table I: Selected elements of SEAL

library; it can be put in an application-specific source
file. Using load statement, the component may be made
available from SEAL code. In this way SEAL can be
easily extended without modifying the compiler or the
default component library.

C. Implementation
SEAL parser, code generator and component library

are implemented in Python, using PLY (Python Lex-
Yacc [3]) module. The code generator produces OS-
specific C source code, which then can be compiled to
platform-specific executable.

The generated C code schedules software timers in
order to read sensors and perform other actions pe-
riodically, and sets up hardware interrupt handlers to
read interrupt-based sensors. A special type of network
packets is used to exchange information between nodes.

The current state of each conditional expression (from
when statements) is stored in a Boolean variable. The
state is reevaluated whenever it may change; e.g. when
a sensor that is part of the conditional expression is read.
This allows to implement event-based actions. Whenever
a conditional expression changes its value, code sub-
branches associated with it are started or stopped.

D. Development environments
Two graphical interfaces have been built on top of

SEAL. First, there is SEAL integrated development
environment (IDE; Fig. 2). The IDE has support for
entering code either by keyboard (left side) or by mouse
(visual edit in the right side). It allows to upload and
debug the applications. Last but not least, it features a
menu that allows to access example application code.

Second, we have designed a purely-visual interface of

Figure 2: Editing SEAL application in IDE

Figure 3: Editing SEAL application in Web browser

SEAL using Google Blockly [2] as a base. Scratch, a
similar visual programming language [15] has been suc-
cessfully used in teaching novice programmers. SEAL-
Blockly allows to create applications by putting puzzle-
like blocks together and is usable from a web browser
(Fig. 3). Visual programming allows to avoid syntax
errors and minimize working memory load, since all
the possible blocks and their possible combinations are
predefined. On the other hand, visual programming is
not superior to textual in all contexts, therefore we
envision SEAL-Blockly only as one of several front-ends.

V. Evaluation
A. Analysis

Compared with single-flow imperative languages like
SensorBASIC, SEAL applications put the system in low
power mode by default, while SensorBASIC requires
that sleep command is used. Studies have shown [16]
that novice users do not have clear grasp of low-power
mode semantics and fail to use the sleep keyword
correctly. Compared with event-based languages like

SEAL TinyScript C nesC

Nonterminal symbols 36 31 70 24 new
Keywords 19 15 31 15 new
Operators 8 23 46 1 new

Non-alphanumeric char. 15 20 31 0 new

Table II: Metrics of several sensor network programming
languages: SEAL, C [1], nesC [10], and TinyScript [13]

TinyScript, a SEAL developer does not have to think
in terms of event handlers, which are arguably hard for
novices to grasp.

The language is small compared to general-purpose
languages, even to a parsimonious language like C (Table
II), therefore the cognitive effort required to learn the
syntax of the language is reduced. The complexity of
SEAL syntax is comparable to TinyScript and nesC,
although the user of nesC has to know C as well.

Source code metric comparison. Initially, four test
applications were implemented:
• Empty – an application with no user logic;
• Sense & print – periodically sample sensors (light,

humidity, and temperature) and send results to serial
port;

• Sense & send – same as Sense & print, except that
sensor values are sent to network and stored in exter-
nal flash memory;

• SAD – a real-world application for environmental
monitoring, conceptually similar to the third appli-
cation (Section V-C).
We used two metrics: lines of code and cyclomatic

complexity. The latter is essentially the measure of
the branches in the control flow of a program [12].
High cyclomatic complexity implies convoluted, hard-
to-understand branching. Line count also gives some
suggestions how easily the code can be understood, espe-
cially if the languages have similar levels of abstraction.

The results are given in Table III and Table IV. As
expected, SEAL source code is much shorter (at least 4
times, more for complicated applications) than that of
C and nesC (which is especially verbose).

Languages that make event-handing explicit
(TinyScript and nesC) unsurprisingly have noticeably
higher cyclomatic complexity.

TinyScript and BASIC source line count is similar
to SEAL. However, they are more complex, especially
TinyScript, which utilizes several additional concepts:
variable declarations, array element access, data types,
and explicit usage of timers.

In general, there is no case in which SEAL would score
lower than any of the competitors in either of the metrics.

Data processing support. For data processing
SEAL has several dozen built-in functions. The applica-
tion in Listing 2 demonstrates their usage: it calculates

SEAL BASIC TinyScript C nesC

Empty 0 0 0 1 1
Sense & print 1 1 2 2 5
Sense & send 1 1 2 2 23

SAD 2 n/a n/a 4 n/a
Exercise 1 1 1 4 2 2
Exercise 2 2 2 4 4 5
Exercise 3 3 3 4 4 5
Exercise 4 1 3 3 4 6

Table III: Cyclomatic complexity comparison

SEAL BASIC TinyScript C nesC

Empty 0 0 0 3 6
Sense & print 4 6 6 15 49
Sense & send 5 9 7 42 179

SAD 14 n/a n/a 185 n/a
Exercise 1 1 5 8 8 24
Exercise 2 4 4 8 13 48
Exercise 3 5 5 11 14 34
Exercise 4 4 11 16 22 56

Table IV: Lines of code comparison

the absolute difference of two light sensor readings, av-
erages last 10 readings, and outputs the result. The code
is understandable by nonprogrammers (Section V-D).
Equivalent TinyScript and SensorBASIC applications
are 10–20 lines long and contain much more details.

Listing 2: Calculating the average difference
1 define Diff difference (TotalSolarRadiation ,

PhotosyntheticRadiation);
2 define AverageDifference average (take(Diff , 10));
3 read AverageDifference , period 500 ms;
4 output Serial ;

Network-programming support. SEAL also facil-
itates WSN programming by automatically generating
code for different roles in the network. In particular,
SAD application requires the user to write the code
not only for the mote, but also for the base station
role and two data-forwarder roles. The code is short,
but has to be placed in 6 additional files. The SEAL
compiler generates source code for each of these roles
automatically.

B. Efficiency and feasibility evaluation
We measured binary code size and static RAM usage

of the test applications for TelosB and SM3 platforms
(SM3 is a custom MSP430-based hardware platform
used in SAD application). MansOS SVN revision 918
and msp430-gcc 4.5 was used.

Results. Compared with native implementations in
MansOS, SEAL has less than 40 % resource usage over-
head, excluding the empty application (Fig. 4, Table
V). Compared with TinyOS on TelosB, SEAL actu-
ally demonstrates better results. One reason lies in its
declarative nature: SEAL allows to declare system’s
behavior and policies at compile-time, avoiding any run-
time overhead. In sum, SEAL is certainly feasible on very

Code memory RAM
TelosB SM3 TelosB SM3

Empty 75.8 % 26.0 % 7.0 % 2.1 %
Sense & print 21.1 % 7.1 % 29.9 % 15.0 %
Sense & send 23.8 % 16.7 % 39.1 % 9.8 %

SAD n/a 11.6 % n/a 4.8 %

Table V: SEAL code memory and RAM usage overhead

low-power microcontrollers.

C. Applicability evaluation
SEAL is tuned specifically for sense-and-send type

of applications. However, is can be used for other ap-
plication archetypes a well (though it may not be the
best choice for all of them!). The versatility of SEAL is
demonstrated by the fact that it supports both periodic
and event driven sampling and data transmission. It has
support for actuation, interactivity (queries can be de-
fined and handled), data interpretation (using predefined
functions and their combinations), and data aggregation
across nodes.

In this paper we present a single application example.
More examples and documentation are available at [4].

A well-known WSN scenario. We now show how
SEAL can be applied to a scenario described in Werner-
Allen et al. [24]: sensor network deployed on an ac-
tive volcano. The network performs high-rate (100 Hz,
multiple channel) seismoacoustic monitoring and detects
events of interest (e.g. small earthquakes). Since the
sampling rate is so high, it is not feasible to transmit
all the data to the base station. Instead, triggered data
collection is used: data is downloaded from each sensor
device only after a significant earthquake or eruption.

The application logic (Listing 3) consists of three
parts. First, the application samples acoustic and seismic
sensors and stores the data locally (lines 8–11). Second,
event detection algorithm is continuously run, as de-
scribed in [24] (lines 13–20). Node detects an event when
the ratio between two exponentially weighted moving
average (EWMA) functions becomes large enough. In
this case the node sends notification to the base station.
If high-enough number of nodes has detected an event,
the base station issues data collection query. Third, the
node handles data collection query command (lines 22–
28). The command includes a timestamp. Data from the
interval [timestamp; timestamp + 60 seconds] is sent
back to the base station.

Listing 3: Seismoacoustic monitoring
1 const COMMAND_EVENT_DETECTED 1;
2 const COMMAND_REQUEST_DATA 2;
3 const DATA_COLLECTION_INTERVAL 60s;
4 const EWMA_COEFF_1 0.15;
5 const EWMA_COEFF_2 0.2;
6 const EVENT_DETECTION_THRESHOLD 0 x1234 ;
7
8 read AcousticSensor , period 10 ms;

Binary

Page 1

Empty
Sense & print

Sense & send & store
SAD

0

5000

10000

15000

20000

25000

 nesC (TinyOS), TelosB

 C, TelosB

 SEAL, TelosB

 C, SADmote

 SEAL, SADmote

b
yt

e
s

(a) Code memory usage

Binary

Page 1

Empty
Sense & print

Sense & send & store
SAD

0

200

400

600

800

1000

1200

1400

1600

1800

nesC (TinyOS), TelosB

C, TelosB

SEAL, TelosB

C, SADmote

SEAL, SADmote

b
yt

e
s

(b) RAM usage

Figure 4: Application binary code size and RAM usage comparison

9 read SeismicSensor , period 10 ms;
10 output File (AcousticSensor , SeismicSensor ,
11 Timestamp), name " SensorData .bin";
12
13 define CombinedSensor sum(AcousticSensor ,

SeismicSensor);
14 define EventDetectionFunction difference (
15 EWMA(CombinedSensor , EWMA_COEFF_1),
16 EWMA(CombinedSensor , EWMA_COEFF_2));
17 read EventDetectionFunction ;
18 when EventDetectionFunction >

EVENT_DETECTION_THRESHOLD :
19 output Network (Command), command

COMMAND_EVENT_DETECTED ;
20 end;
21
22 read RemoteCommand ;
23 read RemoteTimestamp ;
24 when RemoteCommand == COMMAND_REQUEST_DATA :
25 output Network , file " SensorData .bin",
26 where RemoteTimestamp >= Timestamp
27 and RemoteTimestamp <= add(Timestamp ,

DATA_COLLECTION_INTERVAL);
28 end

A real-world use case. For environmental monitor-
ing in precision agriculture use case (referred as “SAD”)
we deployed a 19 node multi-hop network with motes
in multiple roles, programmed exclusively with SEAL.
The total code size is 14 lines (see also Section V-A).
The application is conceptually similar to the Sense &
send application, but with several practical extensions
including: blinking a LED while sensors ar read (so
a quick visual indication shows that the mote is still
working); selecting a specific light sensor based on mote’s
address, as not all motes have the same sensors; and
tweaking several low-level options and optimizations.

D. Empirical usability evaluation
In order to evaluate the usability of our software

we conducted a preliminary user study. We adopted
methodology and exercises from the SensorBASIC user
study [16]. For evaluation we recruited computer science
undergraduate students with no WSN programming ex-
perience (the “intermediate programmers”), as well as
people from other domains with little or no programming
experience (the “novice programmers”). The partici-
pants were given access to computers with IDE installed

Ex. 1 Ex.2 Ex.3 Ex.4 Total, %

TinyScript, intermed. 3/3 3/3 3/3 3/3 100 %
SEAL, intermed. 3/3 3/3 3/3 3/3 100 %
SEAL, novice 1 3/3 0/3 2/3 n/a 55.6 %
SEAL, novice 2 3/3 2/3 2/3 2/3 75 %

Table VI: Exercise completion success rate

(SEAL or TinyScript, depending on their group) and
with attached sensor devices that were equipped with
light, temperature and humidity sensors.

The first three exercises asked to write code for specific
applications (adopted from [16]):

1) Blink a LED with 2 second period (Listing 4);
2) Send a message to the base station if the light

sensor is covered (Listing 5);
3) Turn on the LED if and only if the light sensor is

covered (Listing 6).
The fourth exercise asked to ”describe the meaning of

the code in Listing 2”.

Listing 4: Solution to exercise 1
1 use RedLed , period 2s;

Listing 5: Solution to exercise 2
1 read Light ;
2 when Light < 100:
3 use Print , format "No␣ light ", out Radio ;
4 end

Listing 6: Solution to exercise 3
1 when Light < 100:
2 use RedLed , on;
3 else:
4 use RedLed , off;
5 end

In total there were 12 participants: six computer
science students, three physicists, two agricultural sci-
entists, and one electrical engineer; seven were under-
graduate students, five – graduate students or scientific
staff. The results of the study are given in Table VI.

The study demonstrates that novice programmers can
use SEAL and succeed in more than half of cases. Our
results are comparable with outcomes from [16] (54 %,

45 %, and 46 % in the group with no programming expe-
rience, 100 %, 89 % and 67 % with limited programming
experience). The user study from [7] (three different
exercises) similarly reported 40.6 % average success rate
(although WASP and WASP2 had 80.6 % average).

VI. Conclusion
We address the problems faced by novice programmers

as sensor network application developers. Using lessons
from novice programming theory, we build SEAL, a
WSN application description language. SEAL avoids
several typical, but hard-to-learn options, allows to write
compact and simple code, is compiled to efficient binary
code (only up to 24 % code memory and up to 40 %
RAM usage overhead), and is suitable for typical WSN
application scenarios.

Acknowledgments
This work was supported by European Regional De-

velopment Fund, project No. 2010/0317/2DP/2.1.1.1.0-
/10/APIA/VIAA/142. We would like also to thank all
the test subjects for cooperation.

References
[1] ISO/IEC 9899:1999 – Programming languages – C, 1999.

[2] Blockly: A visual programming editor. http://code.
google.com/p/blockly, 2012.

[3] PLY (Python Lex-Yacc). http://www.dabeaz.com/ply/,
2012.

[4] The SEAL programming language. http://open-sci.net/
wiki/seal, 2012.

[5] PySense: A language to program wireless sensor network
at once. http://code.google.com/p/pysense/, 2013.

[6] E. Avilés-López and J. García-Macías. TinySOA: a
service-oriented architecture for wireless sensor net-
works. Service Oriented Computing and Applications,
3(2):99–108, 2009.

[7] L. Bai, R. Dick, and P. Dinda. Archetype-based design:
Sensor network programming for application experts,
not just programming experts. In Proceedings of the 2009
International Conference on Information Processing in
Sensor Networks, pages 85–96. IEEE Computer Society,
2009.

[8] F. Casati, F. Daniel, G. Dantchev, J. Eriksson, N. Finne,
S. Karnouskos, P. Montera, L. Mottola, F. Oppermann,
G. Picco, et al. Towards business processes orchestrating
the physical enterprise with wireless sensor networks. In
Software Engineering (ICSE), 2012 34th International
Conference on, pages 1357–1360. IEEE, 2012.

[9] A. Elsts and L. Selavo. A User-Centric Approach
to Wireless Sensor Network Programming Languages.
In SESENA ’12: Proceedings of the 3rd Workshop on
Software Engineering for Sensor Network Applications,
pages 29–30, New York, NY, USA, 2012.

[10] D. Gay, P. Levis, D. Culler, and E. Brewer. nesC 1.3
Language Reference Manual, 2009.

[11] P. Hudak. Domain-specific languages. Handbook of
Programming Languages, 3:39–60, 1997.

[12] C. Jones. Software metrics: good, bad and missing.
Computer, 27(9):98–100, 1994.

[13] P. Levis. The TinyScript language: A Reference Man-
ual. http://www.cs.berkeley.edu/~pal/mate-web/files/
tinyscript-manual.pdf, 2004.

[14] S. Madden, M. Franklin, J. Hellerstein, and W. Hong.
TinyDB: an acquisitional query processing system for
sensor networks. ACM Trans. Database Syst., 30:122–
173, March 2005.

[15] J. Maloney, K. Peppler, Y. Kafai, M. Resnick, and
N. Rusk. Programming by choice: Urban youth learning
programming with Scratch. ACM SIGCSE Bulletin,
40(1):367–371, 2008.

[16] J. Miller, P. Dinda, and R. Dick. Evaluating a BASIC
approach to sensor network node programming. In
Proceedings of the 7th ACM Conference on Embedded
Networked Sensor Systems, pages 155–168. ACM, 2009.

[17] L. Mottola and G. Picco. Programming wireless sensor
networks: Fundamental concepts and state of the art.
ACM Computing Surveys (CSUR), 43(3):19, 2011.

[18] L. Neal. A system for example-based programming. In
ACM SIGCHI Bulletin, volume 20, pages 63–68. ACM,
1989.

[19] J. Pane and B. Myers. Usability issues in the design
of novice programming systems,. Human-Computer
Interaction Institute Technical Report CMU-HCII-96-
101, 1996.

[20] A. Robins, J. Rountree, and N. Rountree. Learning
and teaching programming: A review and discussion.
Computer Science Education, 13(2):137–172, 2003.

[21] R. B. Smith. SPOTWorld and the Sun SPOT. In
Proceedings of the 6th international conference on Infor-
mation processing in sensor networks, IPSN ’07, pages
565–566, New York, NY, USA, 2007. ACM.

[22] G. Strazdins, A. Elsts, K. Nesenbergs, and L. Selavo.
Wireless sensor network operating system design rules
based on real world deployment survey. Accepted for
publication in Journal of Sensor and Actuator Networks,
2013. ISSN 2224-2708.

[23] A. Van Deursen and P. Klint. Little languages: little
maintenance? In SIGPLAN Workshop on Domain-
Specific Languages. Citeseer, 1997.

[24] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and
M. Welsh. Fidelity and yield in a volcano monitoring
sensor network. In Proceedings of the 7th symposium
on Operating systems design and implementation, pages
381–396. USENIX Association, 2006.

