PREPRINT. In Proc. 36th IEEE Symposium on Foundations of Computer Science, pages 655-663. ACM Press, 1995.

Sublogarithmic Searching Without Multiplications

Arne Andersson
Department of Computer Science
Lund University
Box 118, 5-22100 Lund, Sweden

arne@dna.lth.se

Abstract

We show that a unit-cost RAM with word length w can
maintain an ordered set of w-bit integers (or binary
strings) under the operations search, insert, delete,
nearest neighbour in O(\/logn) worst-case time and
range queries in O(y/log n+size of output) worst-case
time. The operations rely on AC® instructions only,
thereby solving an open problem posed by Fredman and
Willard. The data structure is simple.

We also present a static data structure that can
process a set of ©(logn) searches in O(lognloglogn)
time.

1 Introduction

One of the most fundamental problems in computer
science is to maintain an ordered set, supporting oper-
ations like insert, search, delete, neighbour and range
search efficiently. Until a couple of years ago, it was
believed that the information-theoretic lower bound of
O(logn) served as a general bound on the complexity
per operation, where n denotes the number of stored
elements. This belief was contradicted by Fredman
and Willard who showed that, under the rather re-
alistic assumption that the stored elements could be
treated as binary strings or integers, operations could
be performed in O(y/Togn) amortized time [5].

The data structure by Fredman and Willard, the fu-
sion tree, is of undisputed theoretical importance but
some objections have been raised. First, in contrast
to previous data structures like binary search trees [1]
and van Emde Boas trees [15, 16], fusion trees make
extensive use of multiplication. It may be argued that
the cost of a multiplication is dependent on the length
of the machine word, here denoted by w. Taking the
cost of multiplication into account, it is even doubtful
if fusion trees offer any improvement over van Emde
Boas trees, which support searches and updates in
O(logw) time. For this reason, Fredman and Willard
posed as an open problem whether a sublogarithmic
search cost could be achieved without multiplication.
In particular, in order to argue that the cost is inde-
pendent of the size of a machine word, one should only
use AC instructions.

A second objection against fusion trees is that they
are complicated and involve high constant factors.

In this article we answer the question by Fred-
man and Willard affirmatively. We show that an or-

dered set can be maintained at a worst-case cost of
O(+/logn) per update. The result is achieved by sur-
prlslngly simple methods. We only use instructions
in ACY, including comparison, addition, subtraction,

bitwise AND and OR, and shift. By shift we mean
shifting an entire word by a number of bit positions
specified in a second word. Another advantage is that
while fusion trees need to know a number of precom-
puted constants depending on w (these constants may
be costly to compute), we only need to know the value
of w.

Our data structure requires superlinear space,
which can be reduced to linear, using hashing [3]. This
will require the use of randomlzatlon multiplication,
and integer division but our data structure will still
be much simpler than fusion trees.

Our data structure employs multiple comparisons,
introduced by Paul and Simon [11] and also used in fu-
sion trees (a description can be found in the textbook
by Mehlhorn [7]). Our application of the technique is
very simple: in particular we avoid the use of multi-
plication by means of a global lookup table.

Related work

On a high level, the techniques used here are similar to
those used to obtain sorting in O(nloglogn) time [2]:

A range reduction reduces the problem of maintaining
long keys into that of maintaining short keys that can
be packed into words and treated efficiently.

Similar observations have been made independently
by Raman [12] who has shown that, if multiplications
are used, a complexity of O(1 + logn/logw) can be
achieved. This implies a complexity of o(y/logn) for
large word sizes.

Thorup has shown a number of related results for
priority queues. In particular, he has developed a sim-
ple priority queue with a cost of O(loglogn) per oper-
ation without multiplications [14]. As a more general
result, he has shown that there is a direct correspon-
dence between the complexity of sorting and that of
maintaining a priority queue [13].

It is intersting to note that while sorting can be
done in O(nloglogn) time and a priority queue can
be maintained in O(loglogn) time per operation, a
corresponding bound cannot be achieved for search-
ing. From a proof by Miltersen [9] a lower bound of

Q(log'/3=°(M n) can be extracted [8] for the searching
problem.

2 Main result
Theorem 1 Given w as a parameter, there is a data
structure for storing a set of n w-bit integers on a unit-
cost RAM, which supports operations at the following
costs:

insert z: O(\/logn);

delete x: O(\/logn);

find x or report that x is not present: O(1);

find the s largest or smallest elements: O(s);

find the s largest elements < x or the s smallest

> z: O(y/logn + s);

find all elements between x and y: O(\/log n+size

of output).
The representation can be deterministic or random-
ized. In the deterministic case, only AC® instructions
are used, the costs above are worst-case, and O(n2")
space is used, for an arbitrary constant ¢ > 0. In the
randomized case, the costs are expected and O(n) space
s used.

If the cost of finding x or reporting that x is not

present s allowed to be O(/logn), the space com-

plexity of the deterministic version decreases to O(n+
DEW

3 Packed B-trees

Apart from well-known data structures, we use a
packed B-tree, derived from a traditional B-tree in a
straightforward manner.

Lemma 1 If (k+ 1)D < w and k > logn then a set
containing at most n k-bit integers can be maintained
on a unit-cost RAM supporting operations insert x,
delete x, or find x or its closest neighbour at a worst-

case cost of O <1ogD + llsggg).

The data structure requires O(n) space. Further-
more, the presence of a global lookup table of size
0 (QD(I“‘H)) 1s required. The table can be constructed
in O(D) time.

Proof: We use a packed B-tree.

In a B-tree node of degree d there are d — 1 keys
guiding the search and d pointers for branching. In a
packed B-tree node all keys are packed in one machine
word. Also, all pointers are packed in one word.

We use a packed B-tree with a maximal branching
factor D. This implies that the degree of a node is
roughly between D/2 and D. Each key is represented
by a (k + 1)-bit field. The first (leftmost) bit, the
test bit, 1s 1, the following bits contain the key. The
d — 1 keys are stored in sorted left-to-right order in
the rightmost (d — 1)(k + 1) positions of a machine
word. For a node v, the concatenated keys are denoted
K,. A packed B-tree keeps its nodes in an array of
length n, so a pointer fits into logn bits. Hence, the
d outgoing pointers can be packed in the rightmost
dlogn < kD < w bits of a machine word.

When searching for a k-bit key 2 in a packed B-tree,
we first construct an integer X containing I copies of
z. Again, each key is represented by a (k+ 1)-bit field.
This time, the test bits are 0. X is created by a simple

doubling technique: Starting with a word containing
z in the rightmost part, we copy the word, shift the
copy k+1 steps and unite the words with a bitwise OR.
The resulting word is copied, shifted 2k + 2 steps and
united, etc. Altogether X is generated in O(log D)
time.

In order to determine the rank of z among the keys
in node v, we perform a multiple comparison by the
subtraction R = (K, — X) AND M, where M is a fixed
mask in which all test bits are 1 and all other bits are 0.
In R, each test bit corresponding to a key in K, larger
than « becomes 1, all other become 0. A multiple
comparison is illustrated in Figure 1. Since the keys
in K, are sorted, there are only D + 1 possible values
of R; each value corresponds to a rank of x among
the keys in K,. This implies that we can construct
a lookup table whose entries have the possible values
of R as indices. (The same table can be used at all
nodes in the tree and—of course—by more than one
tree.) Looking in this table, we can determine the
rank of z in K,. (The address space required for the

table is O(2P(*+1))) The table can be constructed
in O(D) time. Hence, formally, the use of packed B-
trees requires a preprocessing time of O(D). However,
this can be taken care of during global rebuildings, see
Section 4.

Having determined the rank as described above,
we use that information to extract the pointer to the
proper subtree by shift and bitwise logical operations.

The tree 1s maintained by traditional B-tree oper-
ations. Operations like adding a key (and the corre-
sponding pointer) to a node, removing a key from a
node, joining two nodes, and splitting a node are eas-
ily performed in constant time using shift and bitwise
logical operations. a

How to implement a packed B-tree is illustrated in
the Appendix.

A comment: In our application of packed B-trees
n = 2% In that case we can actually omit the packed
pointers; the key values themselves can be used as
pointers instead. This option has not been utilized in
our implementation.

4 Proof of Theorem 1

In our description below, we assume that n remains
about the same during updates. When the value of n
has changed significantly, our data structure has to be
globally rebuilt. Tt can easily be arranged so that these
rebuildings occur with large intervals; new versions of
the data structure can be constructed as a background
process. A more detailed discussion of global rebuild-
ing can be found in the literature [10]. At each global
rebuilding, we need to compute some constants of size
O(+/logn), which can easily be computed in o(n) time

without multiplications.

4.1 The essential observation

If a packed B-tree can handle k-bit keys efficiently, a
natural idea is to view our w-bit keys as consisting of
k-bit characters and to store them in a trie of height
w/k. At each internal node, the children represent
a set of k-bit keys which can be stored in a packed

K, [1 00010 [1 [00111 [1 | 01001 | 1 [01110 | 1 | 10101 [1 | 11000 | 1 | 11011 | 1 | 11110]

X [0 [01011 [0 [01011 [0 [01011 [0 [01011 [0 [01011 [0 [01011 | 0 [01011 [0 | 01011 |

Ky—X [0] 10111 [0 [11100 [0 [11110 [1 [00011 [1 [01010 [1 [01101 | 1 [10000 [0 | 10011 |

M [1]00000 [1 [00000 I [00000 [1 [00000 | 1 [00000 | T | 00000 [I | 00000 | 1 | 00000 |
(Ky—X)anp M [0 [00000 [0] 00000 [0 | 00000] 1 [00000 [1 | 00000 | 1 [00000 [1 | 00000 | 1 [00000 |

Figure 1: A multiple comparison

B-tree. When searching for a key x or z’s nearest
neighbour, we first search the trie in the usual way. If
x 1s present, the search ends at a trie node. Otherwise,
the trie traversal ends when trying to reach a non-
existing child. Then, to locate z’s nearest neighbour
we make a local search among the children of the node,
using the packed B-tree.

When inserting an element, we simply add a new
child to a node in the trie; the corresponding k-bit key
is inserted into the packed B-tree. Deletion is similar.

As an example, for £ = O(w/v/logn) the height
of the trie as well as the degree of the packed B-tree
becomes ©(+/log n) and the cost of an update or neigh-
bour search becomes O(logn/loglogn). This simple
data structure is coded in the Appendix.

4.2 The proof

The idea above can also be applied on a partial van
Emde Boas tree, which gives the desired complexity.

First, we view each w-bit integer as composed of
ew-bit short integers and we represent our set as a
path-compressed trie of height 1/¢. Each node keeps
an array of size 2°“ containing all possible outgoing
edges. The children represent a set of ew-bit keys,
these are stored in a partial van Emde Boas tre, VEB,
as described below.

A van Emde Boas tree (VEB) [16] is a recursive trie
structure where the length of the keys representing
edges is halved at each recursive level. The data struc-
ture contains O(n) nodes and O(n) edges [15] and
it supports neighbour searches efficiently. Normally,
a VEB representing ew-bit keys would have a height
of O (log(ew)). However, instead of letting the VEB
do all the work, it may be advantageous to cut off
the recursion and switch to a packed B-tree. Cutting
after O(y/logn) levels, the sizes of the integers have

decreased to min(logn, —=~—). If the size of the in-

9V/log n
tegers is at most logn, we just complete the VEB in
O(loglogn) additional recursive levels, the complex-
ity follows immediately. Otherwise, at the bottom of
the VEB we use packed B-trees with k = 2\;% and
D = 2V'98" The complexity follows from Lemma 1.

All elements are stored in a doubly-linked list.
When a new element is inserted, we can find its neigh-
bours in O(y/log n) time and update the list. With the
list, we can perform range queries efficiently, as well
as finding the largest and smallest elements.

The total number of internal nodes in the path-
compressed trie is less than n and each node uses

O(2°") space. There are less than 2n VEBs contain-
ing a total of at most 2n short integers. Each node in
a VEB uses an address space of O(2%’) and the total
number of such nodes is O(n). The packed B-trees use
a total of O(n) space and the global lookup table used
for multiple comparisons use O(2°") space. In total,
the required space is O(n2). '

If we use hashing, the space becomes proportional
to the number of nodes in the used data structures plus
the number of “active” entries in the global lookup
table. These quantities are all O(r). In the hashing
case, we do not need the trie at the top level, we only
combine one VEB with packed B-trees.

4.3 Reducing space

If we allow the cost of member queries to be O(y/log n
the space complexity can be reduced to O(n + 2
or—if U denotes the size of the universe—to O(n+U¢).
We use the data structure above, with two modifica-
tions.

First, we apply an idea similar to that of
Willard [17] and Karlsson [6] to reduce the number
of nodes in the trie by keeping (traditional) 2-3 trees

of height ©(\/logn) at the bottom of the trie. All 2-3
trees have the same height and updates in the trie cor-
responds to splitting and merging of 2-3 trees. Most
keys will be stored in the 2-3 trees, choosing suitable
constants, we ensure that the number of keys stored
in the trie is less than —2

92/logn

Secondly, we replace € in the proof above by

€
2 logn.
These modifications increase the cost of searches

and updates by an additional term of O(+/logn). The

B-trees use linear space and the trie uses a total

space of O

92/log n

is O (n + 2Y) we distinguish two cases:

n -‘2(2 m)) To see that this

1.n< 2¢w/2 Both terms are 0(25“)/2).
2. n > 2/? The second term is O (22\/@)_

5 Batched Searching

The technique of combining range reduction with mul-
tiple comparisons can be used to obtain an efficient
static data structure. The structure is only of theoret-
ical interest, hardly more than a curiosity. The space
cost and preprocessing time is rather high.

Theorem 2 There is a data structure which stores n
elements where ©(logn) arbitrary elements (or their
closest neighbours) can be located in O(lognloglogn)

time. The data structure uses O(n°®1°87)) space.

Proof: (Sketch) We use a VEB where the recursion
is cut off after loglogn levels. At the bottom level
of the VEB we store n sets of short integers, the total
number of integers is n. We can pack O(logn) inte-
gers in one machine word. Each set is represented as
a perfectly balanced binary search tree of height (at
most) log n. The trees are represented in an odd—and
space consuming—way, as described below.

When searching for logn elements, we proceed as
follows. For each element, we search down the VEB.
The total cost of this is O(log nloglogn). Each search
ends up in one of the n search trees. This gives a
combination of logn search trees. The total num-
ber of possible combinations is at most n'°8”. Each
of these combinations is represented by one machine
word, containing the logn root keys. Storing the ma-
chine words containing packed root keys in an array
of size n'°8" we can find the proper word in con-
stant time. We pack our logn query elements in a
machine word. Now, with a multiple comparison we
can compare each key with its proper root key. There
are 2!°8™ = n possible outcomes of this comparison.
This gives us a total of n'°8" . n possible combina-
tions of subtrees, each combination is represented by
one machine word. In this way we traverse all trees
simultaneously; after at most logn steps our search
is completed. The number of combinations increases
by a factor of n at each step, the total number be-
comes at most n?!°6"_ Altogether, if the VEB and
the packed key tables are stored with perfect hash-
ing [4], we can perform a set of log n searches in time
O(lognloglogn) using n?'°8"™ space. (Choosing the
parameters more carefully, the space can easily be re-
duced to n¢1°8™ for an arbitrary positive constant ¢.)
O

6 Comments

We have shown that the information-theoretic barrier
can be surpassed by an algorithm simple enough to be
presented in an elementary textbook.

Our data structure can be extended to handle long
strings. If we use a trie where ©(w) bits are used
for branching and where each internal node is repre-
sented by the data structure described above, a string
contained in W machine words can be processed in
O(W + y/logn) time. Hence, when handling long
strings, multiple-precision numbers etc, the advantage
over comparison-based algorithms becomes even more
evident.

Acknowledgements

The author would like to thank Rolf Karlsson, Jes-
per Larsson, Stefan Nilsson, Ola Petersson, and Kurt
Swanson for their valuable comments.

References
[1] G. M. Adelson-Velskii and E. M. Landis. An algo-

rithm for the organization of information. Dokladi

Akademia Nauk SSSR, 146(2):1259-1262, 1962.
[2] A. Andersson, T. Hagerup, S. Nilsson, and R.

Raman. Sorting in linear time? In Proceedings
27" ACM Symposium on Theory of Computing,
pages 427-436. ACM Press, 1995.

[3] J. L. Carter and M. N. Wegman. Universal classes
of hash functions. Journal of Computer and Sys-

tem Sciences, 18:143-154, 1979.

[4] M. L. Fredman, J. Komlos, and E. Szemeredi.
Storing a sparse table with O(1) worst case access

time. Journal of the ACM, 31(3):538-544, 1984.

[5] M. L. Fredman and D. E. Willard. Surpassing the
information theoretic barrier with fusion trees. J.

Comput. Syst. Sci., 47:424-436, 1994.

[6] R. Karlsson. Algorithms in a Restricted Universe.
Ph. D. Thesis, University of Waterloo, Canada,
1984.

[7] K. Mehlhorn. Data Structures and Algorithms
1: Sorting and Searching. Springer-Verlag, 1984.
ISBN 3-540-13302-X.

[8] P. B. Miltersen. Personal communication.

[9] P. B. Miltersen. TLower bounds for union-split-
find related problems on random access machines.
In Proc. 26th Ann. ACM STOC, pages 625634,
1994.

[10] M. H. Overmars. The Design of Dynamic Data
Structures, volume 156 of Lecture Notes in Com-
puter Science. Springer Verlag, 1983. ISBN 3-
540-12330-X.

[11] W. J. Paul and J. Simon. Decision trees and
random access machines. In Proc. International
Symp. on Logic and Algorithmic, Zirich, pages
331-340, 1980.

[12] R. Raman. Improved data structures for prede-
cessor queries in integer sets. manuscript, 1995.

[13] M. Thorup. Equivalence between sorting and pri-
ority queues. Tech. report, DIMACS TR-95-12,
DIMACS, 1995.

[14] M. Thorup. An O(loglogn) priority queue. Tech.
report, DIKU-TR-95-5, Dept. of Computer Sci-
ence, University of Copenhagen, 1995.

[15] P. van Emde Boas. Preserving order in a forest
in less than logarithmic time and linear space.
Information Processing Letiers, 6(3):80-82, 1977.

[16] P. van Emde Boas, R. Kaas, and E. Zijlstra. De-
sign and implementation of an efficient priority
queue. Math. Syst. Theory, 10:99-127, 1977.

[17] D. E. Willard. New trie data structures which
support very fast search operations. Journal
of Computer and System Sciences, 28:379-394,
1984.

APPENDIX: An implementation

Enclosing an implementation serves two purposes:

e The code itself illustrates the fact that a data
structure surpassing the information theoretic
barrier can be implemented without much effort.

e The reader can, by running the code, convince
himself or herself that the involved constant fac-
tors are small.

Code is only given for insertion and search. The data
structure is also somewhat simplified: instead of a trie
containing VEBs containing packed B-trees, we only
use a plain trie containing packed B-trees. Modifying
the trie into a VEB and including code for deletion is
rather simple. OQur implementation assumes that a key
of type WORD has its most significant bit in the leftmost
position. The implementation is made without the use
of any multiplications. (Multiplications introduced by
the compiler, such as when indexing arrays, could be
removed by hard-coding.

As asimplification, the global rebuilding of the data
structure is not made. Instead, the data structure is
initialized with a given value of n and the parameters
(height of trie, degree of B-tree etc) are set only then.

Since we just use a trie and not a VEB, the asymp-
totic complexity will be different. We split the ma-
chine word into ©(y/Togn) fields. The height of the trie
as well as the degree of the B-tree becomes ©(y/logn).
This implies that the height of a packed B-tree, as well
as the total cost of searching and updating, becomes
O(logn/loglogn). Still, the complexity is subloga-
rithmic, regardless of the word length.

We will not provide any experimental statistics but
we have run the code on a SUN SPARCstation ELC
using the cc and the gce compiler with and without
optimization on random input. The speed of the code,
in terms of CPU time, was compared with that of the
code for skip lists (W. Pugh, Skip lists: a probabilis-
tic alternative to balanced irees, CACM 33(6), pages
668—676, 1990) announced by its inventor on the in-
ternational nefwork for anyone to fetch by anonymous
ftp. Skip lists are known to be very fast in practice.
Comparing execution times, we found that searching
seem to be faster in our data structure even for small
input sizes. Insertion takes about 2-3 times as long,
the difference decreases as n increases. We conjecture
that with a careful tuning of the code, our data struc-
ture will be very competitive also for updates.

More complete code will be made electronically
available.

Comments on the code
Type declarations

Essentially, our data structure is a trie of degree oK.
Each node contains an array of outgoing edges and

a packed B-tree, containing the k-bit keys that are
currently used for branching.

A variable of type trie represents a node in the
trie. In this node, we have list pointers min and max
to the minimum and maximum element in the current
(sub-)trie. These two elements are not stored further
down in the trie. In this way, each element will be
stored as a min or max element of a trie node. This
method guarantees that the total number of nodes in
the trie will be O(n) although path-compression is not
used. When a trie node is created, its min and max
pointer point at the same element. When a second el-
ement is inserted at the node, min and max will point at
different elements. When a third element is inserted,
the first child is created.

The array Tnodes contains ok entries, each entry
corresponds to a possible outgoing edge. When the
array 1s allocated, we can not (at least in theory) af-
ford to initialize all pointers as null pointers, instead
we have to keep track of which pointers are used. For
this purpose, we use two arrays; checkpt contains ref-
erences to the used entries and check contains ref-
erences back to checkpt. The outgoing edge with
index ¢ is ussed iff check[c] points within the ac-
tive part of checkpt (indicated by firstfree) and
checkpt [check[c]]=c. If deletions are to be made,
the technique has to be a bit more, but not too, elab-
orate.

A packed B-tree inside a trie node contains at most

ok nodes, one for each possible child. (Note that this
is a bit overestimated since each node, except possi-
bly the root, contains more than one key.) The B-tree
is stored in an array where the entries are of type
BtreelNode. A BtreeNode representing a node of de-
gree d has the following contents:

size = d — 1 (that is, size equals the number of

keys in the node.

key contains the size keys used for branching.

They are stored in sorted left-right order, right

adjusted. Between each key there is a test bit,

which is 1.

pt contains size+1 pointers to subtrees. A

pointer is just an index into the array of nodes.

Since the length of this array is Qk, a pointer re-
quires only k bits. (Here we use k+1 bits.)

Global variables

The use of rTab, and rShift is explained together
with function MultCmp.

minD and maxD are the minimum and maximum de-
grees of a B-tree node.

maxDepth tells the maximum depth of a leaf in the
trie. Currently only used during initialization.

checkArraySize, trieArraySize, and nodeArray-
Size are used for memory allocation. They tell the
sizes of the arrays stored in a trie node.

M is the mask used at multiple comparisons to extract
test bits. All test bits in M are ones, all other bits are
7eroes.

k is the number of bits in a packed key. At each node
in the trie, except possibly the root, k bits are used
for branching. A packed B-tree contains k-bit keys.

rootbits is the number of bits used for branching at
the root of the trie. (At the other levels k bits are
used.) The reason that rootbits may differ from k is
simply that w is not always divisible by k.

mulk and mulkil are arrays used for primitive multipli-
cation simulation; mulk[i] contains the value of k-i
while mulk1[i] contains (k+1)-1i.

Macros and Subroutines

EX(m,lo,hi) Extract bits 1o to hi from m. Bits are
counted from right, starting with 0. Shift operations
are used.

EXF(m,pos,num) Extract num (k+1)-bit fields, start-
ing at field pos. Fields are numbered from right, start-
ing with 0.

FillKey(X) Duplicate a (k+1)-bit field within a word
in order to take part in a multiple comparison. The
doubling technique is used.

WORD MultCmp(key, X, size) Multiple comparison.
Compute the number of keys in key that are larger
than X’s duplicated key. size tells the number of keys
stored in key.

After the subtraction and masking with M, some of
the rightmost test bits in tmp are ones. Using tmp as
an index, the number of one bits can be found in rTab.
Since the length of rTab is less than the universe, we
make more than one access in rTab, using a part of
tmp as index each time., The number of bits used each
time is given by rShift.

The size of rTab and the value of rShift, depend
on w and e. They are computed in Init.

WORD BtreeSearch(bt, X) Search for the k-bit key
stored in X. If present, the key is returned, otherwise
a closest neighbour is returned.

(a) At the bottom of the tree

(b) Tf the key in X is smaller than all keys in the

node, take smallest key.

(c) Go to child.

AddField(keys, pos, X) Viewing *keys as consist-
ing of (k+1)-bit fields, insert the rightmost field in X
into *keys at position pos, counting from right, start-
ing at 0.

WORD NewNode(bt) Initialize a new B-tree node. The
index of the new node 1is returned.

SplitChild(bt, par, c, pos) Split the child ¢ of
parent par into two B-tree nodes. A new node s is
created. A reference to s is added in par. bt is the
B-tree where the nodes are stored, pos is the position
in node par where the new key is to be added.

BtreeIns(bt, X, neighb) Insert the k-bit field
stored in X into the packed B-tree *bt. One of X’s
closest neighbours is returned in *neighb. (There is
no need to take care of insertion of duplicate keys.)
Balancing is made top-down. The following comments
refers to the corresponding comments in the code:

a) The root too large, a split is made.
b) Traverse down the tree.

¢) Compute position of child pointer.

d) Extract child pointer

) Split the child in two nodes.

) Go to child.

(g) At the bottom of the tree, compute where to
insert key.

(h) Finally, find a neighbour.

LinkBefore (new, p), LinkAfter (new, p) Insert
node new into linked list before/after node p.

boolean ChildExists(t, c) Check if child c exists
below trie node t. The arrays check and checkpt are
used.

list *TrieSearch(t, X) Return a pointer to the list
element containing X or, if X is not present, to a closest
neighbour.

If X is present, only the trie will be traversed, X will
be found as the max or min element of some trie node.

If X is not present, the trie traversal will end when
trying to reach a non-existing child. Then, if there are
no children, the min element of the current trie node
serves as a closest neighbour. If there are children, we
search the node’s packed B-tree for a neighbour.

MarkNewChild(t, c) Mark a new child in the arrays
check and checkpt.

= D

trie *NewTrie(min) Initialize a new trie node and
returns a pointer to the node. min is the element to
be inserted as the new node’s minimum element.

CreateArrays(t) When the first child of t is created,
some further initialization is made. Among others,
space is allocated for the arrays check, ckeckpt, and
Tnodes.

TrieIns(t, X), Main insertion procedure. Insert key

X into trie t.
(a) Traverse down the trie.
(b) Return if X is already present.
(c) Tf there is only one min/max element add one
and return.
(d) Check if the elements in min or max should
be replaced. If so, the replaced key should be
inserted at a lower level.
(e) Extract child pointer.
(f) If the trie node tmp has no child before, ini-
tialize arrays and create one new child. Insert
the corresponding k-bit field ¢ into the (empty)
packed B-tree. Insert the element X into the
linked list.
(g) Parameter neighb is not used in this case.
The reason is that the B-tree is empty and there
is no neighbour to be found. Instead we can take
the min element of the current trie node (tmp) as
the neighbour of the newly inserted one.
(h) If tmp has children before, but the child cor-
responding to the k-bit field ¢ is not present,
a new child is created in tmp->Tnodes[c] and
c is inserted into the B-tree. After the B-
tree insertion, neighb will contain a k-bit field
corresponding to a closest mneighbour to the

child ¢. Then, the newly inserted element X,
stored in tmp->Tnodes[c]->min, should be in-
serted into the linked list as the closest neigh-
bour of the maximum or minimum element in
tmp->Tnodes [neighb].

(i) Go down to child.

(j) Adjust the number of bits to be skipped as X
is scanned left-to-right.

WORD Divide(x, y, remainder) Primitive division,
used during initialization.

Init (N, eps_inv) Initialize global constants and ta-
bles. The value of N controls the parameters of the
data structure. The height of the trie and the degree
of the packed B-trees are set to O(y/IogN). eps_inv
is the value of 1/e. This parameter controls the size
of rTab, the size of rTab should be at most 2¢*. (A
good choice for eps_inv is 2.

Since the height of the trie is ©(v/logN), the degree
of each node is © (2V1°gN). Hence, the total space

complexity will be © (n? Viegh . 25“’) .

#define w 32

#define TRUE 1

#define FALSE O

#define boolean int
#define WORD unsigned long

/* machine dependent */

/* w-bit words */

typedef struct list {
WORD key;
struct list *prev, *next;
} list;
typedef struct BtreeNode {
WORD key, pt, size;
} Btreellode;
typedef struct Btree {
BtreeNode *nodes;
WORD root, lastnode, height;
} Btree;
typedef struct trie {
list *min, *max;
WORD firstfree, *check, *checkpt;
struct trie **Tnodes;
Btree bt;
} trie;

WORD checkArraySize, trieArraySize, nodeArraySize, k,
maxD, minD, rootbits, maxDepth, M,
*rTab, rShift, rTabSize,
mulk[w+1], mulkl[w+1];

/**x**x%x Macros for extracting parts of word ¥kkkikskkk/
#define EX(m,lo,hi) (m<<w=-(hi)=-1)>>w-(hi)+lo-1

#define EXF(m,pos,num) (m<<w-mulkil[pos+num]) \
>>w-mulkil[pos+num]+mulk1 [pos]

Swap(x, y)
WORD *x, *y;
{

WORD tmp;

tmp = *X; *x = *y;

}

*y = tmp;

[*¥xkkkkkkkkkkk Packed B-tree kkkkkkksiokskodkksdokkkdkkkkkkk /

FillKey(X)
WORD *X;
{
WORD d = 1;

while (d < maxD-1) {
*X= *X | (*X<<mulk1[d]);
d+= d;

}

*X = EXF(*X, 0, maxD);

WORD MultCmp(key, X, size)
WORD key, X, size;
{
WORD tmp, pos = O;

tmp = EXF(((key-X) & M), O, size);
while (tmp > 0) {
pos = pos+rTab[EX(tmp,0,rShift-1)];
tmp = tmp>>rShift;
}

return pos;

WORD BtreeSearch(bt, X)
Btree *bt; WORD X;
{
WORD pos, height = bt->height, n = bt->root;

FillKey(&X);
while (TRUE) {
pos = MultCmp(bt->nodes[n] .key, X,
bt->nodes[n] .size);
if (height == 0) {
if (pos == bt->nodes[n].size)
pos = bt->nodes[n].size-1;
return EX(bt->nodes[n] .key, mulki[pos],
mulkil[pos]+k-1);

/* a x/
/* b x/

}
n = EXF(bt->nodes[n] .pt, pos, 1); /* c */
height--;
}
}

AddField(keys, pos, X)
WORD *keys, pos, X;
{
WORD tmp;

tmp = (((*keys>>mulki[pos])<<k+1) | X)
<<mulki [pos];

if (pos==0) *keys=0;

else *¥keys = EXF(*keys, O, pos);

*keys = EXF((tmp]|*keys), O, maxD);

WORD NewNode(bt)

}

Btree *bt;

bt->lastnode++;
bt->nodes[bt->lastnode] .key = M;
bt->nodes[bt->lastnode] .pt = 0;
bt->nodes[bt->lastnode] .size =
return bt->lastnode;

0;

SplitChild(bt, par, c, pos)

{

}

Btree *bt; WORD par, c, pos;
WORD s = NewNode(bt);

AddField (&bt->nodes[par] .key, pos,
EXF(bt->nodes[c].key, minD-1, 1));
AddField(&bt->nodes[par] .pt, pos, s);
bt->nodes[par].size++;
bt->nodes[s] .key = EXF(bt->nodes[c] .key, O, minD-1);
bt->nodes[s].pt = EXF(bt->nodes[c].pt, O, minD);
bt->nodes[s] .key = bt->nodes[s].key | M;
bt->nodes[s].size = minD-1;
bt->nodes[c] .key = EXF(bt->nodes[c] .key,minD,minD-1) ;
bt->nodes[c] .pt = EXF(bt->nodes[c].pt, minD, minD);
bt->nodes[c] .key = bt->nodes[c].key | M;
bt->nodes[c] .size = minD-1;

BtreeIns(bt, X, neighb)

{

Btree *bt; WORD X, *neighb;
WORD par, child, height, pos;

FillKey (&X);

if (bt->nodes[bt=->root].size == maxD-1) {
child = bt->root;
bt->root = NewNode(bt);
bt->nodes[bt->root] .pt =
bt->height++;
SplitChild(bt, bt->root, child, 0);

}

par = bt->root;

height = bt->height;

while (height > 0) { /* b */
pos = MultCmp(bt->nodes[par] .key, /* c */

X, bt->nodes[par].size);

child = EXF(bt->nodes[par].pt, pos, 1); /* d */
if (bt->nodes[child].size == maxD-1)

/* a x/

child;

SplitChild(bt, par, child, pos); /* e */
else { /% £ x/

height--;

par = child;

¥
}
pos = MultCmp(bt->nodes[par].key,

X, bt->nodes[par].size);
AddField(&bt->nodes[par] .key, pos, (EXF(X, 0, 1)));
bt->nodes[par].key = bt->nodes[par] .key | M;
bt->nodes[par].size++;
if (pos == 0) /* h *x/

*neighb = EX(bt->nodes[par].key, k+1, mulk[2]);
else *neighb = EX(bt->nodes[par].key,
mulkl[pos-1] ,mulkl[pos-1]+k-1);

/% g */

/ool koo k LISt dokokokokdokokokokokok ok sk kokokok koK sk ok ok ok ko ok /

LinkBefore(new, p)
list *new, *p;

{
new->prev = p->prev;
new->next = p;
if (new->prev != NULL) new->prev->next
p->prev = new;
}

LinkAfter(new, p)
list *new, *p;
{
new->next = p->next;
new->prev = p;
if (new->next != NULL)
p->next =

}

new;

/****************** Trie *****************************/

boolean ChildExists(t, c)
trie *t; WORD c;
{
return (t->checkpt[c] < t->firstfree
&& t->check[t->checkpt[c]] == c¢);
}

list *TrieSearch(t, X)
trie *t; WORD X;
{
WORD ¢, skip = w - rootbits;

if (t == NULL) return NULL;
while (TRUE) {
if (X <= t->min->key)
if (X >= t->max->key)
if (t=->check == NULL)
¢ = EX((X >> skip), 0,
if (ChildExists(t, c¢))

return t->min;
return t->max;
return t->min;
k-1);

new->next->prev

new;

new;

t = t->Tnodes[c];

else t = t->Tnodes[BtreeSearch(&t->bt, c)];

skip -= k;
}
}

MarkNewChild(t, c)
trie *t; WORD c;
{
t=>check[t->firstfree] = c;
t=>checkpt[c] = t->firstfree;
t=->firstfree++;

}

trie *NewTrie(min)
WORD min;

trie *tmp;

tmp = (trie *)malloc(sizeof(trie));
tmp->check = NULL;

tmp=->min =
tmp->min->key = min; tmp->max =
tmp->min->prev = tmp->min->next = NULL;
return tmp;

(list *)malloc(sizeof(list));
tmp=>min;

CreateArrays(t) /dkkkckkokkkkkkkkkkk Tnitialization kskskkskskskskkokskdkokskkkkkkk /

trie *t;
{ WORD Divide(x, y, remainder)
WORD neighb; WORD x, y, *remainder;
t->check = (WORD *)malloc(checkArraySize); {
t=>checkpt = (WORD *)malloc(checkArraySize); WORD out = 0;
t->Tnodes = (trie **)malloc(trieArraySize);
t->bt.nodes = (BtreeNode *)malloc(nodeArraySize); while (x >=y) A
t->firstfree = t->bt.lastnode = O; X -=y;
t->bt.root = NewNode(&t->bt); out++;
t->bt.height = 0; }
} *remainder = x;
return out;
TrieIns(t, X) }
trie **t; WORD X;
{ Init (N, eps_inv)
WORD neighb, ¢, skip = w - rootbits; trie *tmp; WORD W, eps_inv;
{
if (*t == NULL) { WORD logn = O, minDsqr, i, triedegree;
*t = NewTrie(X);
return; do {
} H=0>51;
tmp = *t; logn++;
while (TRUE) { /* a */ } while (N !'= 0);
if (X == tmp->min->key || X == tmp->max->key) minD = 3;
return; /* b */ minDsqr = 9;
if (tmp->min == tmp->max) { /* c */ do {
tmp->max = (list *)malloc(sizeof(list)); minD++;
tmp->max->key = X; minDsqr += minD+minD-1;
LinkAfter(tmp->max, tmp->min); } while (minDsqr<logn);
if (tmp->min->key > tmp->max->key) minD -= 1;
Swap(&tmp->min->key, &tmp->max->key); maxD = minD+minD;
return; k = Divide(w, maxD, &rootbits)-1;
} maxDepth = Divide(w, k, &rootbits)-1;
if (X < tmp->min->key) /* d */ if (rootbits > 0) maxDepth++;
Swap(&X, &tmp->min->key); else rootbits = k;
else if (X > tmp->max->key) triedegree = 1 << k;
Swap (&X, &tmp->max->key) ; checkArraySize = sizeof(WORD) << k;
¢ = EX((X >> skip), 0, k-1); /* e x/ trieArraySize = sizeof(trie *) << k;
if (tmp->check == NULL) { /* £ %/ nodeArraySize =
CreateArrays(tmp) ; (sizeof (WORD)+sizeof (WORD)+sizeof (WORD)) << k;
tmp->Tnodes[c] = NewTrie(X); mulk[0] = mulki[0] = O;
MarkNewChild (tmp, c); for (i = 1; i <= maxD; i++) {
BtreeIns(&tmp->bt, c, &neighb); /* g */ mulk[i] = mulk[i-1]+k;
LinkAfter(tmp->Tnodes[c]->min, tmp->min); mulk1[i] = mulk1[i-1]+k+1;
return; }
} rTabSize = 1 << Divide (w, eps_inv, &i);
if (!ChildExists(tmp, ¢)) { /* h */ rTab = (WORD*)malloc(sizeof(WORD)
tmp->Tnodes[c] = NewTrie(X); << Divide (w, eps_inv, &i));
MarkNewChild (tmp, c); M =1 << k;
BtreeIns(&tmp->bt, c, &neighb); i = rTab[0] = 0;
if (¢ < neighb) while (M <= rTabSize) {
LinkBefore (tmp->Tnodes[c]->min, it+;
tmp->Tnodes[neighb]->min) ; rTab[M] = i;
else M= (M << k+1) | (1 << k);
LinkAfter(tmp->Tnodes[c]->min, }
tmp->Tnodes [neighb] ->max) ; rShift = mulk1[i];
return; FillKey (&M);
} }
tmp = tmp->Tnodes[c]; /* i x/
skip -= k; /% j %/

}
}

