PREPRINT. ActaInformatica, 28:165-178, 1990.

Binary Search Trees of Almost Optimal Height

Arne Andersson*
Department of Computer Science
Lund University
Box 118
S-221 00 Lund
Sweden

Christian Icking Rolf Klein
Universitat- Gesamthochschule Essen
FB 6 / Praktische softwareorientierte Informatik
Schiitzenbahn 70
4300 Essen 1
Federal Republic of Germany

Thomas Ottmann'
Institut fiir Informatik
Universitat Freiburg
Rheinst. 10-12
D-7800 Freiburg
Federal Republic of Germany

*This work was partially supported by a grant from the National Swedish Board for
Technical Development.

TThis work was partially supported by a grant from the Deutsche Forschungsgemein-
schaft, grant no. Ot 64/5-2.

Abstract

First we present a generalization of symmetric binary B-trees, SBB(k)-
trees. The obtained structure has a height of only [(1+) log(n +1)]
1. where k may be chosen to be any positive integer. The maintenance
algorithms require only a constant number of rotations per updating
operation in the worst case. These properties together with the fact
that the structure is relatively simple to implement makes it a useful
alternative to other search trees in practical applications.

Then, by using an SBB(k)-tree with a varying k we achieve a struc-
ture with a logarithmic amortized cost per update and a height of
logn + o(logn). This result is an improvement of the upper bound
on the height of a dynamic binary search tree. By maintaining two
trees simultaneously the amortized cost is transformed into a worst-
case cost. Thus, we have improved the worst-case complexity of the
dictionary problem.

1 Introduction

The binary search tree is a simple data structure well suited for storing an
ordered set of elements. The original binary search tree allows insertion or
search of an element in ©(logn) average-case time [2, 7]. However, each
operation mentioned requires linear time in the worst case. This bad be-
haviour is due to the fact that the height of the tree is not controlled by the
updating algorithms and therefore a skew tree may occur.

To improve the worst-case behaviour of the binary search tree different
types of balanced search trees have been presented [1, 3, 11, 13, 15]. Those
trees have a height of ©(logn) and efficient maintenance algorithms which
allow insertion, deletion and search to be performed in ©(logn) worst-case
time.

One way to obtain a balanced binary search tree is by using binary rep-
resentations of B-trees. The B-tree introduced by Bayer and McCreight [4]
is often referred to as an a-b-tree where a and b are two integers, a < b.
The data structure is a multiway tree where each node except the root has
a degree between a and b. All leaves in a B-tree have the same depth. The
symmetric binary B-tree, or SBB-tree, introduced by Bayer [3] is a binary
representation of a 2-4-tree where each node in the B-tree is represented by a
small binary tree. The structure has several properties that makes it a good

'log denotes the logarithm to the base 2 and n denotes the number of elements stored
in the tree.

alternative to other binary search trees. It can be represented with only
one extra bit per stored element for balance information, it has relatively
simple updating algorithms and it can be maintained with only a constant
number of restructurings per update. The last property is crucial in some
applications where restructuring is expensive, such as when implementing
priority search trees [12]. However, the maximal height of an SBB-tree is
2logn. Thus, in applications where fast search is essential the symmetric bi-
nary B-tree is outperformed by the AVL-tree which has a maximal height of
1.441og n [1], and the k-neighbour tree with a maximal height of (1+¢) logn,
where € is an arbitrary small constant [11].

A question which arises from studying SBB-trees is whether there are
any useful binary representations of B-trees that are not 2-4-trees. Bayer [3]
defined a generalized symmetric binary B-tree but so far this generalization
has not shown any particular advantage that makes it useful. In this paper
we present a new generalization of the SBB-tree that represents a-b-trees
where a = 2% and b = 28! for any positive integer k. This generalized
structure, denoted an SBB(k)-tree (in [9] it is referred to as a red-h-black
tree), inherits the good properties of the SBB-tree with respect to space
efficiency, need of only a constant number of restructurings and simplicity
of the algorithms. Moreover, it has the advantage of being of low height,
[(1 + %) log(n + 1)-‘ . These properties make SBB(k)-trees a good alternative
to other search trees for practical applications.

The fact that our generalized structure requires few restructurings per
update also gives us the possibility to present an improved upper bound on
the height of a dynamic binary search tree. This is obtained by using a
modified version of an SBB(k)-tree where we use a varying value of k. We
obtain a binary search tree with a logarithmic cost for updates and a height
of logn + o(log n), which is better than for any other dynamic binary search
tree.

2 Data Structure

A B-tree may be represented as a binary tree where each node in the B-tree
corresponds to a number of binary nodes which together form a pseudo-
node. Fach pseudo-node is in itself a small binary tree. The pseudo-node
containing the root of the entire tree is called the pseudo-root. The number of
binary nodes in a pseudo-node is the size of the pseudo-node. The mazimum
and minimum height of a pseudo-node is the longest and shortest distance

from its topmost node to a node outside the pseudo-node, respectively. A
pseudo-node is optimally balanced if the difference between its maximum
and minimum heights is at most 1.

Using the terminology above, which is different from that used by Bayer?,
the symmetric binary B-tree [3], or SBB-tree, may be defined as a representa-
tion of a 2-4-tree where each pseudo-node is optimally balanced. An example
of an SBB-tree is given in Figure 1.

The generalized SBB-tree presented here is different from the general-
ization suggested by Bayer. In his structure, a pseudo-node can take any
shape as long as its maximum height is less than or equal to some constant.
In our structure, the SBB(k)-tree, each pseudo-node is required to be an
optimally balanced tree.

A formal definition of SBB(k)-trees is given below.

Definition 1 For a given integer constant k, k > 1, a generalized sym-
metric binary B-tree, or SBB(k)-tree, is a binary tree which satisfies the
following balance criteria:

o The pseudo-root is optimally balanced and has a mazrimum height <
k+1;

e All other pseudo-nodes have a minimum height > k and a maximum
height <k + 1.

e The number of pseudo-nodes on the path from the root to a leaf is the
same for all leaves.

From the definition follows that all pseudo-nodes except the pseudo-root
have a size between 2¢ — 1 and 2¥*! — 1. The a-b-tree corresponding to an
SBB(k)-tree has a = 2% and b = 2¥*1. For k = 1 we get a symmetric binary
B-tree.

To keep an SBB(k)-tree balanced we have to be able to identify pseudo-
nodes and determine their maximum and minimum heights. One bit stored
in each binary node tells whether the node is the topmost node of a pseudo-
node or not. From this information the minimum and maximum heights
of a pseudo-node P can be computed by explicit examination of the binary
nodes in P. If this examination is considered to be too time-consuming,

2Instead of the term pseudo-node Bayer uses two types of edges, edges within a pseudo-
node are horizontal and edges between pseudo-nodes are wvertical. The definitions are
equivalent, but the notation of pseudo-nodes will simplify our presentation.

T TL /TN L Th

— |

000 % %
A A LA DV L

the balance information may be stored in another somewhat more space-
requiring way. In this case two integers stored in each binary node in P
give the minimum and maximum distances from the binary node to a node
outside P.

A nice property of the SBB(k)-tree is that the constant k£ may be chosen
in a way which brings its height arbitrary close to the optimal height of a
binary search tree, which is shown below.

Theorem 1 Let T be an SBB(k) tree. Then

height(T) < [(1 + %) log(n + 1)-‘ . (1)

Proof: From the definition above we know that the B-tree corresponding
to an SBB(k)-tree is an a-b-tree where a = 2%. The height of this B-tree is
the same as the number of pseudo-nodes on a path from the root to a leaf
in the SBB(k)-tree. From the analysis of B-trees [4, 7] we know the height
of an a-b-tree:

n+1

height(a-b-tree) < 1+ {loga TJ

log(n +1) — 1J
1 ek 22 0
+ { log 2k

(2)

To compute the height of an SBB(k)-tree we use the fact that the shortest
distance from the root to a leaf is at most |log(n + 1)|. Since each pseudo-
node is optimally balanced, the difference between the depths of two leaves
is at most one per level in the corresponding B-tree. Thus, the height of an
SBB(k)-tree T is at most the sum of the minimum depth of a leaf and the
maximum height of the corresponding a-b-tree, that is

height(T) < [log(n + 1)] + height(a-b-tree)

log(n+1) —1

< =2t 00

< llog(n+1)]+1+ { o J

< Kl+l> o (n+1)+1_1J

= k)8 k

1

< Kl + E) log(n + 1)-‘ (3)

which completes the proof. O

From Theorem 1 we conclude that a large value of k keeps the height of the
tree close to optimal. However, the amount of restructuring work required
per update increases as k increases.

3 Maintenance Algorithms

The algorithms for insertion and deletion in an SBB(k)-tree are closely re-
lated to those for the same operations in a B-tree. In order to describe the
algorithms we define some basic operations below.

3.1 Basic Operations

Let P and S denote two pseudo-nodes. The updating algorithms for an
SBB(k)-tree use the following operations:

e Balance P: P is rebuilt to become optimally balanced.

e Split P: P is split into two pseudo-nodes and its topmost node is
inserted into the parent pseudo-node.

e Join P and S: P and S are joined, the common parent of their re-
spective topmost nodes is deleted from the parent pseudo-node and
becomes the topmost node of the new pseudo-node.

e (Co-balance P and S: P and S are joined, the new pseudo-node is
balanced and split into P and S.

e Single rotation.

The balancing operation is performed when insertion or removal of a binary
node makes a pseudo-node unbalanced, that is, when its maximum and
minimum heights differ by two.

The split is used when a pseudo-node becomes too large, that is, when
insertion of a binary node increases its size to 2¥*1. In this case, before the
binary node was added the pseudo-node had its largest possible size with
a maximum and minimum height of £ + 1. Adding the binary node gave
a maximum height of £ + 2 and thus, the pseudo-node is still optimally
balanced. Splitting it will result in two pseudo-nodes with minimum heights
of k£ and maximum heights of k£ and k + 1, respectively (Figure 2b). Thus,
both of the new pseudo-nodes satisfy the definition of an SBB(k)-tree and

no balancing of pseudo-nodes is required. The topmost node of the old
pseudo-node will be inserted into the parent pseudo-node.

When the pseudo-root is split a new pseudo-root of size one is created.
In this case the number of pseudo-nodes on each path from the root to a leaf
will increase by 1, which corresponds to increasing the height of a B-tree.

The join and co-balancing operations are performed when a pseudo-node
becomes too small. This occurs when removal of a binary node decreases
the size of the pseudo-node to 2¢ — 2. Before the deletion the pseudo-node
had its smallest possible size with a minimum and maximum height of k.
Thus, after the removal the pseudo-node has a minimum height of £ —1 and
a maximum height of k and is optimally balanced. Since the pseudo-node is
too small, we have to either join it with another pseudo-node or add nodes
to it.

When two pseudo-nodes are joined or co-balanced, their topmost nodes
have to be siblings. In some cases a single rotation is needed to obtain this
configuration.

The join is performed when the pseudo-node’s sibling has its smallest
possible size. That is, when both its maximum and its minimum heights
are k. The resulting joined pseudo-node will have a minimum height of k
and a maximum height of k +1 (Figure 3d) and it will satisfy the definition
of an SBB(k)-tree. If the pseudo-root contains only one binary node it will
disappear when its two children are joined. In this case the joined pseudo-
node will become the new pseudo-root and the number of pseudo-nodes on
each path from the root to a leaf will decrease by 1, which corresponds to
decreasing the height of a B-tree.

Co-balancing is performed when the sibling of the pseudo-node is too
large to allow joining. The effect of this operation is that binary nodes are
moved from the larger of the two pseudo-nodes to the smaller one. After the
co-balancing both pseudo-nodes will satisfy the definition of an SBB(k)-tree.

The split and join operations are performed merely by changing the
stored balance information in three binary nodes and do not change the tree
structure at all. Thus, both these operations are very simple to perform in
contrast to the corresponding operations for an ordinary B-tree. The cost
of balancing or co-balancing is proportional to the size of a pseudo-node,
which is depending of k.

3.2 Insertion and Deletion

The good properties of the maintenance algorithms for an SBB(k)-tree are
due to the fact that a split or a join operation do not change the tree struc-
ture, and therefore do not require any restructuring. The other operations
(balancing, co-balancing, and single rotation) leads to immediate termina-
tion of the updating algorithms. These two facts give that an SBB(k)-tree
can be updated with only a constant amount of restructuring work. Note
that only rotations and rebalancing are regarded as restructuring work, while
changing stored balance information is not, since the shape of the tree is not
affected.

We present the algorithms below. The analysis is given in section 3.3. In
the following we let max(P) and min(P) denote the maximum and minimum
heights of the pseudo-node P. P, denotes P’s topmost node.

Insertion:

When a new key is to be inserted into an SBB(k)-tree we follow a search
path down the tree until a leaf is reached. A new node is created at the
bottom of the tree and the key is placed there. This may violate one of the
criteria given in the definition of the SBB(k)-tree by making a pseudo-node
P either unbalanced or too large. We have the following cases:

Case 1: max(P) — min(P) = 2. P is not optimally balanced. We balance
P and terminate.

Case 2: max(P) = k+ 2. P is too large. We split P. One binary node is
added to the parent pseudo-node. Therefore we proceed to the parent
pseudo-node to look for possible violations of the balance criteria.

10

@

o

E

£
ol

(b)

e

Figure 2: Insertion into an SBB(3)-tree. (a) Case 1: The
pseudo-node is balanced. (b) Case 2: the pseudo-node is
split. In this example the splitting results in an imbalance in
the parent pseudo-node.

11

Deletion:

When a key is to be deleted from an SBB(k)-tree we follow a search path
down the tree until the binary node containing the key is found. If the node
is at the bottom of the tree it is removed and replaced by a leaf, otherwise
it is replaced by its predecessor (or successor), which is found at the bottom
of the tree. The effect will be that one node is deleted from a pseudo-node
P at the lowest level of the tree, which may make P either unbalanced or
too small. As for insertion, the two cases cannot occur at the same time.

Case 1: max(P) — min(P) = 2. P is not optimally balanced. We balance
P and terminate.

Case 2: max(P) = k—1. P is too small and has to be joined or co-balanced
with another pseudo-node. (Note that this case will not occur at the
pseudo-root since its minimum height is not restricted.) In order to
join or co-balance P with another pseudo-node S, P;,, and Sy, have
to be siblings. If there is no such pseudo-node S we obtain this by a
single rotation. After this step two subcases occur:

Case 2a: max(S) = k+1. S is large enough to give away a node. We
co-balance P and S and terminate.

Case 2b: max(S) = k. S has its smallest possible size. We join P and
S and proceed to the parent pseudo-node to check for possible
violations of the balance criteria.

The correctness of the algorithms for insertion and deletion follows from the
fact that

1. when an element is inserted into or deleted from an SBB(k)-tree, no
other violation of the balance criteria than the cases treated by the
algorithms above may occur;

2. both algorithms will terminate when the topmost pseudo-node is reached;

3. all terminating states of the algorithms represent an SBB(k)-tree.

12

e e
) 152 158
pealr ey B

(d Kﬁ\%
e [Fey o

P S

Figure 3: Deletion in an SBB(3)-tree. (a) Case 1: The
pseudo-node is balanced. (b) A rotation is performed in Case
2 to make P’s and S’s topmost nodes become siblings. (c)
Case 2a: P and S are co-balanced. (d) Case 2b: P and S

are joined.
13

3.3 Analysis

The maintenance algorithms given above use few restructurings, as shown
below.

Theorem 2 An SBB(k)-tree can be updated in O(logn) time and with a
constant amount of restructuring work in the worst case.

Proof: In order to prove the constant amount of restructuring work we
take a closer look at the maintenance algorithms presented above. Both al-
gorithms work bottom-up, starting at the lowest pseudo-node on the visited
path.

Insertion: The two cases which may occur are described in the algorithm
above. Rebalancing is required only in Case 1. Having balanced the
pseudo-node, it satisfies the definition of an SBB(k)-tree and the al-
gorithm terminates. Thus, at most one balancing may be performed
per insertion, which proves a constant amount of restructuring work.

Deletion: As for insertion, the balance criteria are satisfied as soon as
a balancing or a co-balancing has been performed. The only case
a restructuring operation does not lead to immediate termination is
when the single rotation in Case 2 is followed by a join. After the
join we continue to the parent pseudo-node to look for a violation of
the balance criteria. However, a rotation is required only when the
parent pseudo-node of P and S has its bottom nodes at two different
levels (Figure 3b). In this case, removal of one node from that pseudo-
node cannot cause any violation of the balance criteria. Thus, the
algorithm will terminate also when a rotation in Case 2 is followed by
a join. From this follows that the amount of restructuring required by
a deletion is at most one single rotation plus one co-balancing.

From the description above follows that both algorithms work along a path
down the tree, spending constant time at each level, which proves the overall
logarithmic cost per update.

Thus, we have shown that the restructuring work is constant, and that
the cost per update is logarithmic, which completes the proof. O

Even if the amount of restructuring work is constant it might be of some

interest to determine how much is actually required. The exact amount
depends on the algorithm used to balance pseudo-nodes. There are several

14

algorithms for balancing binary search trees which may be used for this
purpose [5, 6, 10, 19].

As an example we can study the algorithm given by Stout and War-
ren [19]. This algorithm is not the most efficient one but it uses rotations
which makes the balancing cost comparable with the cost required for other
classes of search trees. The Stout-Warren algorithm works in two steps:

1. A right-degenerated tree is produced by repeated right rotations.

2. A balanced tree is produced from the degenerated one by repeated left
rotations.

Let P be an unbalanced pseudo-node and P’ the same pseudo-node after
rebalancing. Let 1I(P) and rl(P) denote the length of P’s leftmost and
rightmost path, respectively. The number of rotations required by the Stout-
Warren algorithm is 2|P| — rl(P) — rl(P’). This number may be slightly
reduced by two modifications. In the first step of the algorithm we can
make P left- or right-degenerated, depending on which one of 11(P) and
rl(P) is largest. In step 2 we can keep as many nodes as possible on the
degenerated path, that is [log(|P| 4+ 1)] nodes. With these modifications
the number of rotations required to balance the pseudo-node P is

2|P| — Max (II(P),r1(P)) — [log(|P| + 1)] . (4)

In Theorem 3 below we give the maximum number of rotations required for
updates in an SBB(k)-tree when this modified balancing algorithm is used.
Note that in the proof of Theorem 2 we claimed that only one rotation is
required. In this case we also use rotations for the rebalancing operations.
This is not a contradiction, since rebalancing can be made without rotations.

Theorem 3 An SBB(k)-tree can be maintained with 252 — 2k — 4 rota-
tions per insertion and 3 - 251 — 2k — 7 rotations per deletion in the worst
case.

Proof: An examination of the worst possible cases gives the following:

Insertion: The worst case occurs when a pseudo-node of maximum size,
2k+1 _ 1. is rebalanced. In such a pseudo-node there is one path of
length k and one path of length k + 2, the rest of the paths have a
length of £ + 1. Thus, at least one of the right- and leftmost paths

15

has a length of k + 1 before rebalancing. From Eq. (4) the number of
rotations is at most

2251 — 1) = (k+1) - [log 2]
2k+2 _ ok — 4. (5)

Deletion: The worst case occurs in Case 2 when a single rotation is followed
by co-balancing of two pseudo-nodes of maximum size. The number of
nodes involved in the co-balancing is at most 3 - 2¥ — 2. The maximum
height of the left- and rightmost path before the balancing is at least
k+ 2. From Eq. (4) we get the number of rotations for a co-balancing
to be

2(3-25 —2) — (k+2) — [log(3- 2 = 1)]
= 3.281 _9p g (6)

Adding the single rotation, we get a total sum of

3.2k o 7. (7)
The proof follows from Egs. (5) and (7). O

Thus, the SBB(k)-tree combines a low height with a low cost of rebalancing,.
As an example, k = 2 gives a height of 1.5log(n+1), 8 rotations for insertion
and 13 for deletion. Which value of k£ to choose in a particular case depends
on the expected size of the tree, the ratio of searches to updates, and the
cost of comparisons compared to the cost of restructuring.

Note that the number of rotations required for an SBB(1)-tree is the same
as that required by the algorithms for the SBB-tree by Guibas, Sedgewick
and Tarjan [8, 18, 20]. Their algorithms may be regarded as special cases of
our algorithms for an SBB(1)-tree. However, the algorithms are not identi-
cal. In some cases our modified Stout-Warren algorithm makes a rotation
which is not necessary (Case 2a in the deletion algorithm when |S| = 3).
Thus the average number of rotations may be improved by optimizing the
Stout-Warren algorithm further. For k£ > 1 it may be possible to improve
the worst-case number of rotations using a better rebalancing algorithm.

16

4 Improved Height of the SBB(k)-tree

In the preceding sections we have shown that the SBB(k)-tree has a height of
[(1+ €)log(n + 1)] for any positive value of e. By varying the value of k in
such a way that the maintenance cost remains logarithmic, the height may
be reduced to logn + o(logn), which is optimal in the leading term. Unfor-
tunately, continuous variation of k£ cannot be afforded since the entire tree
has to be reconstructed for each new value. This problem is circumvented
by changing k only at preset intervals.
We start by presenting an amortized result.

Theorem 4 There is a binary search tree T for which

log(n + 1) "

loglog(n + 1) ®)

height(T) < [log(n +1)+

and the amortized cost per update is ©(logn).

Proof: We use a modified SBB(k)-tree. Associated with the tree we have a
counter which is increased by one each time an element is inserted or deleted.
When the value of the counter equals half the number of elements in the
tree, k is set to [loglog2n]| and the entire tree is reconstructed in linear
time. Then, ©(n) updates have been made since the last total rebalancing,
which gives an amortized cost of O(1) per update for changing the value of
k.

Let IV denote the size of the tree when the latest total restructuring was
made. From the fact that a total rebalancing is made after every 5th update
we know that the size of the tree is bound to be between %N and 2N. This
gives

[loglog(n 4+ 1)] < k < [loglog3n]. (9)

From Theorem 1 we know that

height(T) < [(1 + %) log(n + 1)-‘

< [(1 + m> log(n + 1)} - (10)

From Theorem 3 we know that the maximal amount of restructuring work
required per update is O(2*). Since k = O(loglogn) we have a restructuring
cost of

O(2°61°8") = O(log n). (11)

17

The proof follows from Egs. (10) and (11). a

5 An Efficient Worst-Case Solution to the Dictio-
nary Problem

The amortized result obtained in Theorem 4 may be transformed into a
worst-case result by maintaining two trees simultaneously instead of one. In
this way the cost of changing the value of k£ (including a global rebuilding)
may be distributed in such a way that the worst-case cost per update be-
comes logarithmic. Providing that the two trees are not being rebuilt at the
same time, there will always be one tree in which queries can be performed.

Our technique is an improvement of the method of global rebuilding in-
troduced by Overmars [17]. Using the rank of elements we avoid making
extra element-comparisons when updating two trees.

Theorem 5 There is a data structure supporting search and updates at a

cost of
log(n + 1) "
loglog(n + 1)

comparisons and ©(logn) time in the worst case.

[log(n +1)+

Proof: We use a data structure consisting of two SBB(k)-trees where
k = loglogn, as described in the proof of Theorem 4. In each node we
store the number of descendants. The data structure is maintained in the
following way:
1. After § updates the value of k is changed and each tree is rebuilt.
Rebuildings are scheduled in such a way that the two trees are not
being rebuilt at the same time.

2. Rebuilding work is distributed over the updates in such a way that the
time spent per update is O(logn).

3. Updates are performed in the following way:

(a) An update is always made in a tree which is not being recon-
structed. From the number of descendants, which is stored in
each node, we compute the rank of the inserted/deleted element.

18

(b) If the other tree is not being rebuilt the insertion/deletion is made
also in that tree. No comparisons are required for this update,
since we use the rank to locate the element.

(c) If the other tree is being rebuilt we store the update in a queue
to be performed when the rebuilding is completed.

Rebuilding of each of the trees includes construction of a new tree and
performance of the queued updates. The first step requires O(n) time and
the second one O(nlogn) time. Therefore, the entire procedure may be
distributed over a linear number of updates at a worst-case cost of O(logn)
per update.

Although each update is performed in both trees, element-comparisons
are made only the first time. Thus, the number of comparisons equals the
height of the tree. The rest of the proof is similar to the proof of Theorem 4.
O

6 Comments

We have presented a generalization of the symmetric binary B-tree, the
SBB(k)-tree. The new tree is of low height and has efficient updating algo-
rithms requiring only a constant number of restructurings per operation. In-
stead of using only primitive operations such as rotations, the algorithms for
maintenance of SBB(k)-trees are based on rebalancing of larger structures.
In this way we avoid several special cases, which makes the presentation
clearer. The technique of representing B-tree nodes as large binary trees is
also used by van Leeuwen and Overmars [21] to obtain logn-maintainable
subclasses of some search trees, for example AVL-trees and a-balanced trees.
While their results mainly are of theoretical interest, the SBB(k)-tree is an
alternative to other search trees well worth to be considered in practical
applications.

Introducing SBB(k)-trees gives an answer to an open problem formulated
by Olivie [14]. He presented a class of balanced trees called half-balanced
trees, which in fact is the same class as the symmetric binary B-trees, and
showed that trees of this class can be updated with a constant number of
rotations per operation. The question was whether there are other classes
of balanced trees with this property. Clearly, for any value of k larger than
1 the SBB(k)-trees form a new class with this property. A more detailed

19

study of tree structures requiring a constant number of rotations per update
can be found in [16].

Apart from the constant amount of restructuring work per update there
are other properties of the SBB(k)-trees which may be derived from the SBB-
trees. For instance, there are updating algorithms for SBB-trees which use
top-down balancing [8]. The idea is to perform all split and join operations
which may be required on the way down the tree during the search. Such
algorithms are useful in a parallel environment since one operation on the
tree may be started before the previous one is completed. Another example
is the ability to join and split SBB-trees [8].

Based on the SBB(k)-tree we have also presented a data structure which
may be efficiently maintained in the worst case with a number of comparisons
per dictionary operation which is optimal in the leading term. Thus, we have
improved the upper bound on the worst-case complexity of the dictionary
problem.

20

Acknowledgements

We would like to thank Dr. Svante Carlsson and the referees for valuable
comments on this paper.

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

G. M. Adelson-Velskii and E. M. Landis. An algorithm for the organiza-
tion of information. Dokladi Akademia Nauk SSSR, 146(2):1259-1262,
1962.

A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and
Algorithms. Addison-Wesley, Reading Mass, 1983.

R. Bayer. Symmetric binary B-trees: Data structure and maintenance
algorithms. Acta Informatica, 1(4):290-306, 1972.

R. Bayer and E. McCreight. Organization and maintenance of large
ordered indexes. Acta Informatica, 1:173-189, 1972.

H. Chang and S. S. Iynegar. Efficient algorithms to globally balance a
binary search tree. Communications of the ACM, 27(7):695-702, 1984.

A. C. Day. Balancing a binary tree. Computer Journal, 19(4):360-361,
1976.

G. H. Gonnet. Handbook of Algorithms and Data Structures. Addison-
Wesley, 1983. ISBN 0-201-0023-7.

L. J. Guibas and R. Sedgewick. A dichromatic framework for balanced
trees. In Proc. 19th Ann. IEEE Symp. on Foundations of Computer
Science, pages 8-21, 1978.

C. Icking, R. Klein, and T. Ottmann. Priority search trees in secondary
memory. In Graphtheoretic Concepts in Computer Science (WG ’87),
Staffelstein, LNCS 31/, pages 84-93, 1987.

W. A. Martin and D. N. Ness. Optimizing binary trees grown with a
sorting algorithm. Communications of the ACM, 15(2):88-93, 1972.

H. A. Mauer, T. Ottmann, and H. W. Six. Implementing dictionaries
using binary trees of very small height. Information Processing Letters,
5(1):11-14, 1976.

21

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

E. M. McCreight. Priority search trees. SIAM Journal on Computing,
14(2):257-276, 1985.

J. Nievergelt and E. M. Reingold. Binary trees of bounded balance.
SIAM Journal on Computing, 2(1):33-43, 1973.

H. J. Olivie. A Study of Balanced Binary Trees and Balanced One-Two-
Trees. Ph. D. Thesis, Dept of Mathematics, University of Antwerp,
1980.

H. J. Olivie. A new class of balanced search trees: Half-balanced binary
search trees. R. A. I. R. O. Informatique Theoretique, 16:51-71, 1982.

Th. Ottmann and D. Wood. Updating binary trees with constant link-
age cost. To appear in Proc. Scandinavian Workshop on Algorithm
Theory, SWAT ’90, Bergen, 1990.

M. H. Overmars. The Design of Dynamic Data Structures, volume 156
of Lecture Notes in Computer Science. Springer Verlag, 1983. ISBN
3-540-12330-X.

N. Sarmak and R. E. Tarjan. Planar point location using persistent
search trees. Communications of the ACM, 29(7):669—-679, 1986.

Q. F. Stout and B. L. Warren. Tree rebalancing in optimal time and
space. Communications of the ACM, 29(9):902-908, 1986.

R. E. Tarjan. Updating a balanced search tree in O(1) rotations. In-
formation Processing Letters, 16:253—-257, 1983.

J. van Leeuwen and M. H. Overmars. Stratified balanced search trees.
Acta Informatica, 18:345-359, 1983.

22

