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Abstract

Combinatorial auctions are important as they enable
bidders to placebids on combinationsf items; compaed
to other auction medanisms they oftenincreasethe effi-
ciencyof the auction, while keepingrisks for bidders low.
However, the determinatiorof an optimalwinnercombina-
tion in combinatorialauctionsis a complex computational
problem.

In this paperwe (i) compae recentalgorithmsfor win-
ner determinationto traditional algorithms, (ii) present
and bendimarka mixedinteger programmingapproach to
the problem, which enablesvery geneaml auctionsto be
treatedefficiently by standad integer programmingalgo-
rithms (and hereby also by commecially available soft-
ware), and (i) discussthe impactof the probability dis-
tributionschosenfor bendhmarking

1 Intr oduction

Combinatoriabuctionsareimportantasthey enablebid-
dersto placebids on combinationsof items; comparedo
otherauctionmechanismghey oftenincreaseheefficiency
of theauctionwhile keepingrisksfor biddersow [Rassenti
et al., 1982; Rothlopf et al., 1995; Parkes, 1999; Wur-
man,1999. The determinatiorof anoptimalwinnercom-
bination in combinatorialauctionsis an A’P-hard prob-
lem [Rothlkopf et al., 1999, which hasrecentlyattracted
someresearchge.g. [Rothkopf et al., 1995; Nisan, 1999;
Fujishimaetal., 1999;Sandholm,1999. In this paperwe
look furtherinto thetopic. In particular our contributions
are:

e Therecentalgorithmsby Fujishimaetal. [Fujishimaet
al., 1999 and Sandholm[Sandholm,1999 are com-

paredto traditionalalgorithmsfor the computationally
identical problemof setpacking,andherebyputinto
a propercomputerscienceperspectie. Fromthis ex-
ercise,we learnthat mary of the main featuresof re-
cently presentedlgorithmsarerediscaoeriesof tradi-
tional methodsin the operationgesearckcommunity

e \We obsenethatthewinnerdeterminatiorproblemcan
be expressedas a standardmixed integer program-
ming problem,cf. [Nisan,1999;Wurman,1999, and
we show that this enablesthe managementf very
generalproblemsby useof standardalgorithmsand
commerciallyavailable software. This allows for ef-
ficienttreatmenbf highly relevantcombinatorialauc-
tionsthatarenot supportedy currentalgorithms.

e Thesignificanceof the probability distributionsof the
test setsusedfor evaluating different algorithmsis
discussedand exemplified. Particularly we demon-
stratethat someof the distributions usedfor bench-
marking in recentliterature [Fujishimaet al., 1999;
Sandholm, 1999 can be efficiently managedwith
rathertrivial algorithms.

The paper is organized as follows. In Section 2
we presenta well-known set partitioning algorithm by
Garfinkel and Nemhauser[Garfinkel and Nemhauser
1969, anddiscussthe currentalgorithmsfor optimal win-
ner determinationn the contet of this algorithm. There-
after, in Section3, we obsene that the winner determina-
tion problemcanbe setup asa mixedintegerprogramming
problemand herebybe solved by standardalgorithmsand
commercialsoftware. In Section4 someempiricalbench-
markingfor standardnixed integer programmingsoftware
is presentedand we discussthe significanceof the prob-
ability distribution of the testsetsusedfor benchmarking.
Finally, Section5 concludes.



2 Recent winner determination algorithms
and traditional algorithms for correspond-
ing problems

Beforediscussinghow very generalversionsof winner
determinatiorcanbesolvedby generabpurposealgorithms,
we investigatethe basiccasein which a bid statesthata
bundleof commaoditiesq; = [gi1, ¢i2; - - -, Gik), ¢ € {0,1}
(k isthenumberof commaodities)s valuedatv; € R. Given
a collection of such bids, the surplus maximizing com-
binationis the solutionto the integer programmingprob-
lem[Wurman,1999;Nisan,1999:

max .., v;B; )

wheren is the numberof bids and B; is a binary variable
representingvhetherbid i is selectedr not.

We focusthis presentatiorarounda setpartitioning al-
gorithmintroducedoy Garfinkel andNemhausefGarfinkel
and Nemhauser1969d. (For definitions of the set parti-
tioning problemandrelatedproblems,cf. Balasand Pad-
bery [BalasandPadbeg, 1974, andSalkin[Salkin,1975.)
As pointed out by the originators, “the approachis so
simple that it appearsto be obvious. However, it seems
worth reportingbecausét hasperformedsowell”. Indeed,
someof the experimentakesultsreportedby Garfinkel and
Nemhauseseemsurprisinglygoodcomparedo recentex-
perimentswhen taking the hardware performanceat that
time into account.

Theprinciplesof the Garfinkel-Nemhausealgorithmare
asfollows. Thealgorithmcreate®nelist perrow (i.e. com-
modity) andeachcolumn (set/bid)is storedin exactly one
list. Givenanorderingof therows, eachsetis storedin the
list correspondingp its first occurringrow. Within eachlist,
the setsaresortedaccordingto increasingcost. The search
for the optimal solutionis donein thefollowing way:

1. Choosethe first setfrom thefirst list containinga set
asthecurrentsolution.

2. Add (to the currentsolution)thefirst disjoint setfrom
the first list—correspondingo a row not includedin
the currentsolution—containingucha disjoint set, if

ary.

3. RepeatStep2 until oneof thefollowing happens:
(i) Thecostfor the current solution exceedsthe cost
for the bestsolution: this branchof the searchcanbe
pruned.(ii) Nothingmote canbe added: checkif this
is avalid solution/thebestsolutionsofar.

4. Backtrack: Replacethe latestchosenset by the next
valid setin its list andgo to Step2. Whenno more

setscanbe selectedrom the list, backup further re-
cursively. If nomorebacktrackingcanbe done,termi-
nate.

Sincethe problemof Equation(1) is equialentto the
definition of set packing and the problemsof set pack-
ing and set partitioning can be transformedinto each
other[BalasandPadbeg, 1976, the Garfinkel-Nemhauser
algorithmcanbe usedfor winner determinatiorin combi-
natorialauctions.lIt is alsoclearthatit is trivial to modify
thealgorithmto be suitedfor setpackingwithoutany mod-
ification of theinput; it is only a minor modificationof the
pruning/consistenctest. Specifically the setsneedto be
renamedasbids, costhasto be replacedby valuation,and
item 3 needgo bereplacedy:

RepeaStep2 until oneof thefollowing happens:
(i) Thevalue of the current solution can not ex-
ceedthe value of the bestcombinationfound so
far: this branchof the searchcanbe pruned. (ii)
Nothingmore can be added: checkif this is the
bestsolutionsofar.

As seenfrom the above description,the currently best
performingwinnerdeterminatioralgorithmt, the CASSal-
gorithm [Fujishimaet al., 1999, is apparentlyin major
partsa rediscaery of the Garfinkel-Nemhausealgorithm.
Themainprinciplesof bothalgorithmsareto (i) putthebids
in lists correspondingdo the differentcommaodities(called
bins by Fujishimaet al.), (ii) sort the bids in the list in
somecost(valuation)relatedorder, (iii) do pruningwhen-
ever the currentcombinationcannotbe betterthanthe best
onefoundsofar, and(iv) do standardacktracking.There
are essentiallytwo significantdifferencesbetweenCASS
andthe Garfinkel-Nemhausealgorithm: (i) cachingof par
tial searchresults,and(ii) improvedpruning.

The caching,normally referredto asdynamicprogram-
ming, is done by storing partial searchresultsin a table.
Thisis reportedo oftenpayoff, asmary partialallocations
sharethesame'restterm” (i.e. remainingunassigneg¢om-
modities)[Fujishimaet al., 1999. The cachecanhereby
alsobeusedfor pruning;wheneerthe“restterm” is asub-
setof analreadycached'rest term” andthe surplusof the
currentallocationplus the surplusof the cachedallocation
is smallerthanthe surplusof bestcombinatiorfoundsofar,
this branchof the searchcanbe pruned.

Comparedto the simple pruning describedin the
Garfinkel-Nemhauser algorithm, Sandholm$ algo-
rithm [Sandholm, 1999 and the CASS algorithm [Fu-
jishima et al., 1999, usea more sophisticatedechnique
which essentiallyis the ceiling test[Salkin,19715.

1At the presentatiorof CASSat IJCAI 1999in Stockholm,the CASS
algorithm[Fujishimaetal., 1999 wasreportedto outperformSandholms

winner determinatioralgorithm[Sandholm, 1999 by approximatelytwo
ordersof magnitudefor thedistributionstested.




3 Combinatorial auction winner determina-
tion asa mixed integer programming prob-
lem

In this sectionwe describehow very generaloptimal
winner determinationproblems can be formulated as a
mixed integer problem. For readingon mixed integer pro-
gramming (MIP) in itself and its relationto set packing
etc., we refer to the literature on combinatorialoptimiza-
tion andoperationsesearche.g.[BalasandPadbeg, 1976;
Garfinkel andNemhauser1969; Salkin, 1975.

As discussedelow, by properly formulatingthe prob-
lem,wegetalargenumberof veryattractvefeatures These
include:

e The formulation can utilize standardalgorithmsand
henceberun directly on standarccommerciallyavail-
able, thoroughly detugged and optimized software,
suchasCPLEX?

e Theremaybemultiple unitstradedof eachcommodity
o Biddersarenotrestrictedo bid for integeramounts.

e Bidderscanconstructadvancedormsof mutually ex-
clusive bids.

e Sellersmayhave non-zeraresene prices.

e Thereneednot be a distinction betweenbuyersand
sellers;a biddercanplacea bid for buying somecom-
moditiesand simultaneoushselling someothercom-
modities.

e Complicatedecursiebidswith theabovefeaturesan
beexpressed.

e Verygenerakonstraintanbeexpressed.

e Settingswithout free disposal(for someor all com-
modities)canbe managed.

It shouldbe pointedout that CASSand Sandholms al-
gorithmscanhandlesomeof thegeneralizationgbove. For
example, mutually exclusive (XOR) bids are easily for-
mulated by adding dummy commodities(e.g. "a XOR
b< (anc)V(bAc)"), butsuchtransformationsftengive
riseto acombinatoriakxplosionof bids[Nisan,1999.

It is noteworthy thatthe formulationof Equation(1) can
be run directly by commerciallyavailable software,andin
Sectiond someempiricalcomparisorbetweerrecentalgo-
rithms andthe standardCPLEX softwareis shovn. (Note
that the formulation of Equation(1) only is applicableto
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the simple casediscussedn Section2 and that the lin-
ear programmingform of the winner determinationprob-
lemin generalwill look different.) However, the possibil-
ity of usingoff-the-shelfsoftwarehasbeenoverlookedand
currentbenchmarkd algorithms[Fujishimaet al., 1999;
Sandholm,1999 arewritten from scratch. (The formula-
tions of this problemgiven by Rothkopf et al. [Rothkopf
etal., 1994, Fujishimaet al. [Fujishimaetal., 1999, and
Sandholm Sandholm 1999, arehowever not suitedasdi-
rectinputfor standardsoftware.)

The formulation usedhere conformswith the formula-
tionsby Wurman[Wurman,1999 andNisan[Nisan,1999.
Comparedto theseformulations, we obsene that much
more generalcombinatorialauctionsthanthe onestreated
sofar canbe expressedsmixedintegerproblemsandthat
they canbe successfullymanagediy standardoperations
researclalgorithmsandcommerciallyavailablesoftware.

With standardVIP methodsary constraintthat canbe
expressedn linear termsin the involved variablescan be
usedwhendefiningabid. Thusin the generalcase the ob-
jective functionwill consistof termsrepresentinghe value
of a (certainpartof a) bid, timesthe degreeto which it is
accepted.Thatis, we neednot restrictthe auctionto only
binary choices. Correspondinglythe feasibility constraint
needin thegenerakasenotberestrictedo the caseswvhere
thereis only oneunit for saleof eachcommaodity free dis-
posalcanbeassumedetc? It is alsopossibleto usetheMIP
approachfor the minimal winning bid problem[Rothkopf
etal., 1994, i.e. the problemof replying to the question
“If 1 requesttheseand theseamountsof theseand these
commodities,how muchdo | have to pay to get my bid
accepted?”.

Clearly, requiring that eachbidder shouldgive its bids
astermsto be addedto the objective function andthe fea-
sibility constraintstogetherwith a numberof constraints
may be a too heary burdenput on a bidder, cf. [Nisan,
1999. Thereforeit makessenseo constructdifferenthigh
level supportfor expressingoids andusingthe combinato-
rial auction.

4 Empirical benchmarking

In this sectionwe give someempiricaldatain orderto
comparehenew approactio optimalwinnerdetermination
basedon standardVIP (and consequentlyestedwith off-
the-shelfsoftware)to currenthighly specializedapproaches
in casesvherethesecanbeapplied.

It is generallyrecognizedhatit is mostunfortunatethat
real-world testdataare not available. As long asno such

3The free disposalassumptior(i.e. that non-allocatedesourcesan
be disposedwithout a cost) typically hasa very drasticimpacton “any-
time behaior”; without the free disposalassumptionfinding a feasible
allocationis significantlyharder



test datais available, it is perhapsreasonabldo try dif-

ferenttypesof distributionsandtry to identify what types
distributionsare “hard” andwhich onesare “easy” for dif-

ferenttypesof algorithms. The empiricalbenchmarksare
performedon the sametest data as was given by Sand-
holm [Sandholm 1999 andFujishimaet al. [Fujishimaet
al., 1999. We usethesetestsnot becauseve arecorvinced
thatthey arethemostrelevant,but becausé¢hey aretheonly

onesfor whichwe have datafor competingalgorithms.Our
experienceso far is that (seeminglysmall differencesof)

the bid distributionschoserhave an extremeimpacton the
performanceof the algorithms. It is theoreticallyshavn

that (unlessP = AP) no efficient generaloptimal algo-
rithm canbe constructedRothkopf et al., 1995 (not even
if acertainapproximatiorerrorcanbetolerated Sandholm,
1999,Proposition2.3]). Thereforeoneshouldbevery care-
ful whenarguing aboutthe practicalusefulnes®f analgo-
rithm without accesdo realdata.

The softwareusedis CPLEX version6.5. Thehardware
setupof the experimentshasbeenone standarduniproces-
sor550MHz PCwith 128Mb of RAM memory* Thetime
requiredfor loadingthetestdatainto memoryhasnot been
includedin the resultsbelown. The time reportedis “wall
time”, i.e. anupperboundon processotime used.

For thesale of reproducibility, all testdataandprograms
requiredfor generatinghe CPLEX input format,aswell as
detaileddescriptionsof the CPLEX settingsusedis avail-
ablefrom theInternet®

Figure 1 to Figure5 show the resultsof the respectie
tests. For eachdistribution, 10 instanceshave beentested,
which is sufficient for obtaininga basicillustration. The
instancesizeshave beenselectedo matchthe sizestested
in theliteratureand/orto give reasonableomputatiortime.

During the searchfor the optimal solution, CPLEX re-
ports the best solution found so far (i.e. works as what
is sometimegeferredto asan anytime algorithm). In the
figures,the curvesdenotethe surplusof the currentlybest
solutionnormalizedby the surplusof the optimal solution.
For eachmomentin time, the worst, averageand bestso-
lution is plotted. The point at which optimality is verified
is marked as a specialpoint (> and < for minimum and
maximumtime respectiely, ¢ for theaverageand* for all
instance®therthanmin andmax).

We have testedthe following distributions.

Random [Sandholm1999

Definition: For eachbid, pick the numberof commodities
requestedandomlyfrom 1 to the numberof commodities
in the market. Randomlychoosethe actualcommodities

4Note that the software we have usedalsois availablein versionsfor
parallelexecution. Hence by usinga high performanceparallelplatform,
performanceanbeimprovedsignificantlyif required.
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requestedvithoutreplacementDraw arandomintegerval-
uation betweenl and 1000. (For this andall other distri-
butions we have usedinteger valuationsfor simplicity of
parsingetc. However, our experienceis that changingto
realnumbersncreasesomputatiortime by lessthan109%;
anggligible numberfor our purposes.)

Results and discussion: CPLEX determineghe optimal
winner efficiently, seeFigure1; thetimings aresuperiorto
thosepresentedy Sandholm[Sandholm,1999. Further
more,we notethatthis distributionis very simplein thefol-
lowing senseSincethepriceof abid is notweightedby the
numberof commodities small bidswill be dominating. A
simplepreprocessing;olumndominancecheding [Salkin,
1979, will decreasehe problemsizeto a simple degen-
eratecase. On a high level: for large testsets,the proba-
bility thatany bid requestingnorethanone commodityis
in the optimal combinationis closeto nil. (Hint: The ex-
pectedsummedvaluationof two bids requestingonly one
commodityis twice the expectedvaluationof a bid request-
ing two commodities,and so on.) We have implemented
simple algorithmsfor doing column dominancechecking
andthey have, for all instanceswith a significantnumber
of bids,beenableto reducethe numberof bidsto thenum-
berof commoditiegandobtaintheoptimalsolutionwithout
ary furtherprocessing)As anexamplewe can—insteaaf
using CPLEX—simply reduce180000 bids (and 30 com-
modities)to 30 bids(andalsofind theoptimalcombination)
in 4swith anon-optimizedlasaimplementatiorof a heuris-
tic column dominancecheckingalgorithm on an ordinary
550MHz PC. Clearly, this suggestghat a trivial approxi-
matealgorithmshouldbe usedfor this distribution: Select
the highestbid—requestingpnly onecommodity—foreach
commodity For all bid setswe havetried (of any significant
size),thiswould have resultedn anoptimalsolution.

The special characterof the computation—onlyone
“step” in the surplusof the bestandworstsolutionsand 10
stepdor theaveragesolution—isexplainedby the natureof
thedistribution. Fromthe above reasoningit is easyto see
that one canestablishone price per commaoditysupporting
the optimal allocation. Whenthis holds,an LP solutionto
the problemis the optimal allocation[Nisan, 1999. The
principle of CPLEX (which is to first establishan LP so-
lution andthendo a branchand bound)then explainsthis
behaior.

The characteristicof the weighted random distribu-
tion [Sandholm 1999 aresimilar bothin termsof compu-
tationtime aswell asin the possibilityto useatrivial highly
efficient approximatealgorithm. (In this casethetrivial al-
gorithmis to simply selectthe bid with the highestvalua-
tion.)



Random Distribution. 400 items, 2000 bids.
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Figure 1. TheRandondistributionfor 2000 bidsand400
commodities. For this distribution the time for obtaining
the optimal combinationand being able to guaranteehis
optimality is the samefor mosttestednstancesWorstcase
isin theareaof 160s. In comparisonSandholms algorithm
is reportedto managel000 bids and400 commaoditiesin
approximately6000s on average.

Uniform [Sandholm1999

Definition: Draw the same number of randomly cho-
senitems for eachbid. Pick an integer valuation from
[500..1500] andmultiply by thenumberof commodities.

Resultsand discussion: CPLEX performswell compared
to Sandholms implementatiof Sandholm 1999, cf. Fig-
ure 2. Still this appearsto be a “hard” distribution for
CPLEX.

Uniform Distribution. 100 items, 500 bids.
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Figure 2. The Uniform distribution for 500 bidsand100
commodities whereeachbidder bids for threecommodi-
ties. The differencebetweenthe differentinstancesvary
significantly andthe executiontimesvary from a few sec-
ondsto around470s. Sandholms algorithmis reportedto
managel50 bids and 100 commoditiesin approximately
40000s on average. (For this latter instancesize, CPLEX
findsthe verified optimal solutionin around400ms.)

Decay [Sandholm1999.

Definition: Make the bid requesta randomcommaodity
Thenrepeatedlyadd a new commoditywith probability «
until anitem is not addedor the bid requestsall commodi-
tiesin themarket. Pick arandomintegervaluationbetween
1 and1000 andmultiply by the numberof commoditiege-
guested.

Resultsand discussion: CPLEX performswell compared
to Sandholms algorithm [Sandholm, 1999, and rather
large bid setscanbe efficiently managedseeFigure3.

Decay Distribution. alpha=0.55, 200 items, 10000 bids.
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Figure 3. TheDecaydistribution for 10000 bidsand200
commoditieswith « = 0.55. Worst caseis around580s.
For the samedistribution with 200 bidsand200 commodi-
ties the executiontime with Sandholms algorithmiis re-
portedto bearound40000s.

Binomial [Fujishimaetal., 1999

Definition: Theprobabilitydistributionfor abid requesting
n commoditieof £ commoditiedn the marketis

n k—n k
f(n)=p"(1—p) ( n ) :
with p = 0.2. An integer valuationis drawn from 500 to
1500 andmultiplied by n.
Results and discussion: Under the assumptionthat the
benchmarksgiven by Fujishima et al. [Fujishimaet al.,
1999 denoteshe time requiredfor finding a verified op-
timal solutiorf, the CASS implementationis fasterthan
CPLEX (around20 times) for 30 commoditiesand 3000
bids. Still CPLEX canmanageatherbig bid setsefficiently.
(Notethatin Figure4, 30000 bidsareused.)
The CASSalgorithmwas also reportedto be testedon
1500 bids and 150 commodities[Fujishimaet al., 1999.
However, alaterversionof thepapersuggestshattherewas

81t is animportantdistinctionbetweerthe time requiredfor finding an
optimal solutionandverifying thatit is so. We have not beenableto tell
from the paperby Fujishimaet al. [Fujishimaet al., 1999 which of the
two they present.



Binomial Distribution. p=0.2, 30 items, 30000 bids.
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Figure 4. The Binomialdistribution is shavn for 30000
bidsand30 commodities Heretherelative surplusraisesto
theareaof 97% in afew secondsTheoptimalcombination
is normally found after between30 and 150s. The worst
casefor finding a guaranteecptimal solution is around
240s. (For smallerinstances3000 bids,thetiming reported
for CASSareapproximately20 timesbetterthanthe ones
of CPLEX.)

atypoin the publishedversion.Insteadthe numberof bids
seemto be 15000. While CPLEX canmanagel500 bids
efficiently, it fails to handle15000 bids. Onthe otherhand,
it is interestingto notethatthis probleminstancewhich at
afirst glanceappeardo be“hard”, actuallyturnsoutto be
“easy”. Indeed thereis a simplealgorithmwhich from our
experienceoutperformsCASS.

The reasonthat the problemis simpleis, modulosome
details, that as the numberof commoditiesincrease,the
probabilitythattwo bidsareconjunctincreasesTherefore,
theexpectechumberof bidsin the optimalsolutionis small
(two or three).

A quickly programmedalgorithm,enumeratingll non-
colliding combinations(i.e. it usesneither pruning nor
rankingheuristics)indsthe verified optimal solutionin ap-
proximately 15s on a standardd50MHz PC with 256Mb
RAM. Thisis around15 timesfasterthanCASS,underthe
assumptiorthat Figure3 in the Fujishimaet al. paper[Fu-
jishimaetal., 1999 denotesl 5000 bids. (If the numberof
bidsis 1500 asstatedn the paperthedifferences of course
larger) This algorithmworksasfollows:

1. For eachbid, constructa list of all non-colliding
bids. Assuminga certainprobability distribution and
a certainnumberof commodities the time for this is
guadratidn the numberof bids.

2. Combinebids in a depthfirst manner No bid com-
parisonsare made, insteadwe use the lists of non-
colliding bids. As we combinebids, we also com-
bine their lists by taking their intersection. The short
lengthof the lists of non-colliding bids givesthe fast
execution.(For aninput of 15000 bids, 150 commodi-
ties,andp = 0.2, atypical numberof valid combina-

tionsof two bidsis 250000, threebids40000, andfour
bids200.)

Of the 15s spenton eachtestset,aroundl4s werespent
in stepl. Hence neitherpruningnor rankingheuristicscan
improvethis algorithmsignificantlyhere.

Exponential [Fujishimaetal., 1999

Definition:  The probability distribution is defined as
fe(n) = Ce "/ (with C is assumedo be implicitly de-
finedfrom 22:1 fe(n) = 1, wherek asbeforeis thenum-

berof commodities). The valuationis aninteger, rectangu-
larly drawn from [500..1500] andmultiplied by the number
of requestedommodities.

Resultsand discussion: CASSappearso bearoundafac-
tor of two fasterthan CPLEX for 3000 bids and 30 com-
modities,cf. Figure5. In an extendedon-line versionof

their paper Fujishimaetal. reportthatthe CASSalgorithm
findstheoptimalsolution(thoughit is notclearlystatedhat
optimality is verified)in around550s for 4500 bidsand45

commodities. CPLEX finds the verified optimal solution
for the correspondingnstancesizein around8s on average
(with smallvariation).

Exponential Distribution. p=5, 30 items, 3000 bids.
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Figure 5. TheExponentiadistributionfor 3000 bidsand
30 commodities Theverifiedoptimalsolutionis foundin at
mostaround2.3s. Thecorrespondingiming for the CASS
algorithmis slightly above 1s.

4.1 Discussion

In sum, CPLEX performsvery well for mary of the
testeddistributions. Under most reasonableassumptions
of the collection of bids, the computationtime is rela-
tively small. Furthermorejf the bids are submittedin se-
guenceundersomeamountof time, CPLEX cando sub-
sequentsearchestartingfrom the bestsolution found up
to the point of the arrival of a new bid. For the harder
distributions—whichhenceare of main interest—CPLEX
is aroundfive ordersof magnitudefasterthan Sandholms
algorithm.As CASShasbeenreportedo outperformSand-
holm’s algorithm by aroundtwo ordersof magnitudefor



the harderdistributions, thereis anindicationthat CPLEX
alsois fasterthan CASSis here. Still, asa consequence
of the N'P-hardnesof the problem (and as indicatedby
our empirical study),nor CPLEX nor ary otherknown al-
gorithm is a silver bullet for this problem. Even though
CPLEX outperformedhe recentalgorithmsfor the sparser
distributions(sparsen the sensehatfew bidscollide),im-
plicit enumerationalgorithms—forexample in the spirit
of the NemhauseGarfinkel algorithm, cf. Section2—
becomesighly competitivefor densedistributions.Again,
we shouldbarein mind that CPLEX is a general-purpose
software andthat the comparisonnly are performedfor
thevery specialcasesvhereSandholm$ algorithmandthe
CASSimplementatiorcanbeused.

From our experimentswith different families of algo-
rithmsit is clearthatif the probabilitydistribution is known
to the auctioneerit is sometimesable to constructalgo-
rithms that capitalizesignificantly on this knowledge. Our
main conclusionso far is thatit is very importantto ob-
tain somerealisticdataandinvestigatevhetherit hassome
specialstructureghatcanbe utilized by highly specialized
algorithms(assuminghat standardalgorithmsfall shorton
practicallyrelevantinstances).

The three examplesof the Randomdistribution, the
Weightedrandomdistribution,andthe Binomialdistribution
with mary commoditiesaarethreeveryillustratingexamples
of distributionsthat at a first glancemay seem“hard” but
turn out to be rather“easy”. As seenabove, it is easyto
constructvery simpleyetvery efficientalgorithmsfor these
specialcases.

The constructionof realistic probability distributions
basedn someof ourmainapplicationareas—suchselec-
tronic power tradeandtrain schedulingmarkets—together
with somereasonablegentstratgjiesin certainattractve
combinatorial auction models, such as iBundle [Parkes,
1999 or AKBA [Wurman,1999 is importantfuture work.
However, onebrief reflectionon realisticprobability distri-
butionscanbegivenalreadyhere;therearegoodreasonso
believe thatreal distributionswill be mud harder thanthe
onesdescribedabove. For example,if theiBundleauction
is usedandwe have agentswith the strategjiesthatthey only
bid ¢ above the currentprices(or taking the “e-discount”)
we will have a very “tight” distribution; mostbids arepart
of somecombinationwhich s closeto optimal. This makes
pruningdrasticallyharder For example,we tried the Uni-
form distribution, but with 100000 addedto eachvaluation
(i.e. thevaluationsvary in only 1%), and this increased
the executiontime of CPLEX by somefactor20. But there
are alsootheraspectof the hardnesof real-world distri-
butions [Nisan, 1999. Again this calls for gatheringof
real-world (or at leastderivation of realistic) data, before
focusingon heavily specializedalgorithms.

5 Conclusions

In this paperwe discussedmportantcomputationahs-
pectsof optimalwinnerdeterminatiorin combinatoriabuc-
tions. We have comparedecentapproacheto this problem
with atraditionalapproacho setpartitioning,which canbe
usedfor optimal winner determination. The main conclu-
sion of this comparisoris thatmary of the featuresof cur-
rentalgorithmsarerediscweriesof well-knawn methods.

We then discussedhow mixed integer programming
couldbeutilizedto managemoregenerabroblemghanthe
onesmanagedy the recenthighly specializedalgorithms,
and that commerciallyavailable software performsexcel-
lently for mary probleminstancesWe believe thatthis can
enabletheapplicationof combinatoriabuctionsto applica-
tions to which thereare not yet ary winner determination
algorithmsavailable. The approachntroducedherecanbe
usedin combinationwith mary differentforms of combi-
natorialalgorithmsandis of interestregardlesof whether
bids are sealedor open,whetherthe auctionis iterative or
one-shotandwhetherthe computatioris centralizecbr de-
centralizede.g.let thebidderssuggesbettersolutions).

We alsodiscusse@ndexemplifiedthe enormousmpact
theprobabilitydistribution of agiventesthasonthecompu-
tationtime. It wasshovn thatsomeof thedistributionsused
in benchmarkingcurrentalgorithmsallow for very simple
andefficient algorithmsthattake advantageof the structure
of thesedistributions.

In summaryour conclusionsarethat:
e much canbe gainedby capitalizing on the achieve-
mentmadein opemtionsreseach and combinatorial
optimization

e morework is neededn the studyof what real-world
(or at leastrealistic)instancesnaylook like, and

o highly specializedalgorithms are mainly of interest
(from ane-commercgoint of view) for real-world in-
stancedor which standad algorithmsfall short

Not only is it useful for electroniccommerceto take
adwantageof existing achierementsin operationgesearch
and combinatorialoptimization, but it is also a concern
that introducing “new” algorithmswhile overlooking ex-
isting theoryis scientifically problematic. Furthermorejt
is actually debatablef developing“new” set packingal-
gorithmsbenchmarkd on arbitrary distributionsis a rele-
vant e-commercaesearchactiity. On the otherhand, (i)
gatheringreal world distributions (or derive realisticones
from realisticagentpreferencesagentstratgiesand mar
ket mechanisms)(ii) investigatingstateof the art of oper
ationsresearchand combinatorialoptimizationalgorithms
for thesesettingsand(iii) developingspecialpurposealgo-
rithmswhereneededdefinitelyis.



A final—more fundamentalissue—iswhetherthe ap-
proachusedin this and other papersis at all useful. One
view is thatthe bids shouldberestrictedin suchaway that
polynomialtime algorithmscanbe usedto find the optimal
allocation[Rothkopf et al., 1995. Anotherview is thatit
is unnecessarto restrictthe bids; if the bids happerto be
restrictedin the waysRothkopf et al. sugges{Rothkopf et
al., 1999, thenan appropriatealgorithmwill rapidly find
the optimal solutionanyway [Nisan,1999. We very much
agreewith this latter view. Our argumentsfor this are as
follows. If it is the casethat thereonly are a few impor-
tantdependencieévhich is requiredfor implying thatthe
restrictiongproposedy Rothkopf etal. do notdecreas¢he
surplussignificantly),mostbidswill reflectthesedependen-
cies. The onesthatreflectother(lessimportant)dependen-
cieswill be non-competitve and prunedfrom the search
at an early stage. Furthermorewe arguethatif thereare
somary dependencieff comparablémportance}thatthe
winnerdeterminationindeeds computationallyintractable,
thenit seemssafeto conjecturahatit is alwaysbetterto al-
low bids on all combinationsand use an approximateal-
gorithm, than to restrictthe bids. The following heuris-
tic algorithm supportsthis point of view. First identify
the mostimportantdependencief.e. the onesthatwould
have beenusedif we would have taken the restrictingap-
proachby Rothkopf et al. [Rothkopf etal., 1999), thenas
first heuristicsin the searchonly considerbids that fulfill
the restrictions(andlet this heuristicsbhe commonknowl-
edge).Thenoncethe optimal solutionof this restrictedbid
sethasbeenfound,addall otherbidsandsearchuntil acer
tain dead-lineis met, andtake the bestsolutionfound up
to that point. Underthe assumptiorthat the time for ex-
tractingonly the bidsfulfilling therestrictionsis negligible
(it mustindeedbe smallfor the restrictingapproacho be
successful—otherwiseheckingthe validity of bidswill be
toohard),thisapproacttansafelybeexpectedo alwaysdo
asleastaswell astheapproactof only treatingtherestricted
bid space.

Rothkopf et al. [Rothkopf et al., 1999 discussanother
attractive idea; to let bidderssuggestwinning allocations.
As eachbidderwill prioritize its own bids heavily in such
a search(in orderto find a winning combinationof which
its own bids is a part), this may sene as a very efficient
parallelizationof the searchand utilization the computa-
tional power of the participatingagents. In auctionswith
high valuesin which all bidderscanproposebettercombi-
nations,andin which highly optimizedsoftware(astheone
describedin this paper)is used,we can thereforeexpect
that very large bid spacescan be searchedn reasonable
time. If—despite good heuristics,considerablecomputa-
tionalpower (optionallywith thebiddersparticipatingn the
search)andhighly efficientalgorithms(suchasCPLEX)—
the problemof finding a goodsolutionstill is computation-

ally intractablethenit is probablygenerallyvery challeng-
ing to constructa simpleandcomputationallyefficient auc-
tion with ary significanteconomicefficiency.
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