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Abstract

Combinatorial auctionsare important as they enable
bidders to placebids on combinationsof items;compared
to other auction mechanisms,they often increasethe effi-
ciencyof the auction,while keepingrisks for bidders low.
However, thedeterminationof an optimalwinnercombina-
tion in combinatorialauctionsis a complex computational
problem.

In this paperwe(i) compare recentalgorithmsfor win-
ner determinationto traditional algorithms, (ii) present
andbenchmarka mixedinteger programmingapproach to
the problem, which enablesvery general auctions to be
treatedefficiently by standard integer programmingalgo-
rithms (and hereby also by commercially available soft-
ware), and (iii) discussthe impact of the probability dis-
tributionschosenfor benchmarking.

1 Intr oduction

Combinatorialauctionsareimportantasthey enablebid-
dersto placebids on combinationsof items; comparedto
otherauctionmechanisms,they oftenincreasetheefficiency
of theauction,while keepingrisksfor bidderslow [Rassenti
et al., 1982; Rothkopf et al., 1995; Parkes, 1999; Wur-
man,1999]. Thedeterminationof anoptimalwinnercom-
bination in combinatorialauctionsis an ��� -hard prob-
lem [Rothkopf et al., 1995], which hasrecentlyattracted
someresearch,e.g. [Rothkopf et al., 1995; Nisan, 1999;
Fujishimaet al., 1999;Sandholm,1999]. In this paperwe
look further into thetopic. In particular, our contributions
are:�

Therecentalgorithmsby Fujishimaetal. [Fujishimaet
al., 1999] andSandholm[Sandholm,1999] arecom-

paredto traditionalalgorithmsfor thecomputationally
identicalproblemof setpacking,andherebyput into
a propercomputerscienceperspective. From this ex-
ercise,we learnthatmany of the main featuresof re-
centlypresentedalgorithmsarerediscoveriesof tradi-
tionalmethodsin theoperationsresearchcommunity.�
Weobservethatthewinnerdeterminationproblemcan
be expressedas a standardmixed integer program-
ming problem,cf. [Nisan,1999;Wurman,1999], and
we show that this enablesthe managementof very
generalproblemsby useof standardalgorithmsand
commerciallyavailablesoftware. This allows for ef-
ficient treatmentof highly relevantcombinatorialauc-
tionsthatarenotsupportedby currentalgorithms.�
Thesignificanceof theprobabilitydistributionsof the
test sets used for evaluating different algorithms is
discussedand exemplified. Particularly we demon-
stratethat someof the distributions usedfor bench-
marking in recentliterature [Fujishimaet al., 1999;
Sandholm,1999] can be efficiently managedwith
rathertrivial algorithms.

The paper is organized as follows. In Section 2
we presenta well-known set partitioning algorithm by
Garfinkel and Nemhauser [Garfinkel and Nemhauser,
1969], anddiscussthecurrentalgorithmsfor optimalwin-
ner determinationin the context of this algorithm. There-
after, in Section3, we observe that the winner determina-
tion problemcanbesetupasamixedintegerprogramming
problemandherebybe solved by standardalgorithmsand
commercialsoftware. In Section4 someempiricalbench-
markingfor standardmixedintegerprogrammingsoftware
is presented,andwe discussthe significanceof the prob-
ability distribution of the testsetsusedfor benchmarking.
Finally, Section5 concludes.



2 Recent winner determination algorithms
and traditional algorithms for correspond-
ing problems

Beforediscussinghow very generalversionsof winner
determinationcanbesolvedby generalpurposealgorithms,
we investigatethe basiccasein which a bid statesthat a
bundleof commodities,�	��

��������������������������������� , ��� �"!�#$��%'&
( ( is thenumberof commodities)is valuedat )*���"+ . Given
a collection of such bids, the surplusmaximizing com-
bination is the solution to the integer programmingprob-
lem[Wurman,1999;Nisan,1999]:,.-�/ 0�213� ) �546�7 � 8�� 0�213� � �:9�46�<; %'�=% ;?>@; ( (1)

whereA is the numberof bids and 4 � is a binary variable
representingwhetherbid B is selectedor not.

We focusthis presentationarounda setpartitioningal-
gorithmintroducedby Garfinkel andNemhauser[Garfinkel
and Nemhauser, 1969]. (For definitionsof the set parti-
tioning problemandrelatedproblems,cf. BalasandPad-
berg [BalasandPadberg,1976], andSalkin[Salkin,1975].)
As pointed out by the originators, “the approachis so
simple that it appearsto be obvious. However, it seems
worth reportingbecauseit hasperformedsowell”. Indeed,
someof theexperimentalresultsreportedby Garfinkel and
Nemhauserseemsurprisinglygoodcomparedto recentex-
perimentswhen taking the hardware performanceat that
time into account.

Theprinciplesof theGarfinkel-Nemhauseralgorithmare
asfollows. Thealgorithmcreatesonelist perrow (i.e. com-
modity) andeachcolumn(set/bid)is storedin exactly one
list. Givenanorderingof therows,eachsetis storedin the
list correspondingto its first occurringrow. Within eachlist,
thesetsaresortedaccordingto increasingcost.Thesearch
for theoptimalsolutionis donein thefollowing way:

1. Choosethe first setfrom the first list containinga set
asthecurrentsolution.

2. Add (to thecurrentsolution)thefirst disjoint setfrom
the first list—correspondingto a row not includedin
thecurrentsolution—containingsucha disjoint set,if
any.

3. RepeatStep2 until oneof thefollowing happens:
(i) Thecost for the current solutionexceedsthe cost
for thebestsolution: this branchof thesearchcanbe
pruned.(ii) Nothingmore canbeadded:checkif this
is avalid solution/thebestsolutionsofar.

4. Backtrack: Replacethe latestchosensetby the next
valid set in its list andgo to Step2. Whenno more

setscanbe selectedfrom the list, backup further re-
cursively. If nomorebacktrackingcanbedone,termi-
nate.

Sincethe problemof Equation(1) is equivalent to the
definition of set packing and the problemsof set pack-
ing and set partitioning can be transformedinto each
other[BalasandPadberg, 1976], theGarfinkel-Nemhauser
algorithmcanbe usedfor winner determinationin combi-
natorialauctions.It is alsoclearthat it is trivial to modify
thealgorithmto besuitedfor setpackingwithoutany mod-
ification of theinput; it is only a minor modificationof the
pruning/consistency test. Specifically, the setsneedto be
renamedasbids,costhasto be replacedby valuation,and
item3 needsto bereplacedby:

RepeatStep2 until oneof thefollowing happens:
(i) Thevalueof the current solutioncan not ex-
ceedthe valueof the bestcombinationfoundso
far: this branchof thesearchcanbepruned.(ii)
Nothingmore can be added: checkif this is the
bestsolutionsofar.

As seenfrom the above description,the currently best
performingwinnerdeterminationalgorithm1, theCASSal-
gorithm [Fujishima et al., 1999], is apparentlyin major
partsa rediscovery of the Garfinkel-Nemhauseralgorithm.
Themainprinciplesof bothalgorithmsareto (i) putthebids
in lists correspondingto the differentcommodities(called
bins by Fujishima et al.), (ii) sort the bids in the list in
somecost(valuation)relatedorder, (iii) do pruningwhen-
ever thecurrentcombinationcannotbebetterthanthebest
onefoundso far, and(iv) do standardbacktracking.There
are essentiallytwo significantdifferencesbetweenCASS
andtheGarfinkel-Nemhauseralgorithm:(i) cachingof par-
tial searchresults,and(ii) improvedpruning.

Thecaching,normally referredto asdynamicprogram-
ming, is doneby storing partial searchresultsin a table.
This is reportedto oftenpayoff, asmany partialallocations
sharethesame“rest term” (i.e. remainingunassignedcom-
modities)[Fujishimaet al., 1999]. The cachecanhereby
alsobeusedfor pruning;whenever the“rest term” is a sub-
setof analreadycached“rest term” andthe surplusof the
currentallocationplus thesurplusof thecachedallocation
is smallerthanthesurplusof bestcombinationfoundsofar,
this branchof thesearchcanbepruned.

Compared to the simple pruning described in the
Garfinkel-Nemhauser algorithm, Sandholm’s algo-
rithm [Sandholm,1999] and the CASS algorithm [Fu-
jishima et al., 1999], usea more sophisticatedtechnique
which essentiallyis theceiling test[Salkin,1975].

1At thepresentationof CASSat IJCAI 1999in Stockholm,theCASS
algorithm[Fujishimaetal., 1999] wasreportedto outperformSandholm’s
winner determinationalgorithm[Sandholm,1999] by approximatelytwo
ordersof magnitudefor thedistributionstested.



3 Combinatorial auction winner determina-
tion asa mixed integer programming prob-
lem

In this sectionwe describehow very generaloptimal
winner determinationproblems can be formulated as a
mixed integerproblem. For readingon mixed integerpro-
gramming(MIP) in itself and its relation to set packing
etc., we refer to the literatureon combinatorialoptimiza-
tion andoperationsresearch,e.g.[BalasandPadberg,1976;
Garfinkel andNemhauser, 1969;Salkin,1975].

As discussedbelow, by properly formulating the prob-
lem,wegetalargenumberof veryattractivefeatures.These
include:�

The formulation can utilize standardalgorithmsand
henceberun directly on standardcommerciallyavail-
able, thoroughly debuggedand optimized software,
suchasCPLEX.2�
Theremaybemultipleunitstradedof eachcommodity.�
Biddersarenot restrictedto bid for integeramounts.�
Bidderscanconstructadvancedformsof mutuallyex-
clusivebids.�
Sellersmayhavenon-zeroreserveprices.�
Thereneednot be a distinction betweenbuyersand
sellers;a biddercanplacea bid for buyingsomecom-
moditiesandsimultaneouslyselling someothercom-
modities.�
Complicatedrecursivebidswith theabovefeaturescan
beexpressed.�
Verygeneralconstraintscanbeexpressed.�
Settingswithout free disposal(for someor all com-
modities)canbemanaged.

It shouldbe pointedout thatCASSandSandholm’s al-
gorithmscanhandlesomeof thegeneralizationsabove.For
example, mutually exclusive (XOR) bids are easily for-
mulatedby adding dummy commodities(e.g. ” C XORDFEHG C6IKJ=LNM G5D I.J�L ”), but suchtransformationsoftengive
riseto acombinatorialexplosionof bids[Nisan,1999].

It is noteworthy thattheformulationof Equation(1) can
berun directly by commerciallyavailablesoftware,andin
Section4 someempiricalcomparisonbetweenrecentalgo-
rithms andthe standardCPLEX softwareis shown. (Note
that the formulation of Equation(1) only is applicableto

2Seewww.cplex.com

the simple casediscussedin Section2 and that the lin-
earprogrammingform of the winner determinationprob-
lem in generalwill look different.) However, the possibil-
ity of usingoff-the-shelfsoftwarehasbeenoverlookedand
current benchmarked algorithms[Fujishima et al., 1999;
Sandholm,1999] arewritten from scratch. (The formula-
tions of this problemgiven by Rothkopf et al. [Rothkopf
et al., 1995], Fujishimaet al. [Fujishimaet al., 1999], and
Sandholm[Sandholm,1999], arehowever not suitedasdi-
rectinput for standardsoftware.)

The formulationusedhereconformswith the formula-
tionsby Wurman[Wurman,1999] andNisan[Nisan,1999].
Comparedto theseformulations, we observe that much
moregeneralcombinatorialauctionsthanthe onestreated
sofarcanbeexpressedasmixedintegerproblems,andthat
they can be successfullymanagedby standardoperations
researchalgorithmsandcommerciallyavailablesoftware.

With standardMIP methods,any constraintthat canbe
expressedin linear termsin the involved variablescanbe
usedwhendefininga bid. Thusin thegeneralcase,theob-
jective functionwill consistof termsrepresentingthevalue
of a (certainpart of a) bid, timesthe degreeto which it is
accepted.That is, we neednot restrictthe auctionto only
binary choices.Correspondingly, the feasibility constraint
needin thegeneralcasenot berestrictedto thecaseswhere
thereis only oneunit for saleof eachcommodity, freedis-
posalcanbeassumed,etc.3 It is alsopossibleto usetheMIP
approachfor the minimal winning bid problem[Rothkopf
et al., 1995], i.e. the problemof replying to the question
“If I requesttheseand theseamountsof theseand these
commodities,how much do I have to pay to get my bid
accepted?”.

Clearly, requiring that eachbiddershouldgive its bids
astermsto be addedto the objective functionandthe fea-
sibility constraintstogetherwith a numberof constraints
may be a too heavy burden put on a bidder, cf. [Nisan,
1999]. Thereforeit makessenseto constructdifferenthigh
level supportfor expressingbidsandusingthecombinato-
rial auction.

4 Empirical benchmarking

In this sectionwe give someempiricaldatain order to
comparethenew approachto optimalwinnerdetermination
basedon standardMIP (andconsequentlytestedwith off-
the-shelfsoftware)to currenthighly specializedapproaches
in caseswherethesecanbeapplied.

It is generallyrecognizedthat it is mostunfortunatethat
real-world testdataarenot available. As long asno such

3The free disposalassumption(i.e. that non-allocatedresourcescan
be disposedwithout a cost) typically hasa very drasticimpacton “any-
time behavior”; without the free disposalassumption,finding a feasible
allocationis significantlyharder.



test data is available, it is perhapsreasonableto try dif-
ferenttypesof distributionsandtry to identify what types
distributionsare“hard” andwhich onesare“easy” for dif-
ferent typesof algorithms. The empiricalbenchmarksare
performedon the sametest data as was given by Sand-
holm [Sandholm,1999] andFujishimaet al. [Fujishimaet
al., 1999]. Weusethesetestsnotbecauseweareconvinced
thatthey arethemostrelevant,but becausethey aretheonly
onesfor whichwehavedatafor competingalgorithms.Our
experienceso far is that (seeminglysmall differencesof)
thebid distributionschosenhave anextremeimpacton the
performanceof the algorithms. It is theoreticallyshown
that (unless�O
P��� ) no efficient generaloptimal algo-
rithm canbeconstructed[Rothkopf et al., 1995] (not even
if acertainapproximationerrorcanbetolerated[Sandholm,
1999,Proposition2.3]). Thereforeoneshouldbeverycare-
ful whenarguingaboutthepracticalusefulnessof analgo-
rithm without accessto realdata.

Thesoftwareusedis CPLEX versionQ$� R . Thehardware
setupof theexperimentshasbeenonestandarduniproces-
sor RSRS# MHz PCwith %UTSV Mb of RAM memory.4 Thetime
requiredfor loadingthetestdatainto memoryhasnot been
includedin the resultsbelow. The time reportedis “wall
time”, i.e. anupperboundon processortimeused.

For thesakeof reproducibility, all testdataandprograms
requiredfor generatingtheCPLEXinput format,aswell as
detaileddescriptionsof the CPLEX settingsusedis avail-
ablefrom theInternet.5

Figure1 to Figure5 show the resultsof the respective
tests.For eachdistribution, %�# instanceshave beentested,
which is sufficient for obtaininga basicillustration. The
instancesizeshave beenselectedto matchthe sizestested
in theliteratureand/orto givereasonablecomputationtime.

During the searchfor the optimal solution,CPLEX re-
ports the best solution found so far (i.e. works as what
is sometimesreferredto asan anytime algorithm). In the
figures,the curvesdenotethe surplusof the currentlybest
solutionnormalizedby thesurplusof theoptimalsolution.
For eachmomentin time, the worst, averageandbestso-
lution is plotted. The point at which optimality is verified
is marked as a specialpoint ( W and X for minimum and
maximumtimerespectively, Y for theaverage,and* for all
instancesotherthanmin andmax).

We havetestedthefollowing distributions.

Random [Sandholm,1999]

Definition: For eachbid, pick thenumberof commodities
requestedrandomlyfrom % to the numberof commodities
in the market. Randomlychoosethe actualcommodities

4Note that the softwarewe have usedalsois available in versionsfor
parallelexecution.Hence,by usinga high performanceparallelplatform,
performancecanbeimprovedsignificantlyif required.

5Seewww.docs.uu.se/ Z tein/IPForComb.html .

requestedwithout replacement.Draw arandomintegerval-
uationbetween% and %U#S#�# . (For this andall otherdistri-
butions we have usedinteger valuationsfor simplicity of
parsingetc. However, our experienceis that changingto
realnumbersincreasescomputationtime by lessthan %�# %;
anegligible numberfor ourpurposes.)
Results and discussion: CPLEX determinesthe optimal
winnerefficiently, seeFigure1; thetimingsaresuperiorto
thosepresentedby Sandholm[Sandholm,1999]. Further-
more,wenotethatthisdistribution is verysimplein thefol-
lowing sense:Sincethepriceof abid is notweightedby the
numberof commodities,small bidswill bedominating.A
simplepreprocessing,columndominancechecking [Salkin,
1975], will decreasethe problemsize to a simple degen-
eratecase. On a high level: for large testsets,the proba-
bility thatany bid requestingmorethanonecommodityis
in the optimal combinationis closeto nil. (Hint: The ex-
pectedsummedvaluationof two bids requestingonly one
commodityis twice theexpectedvaluationof abid request-
ing two commodities,and so on.) We have implemented
simple algorithmsfor doing column dominancechecking
and they have, for all instanceswith a significantnumber
of bids,beenableto reducethenumberof bidsto thenum-
berof commodities(andobtaintheoptimalsolutionwithout
any furtherprocessing).As anexamplewecan—insteadof
usingCPLEX—simply reduce %�VS#S#�#S# bids (and [S# com-
modities)to [S# bids(andalsofind theoptimalcombination)
in \ swith anon-optimizedJavaimplementationof aheuris-
tic columndominancecheckingalgorithm on an ordinaryRSR�# MHz PC. Clearly, this suggeststhat a trivial approxi-
matealgorithmshouldbe usedfor this distribution: Select
thehighestbid—requestingonly onecommodity—foreach
commodity. For all bid setswehavetried(of any significant
size),this wouldhaveresultedin anoptimalsolution.

The special characterof the computation—onlyone
“step” in thesurplusof thebestandworstsolutionsand %U#
stepsfor theaveragesolution—isexplainedby thenatureof
thedistribution. Fromtheabovereasoning,it is easyto see
thatonecanestablishonepricepercommoditysupporting
theoptimalallocation. Whenthis holds,an LP solutionto
the problemis the optimal allocation[Nisan, 1999]. The
principle of CPLEX (which is to first establishan LP so-
lution andthendo a branchandbound)thenexplainsthis
behavior.

The characteristicsof the weighted random distribu-
tion [Sandholm,1999] aresimilar both in termsof compu-
tationtimeaswell asin thepossibilityto useatrivial highly
efficient approximatealgorithm. (In this casethetrivial al-
gorithm is to simply selectthe bid with the highestvalua-
tion.)
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Figure 1. TheRandomdistributionfor ]_^=^�^ bidsand̀=^=^
commodities. For this distribution the time for obtaining
the optimal combinationand being able to guaranteethis
optimality is thesamefor mosttestedinstances.Worstcase
is in theareaof a=bc^ s. In comparison,Sandholm’salgorithm
is reportedto managea_^�^=^ bids and `=^�^ commoditiesin
approximatelybc^=^�^ s onaverage.

Uniform [Sandholm,1999]

Definition: Draw the same number of randomly cho-
sen items for eachbid. Pick an integer valuation from� R�#S#$�:�d%URS#�#S� andmultiply by thenumberof commodities.

Resultsand discussion:CPLEX performswell compared
to Sandholm’s implementation[Sandholm,1999], cf. Fig-
ure 2. Still this appearsto be a “hard” distribution for
CPLEX.
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Figure 2. TheUniform distribution for e_^�^ bidsand a_^=^
commodities,whereeachbidderbids for threecommodi-
ties. The differencebetweenthe different instancesvary
significantly, andtheexecutiontimesvary from a few sec-
ondsto around̀gf_^ s. Sandholm’s algorithmis reportedto
managea�e_^ bids and a_^�^ commoditiesin approximately`=^=^�^=^ s on average. (For this latter instancesize,CPLEX
findstheverifiedoptimalsolutionin around̀=^=^ ms.)

Decay [Sandholm,1999].

Definition: Make the bid requesta randomcommodity.
Thenrepeatedlyadda new commoditywith probability h
until anitem is not addedor thebid requestsall commodi-
tiesin themarket. Picka randomintegervaluationbetween% and %U#S#�# andmultiply by thenumberof commoditiesre-
quested.
Resultsand discussion:CPLEX performswell compared
to Sandholm’s algorithm [Sandholm,1999], and rather
largebid setscanbeefficiently managed,seeFigure3.
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Figure 3. TheDecaydistribution for ac^=^=^�^ bidsand ]c^=^
commoditieswith ikjl^nm2e�e . Worst caseis around e=oc^ s.
For thesamedistributionwith ]_^�^ bidsand ]_^�^ commodi-
ties the execution time with Sandholm’s algorithm is re-
portedto bearound̀=^�^=^�^ s.

Binomial [Fujishimaet al., 1999]

Definition: Theprobabilitydistributionfor abid requestingA commoditiesof ( commoditiesin themarket is

p G A3L 
�q 0 G %srtquL �'v 0 (A �
with q

w#x� T . An integer valuationis drawn from R�#S# to%UR�#S# andmultipliedby A .
Results and discussion: Under the assumptionthat the
benchmarksgiven by Fujishima et al. [Fujishima et al.,
1999] denotesthe time requiredfor finding a verified op-
timal solution6, the CASS implementationis faster than
CPLEX (around T�# times) for [�# commoditiesand [�#S#�#
bids.Still CPLEXcanmanageratherbigbid setsefficiently.
(Notethatin Figure4, [S#�#S#�# bidsareused.)

The CASSalgorithmwasalsoreportedto be testedon%UR�#S# bids and %�RS# commodities[Fujishimaet al., 1999].
However, alaterversionof thepapersuggeststhattherewas

6It is animportantdistinctionbetweenthetime requiredfor finding an
optimalsolutionandverifying that it is so. We have not beenableto tell
from the paperby Fujishimaet al. [Fujishimaet al., 1999] which of the
two they present.
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Figure 4. TheBinomialdistribution is shown for y_^�^=^�^
bidsand yc^ commodities.Heretherelativesurplusraisesto
theareaof z=f�{ in a few seconds.Theoptimalcombination
is normally found after betweeny_^ and a�e_^ s. The worst
casefor finding a guaranteedoptimal solution is around]_`=^ s. (For smallerinstances,y_^�^=^ bids,thetiming reported
for CASSareapproximately]_^ timesbetterthanthe ones
of CPLEX.)

a typo in thepublishedversion.Instead,thenumberof bids
seemto be %URS#�#S# . While CPLEX canmanage%URS#�# bids
efficiently, it fails to handle%UR�#S#�# bids. On theotherhand,
it is interestingto notethat this probleminstance,which at
a first glanceappearsto be“hard”, actuallyturnsout to be
“easy”. Indeed,thereis a simplealgorithmwhich from our
experienceoutperformsCASS.

The reasonthat the problemis simpleis, modulosome
details, that as the numberof commoditiesincrease,the
probabilitythattwo bidsareconjunctincreases.Therefore,
theexpectednumberof bidsin theoptimalsolutionis small
(two or three).

A quickly programmedalgorithm,enumeratingall non-
colliding combinations(i.e. it usesneither pruning nor
rankingheuristics)findstheverifiedoptimalsolutionin ap-
proximately %�R s on a standard\�RS# MHz PC with T�RSQ Mb
RAM. This is around%UR timesfasterthanCASS,underthe
assumptionthatFigure3 in theFujishimaet al. paper[Fu-
jishimaet al., 1999] denotes%UR�#S#�# bids. (If thenumberof
bidsis %URS#�# asstatedin thepaperthedifferenceis of course
larger.) This algorithmworksasfollows:

1. For each bid, construct a list of all non-colliding
bids. Assuminga certainprobability distribution and
a certainnumberof commodities,the time for this is
quadraticin thenumberof bids.

2. Combinebids in a depthfirst manner. No bid com-
parisonsare made, insteadwe use the lists of non-
colliding bids. As we combinebids, we also com-
bine their lists by taking their intersection.The short
lengthof the lists of non-collidingbids givesthe fast
execution.(For aninput of %�RS#�#S# bids, %UR�# commodi-
ties,and q?
|#x� T , a typical numberof valid combina-

tionsof two bidsis TSR�#S#�#S# , threebids \�#S#�#S# , andfour
bids TS#�# .)

Of the %�R sspenton eachtestset,around%�\ s werespent
in step % . Hence,neitherpruningnor rankingheuristicscan
improvethis algorithmsignificantlyhere.

Exponential [Fujishimaetal., 1999]

Definition: The probability distribution is defined asp�} G A3L.
�~�� v 0'��� (with ~ is assumedto be implicitly de-
finedfrom

�0 1�� p�} G A3L�
k% , where ( asbeforeis thenum-
berof commodities).Thevaluationis aninteger, rectangu-
larly drawn from � RS#�#$�:��%�RS#S#�� andmultipliedby thenumber
of requestedcommodities.
Resultsand discussion:CASSappearsto bearounda fac-
tor of two fasterthanCPLEX for [S#S#�# bids and [S# com-
modities,cf. Figure5. In an extendedon-line versionof
theirpaper, Fujishimaetal. reportthattheCASSalgorithm
findstheoptimalsolution(thoughit is notclearlystatedthat
optimality is verified) in aroundRSR�# s for \SR�#S# bidsand \SR
commodities. CPLEX finds the verified optimal solution
for thecorrespondinginstancesizein aroundV sonaverage
(with smallvariation).
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Figure 5. TheExponentialdistribution for y_^�^=^ bidsandyc^ commodities.Theverifiedoptimalsolutionis foundin at
mostaround]�m�y s. Thecorrespondingtiming for theCASS
algorithmis slightly above a s.

4.1 Discussion

In sum, CPLEX performsvery well for many of the
testeddistributions. Under most reasonableassumptions
of the collection of bids, the computationtime is rela-
tively small. Furthermore,if the bids aresubmittedin se-
quenceundersomeamountof time, CPLEX can do sub-
sequentsearchesstartingfrom the bestsolution found up
to the point of the arrival of a new bid. For the harder
distributions—whichhenceare of main interest—CPLEX
is aroundfive ordersof magnitudefasterthanSandholm’s
algorithm.As CASShasbeenreportedto outperformSand-
holm’s algorithm by aroundtwo ordersof magnitudefor



theharderdistributions,thereis an indicationthatCPLEX
also is fasterthan CASS is here. Still, as a consequence
of the ��� -hardnessof the problem(and as indicatedby
our empiricalstudy),nor CPLEX nor any otherknown al-
gorithm is a silver bullet for this problem. Even though
CPLEX outperformedtherecentalgorithmsfor thesparser
distributions(sparsein thesensethatfew bidscollide), im-
plicit enumerationalgorithms—forexample in the spirit
of the Nemhauser-Garfinkel algorithm, cf. Section2—
becomeshighlycompetitivefor denserdistributions.Again,
we shouldbarein mind that CPLEX is a general-purpose
softwareandthat the comparisonsonly areperformedfor
thevery specialcaseswhereSandholm’salgorithmandthe
CASSimplementationcanbeused.

From our experimentswith different families of algo-
rithmsit is clearthatif theprobabilitydistribution is known
to the auctioneer, it is sometimesable to constructalgo-
rithms thatcapitalizesignificantlyon this knowledge.Our
main conclusionso far is that it is very important to ob-
tain somerealisticdataandinvestigatewhetherit hassome
specialstructuresthatcanbeutilized by highly specialized
algorithms(assumingthatstandardalgorithmsfall shorton
practicallyrelevantinstances).

The three examplesof the Randomdistribution, the
Weightedrandomdistribution,andtheBinomialdistribution
with many commoditiesarethreeveryillustratingexamples
of distributionsthat at a first glancemay seem“hard” but
turn out to be rather“easy”. As seenabove, it is easyto
constructverysimpleyetveryefficientalgorithmsfor these
specialcases.

The constructionof realistic probability distributions
basedonsomeof ourmainapplicationareas—suchaselec-
tronic power tradeandtrain schedulingmarkets—together
with somereasonableagentstrategies in certainattractive
combinatorialauction models, such as iBundle [Parkes,
1999] or AkBA [Wurman,1999] is importantfuturework.
However, onebrief reflectionon realisticprobabilitydistri-
butionscanbegivenalreadyhere;therearegoodreasonsto
believe that realdistributionswill bemuch harder thanthe
onesdescribedabove. For example,if the iBundleauction
is usedandwehaveagentswith thestrategiesthatthey only
bid � above the currentprices(or taking the “ � -discount”)
we will have a very “tight” distribution; mostbidsarepart
of somecombinationwhich is closeto optimal.Thismakes
pruningdrasticallyharder. For example,we tried the Uni-
form distribution,but with %U#�#S#S#�# addedto eachvaluation
(i.e. the valuationsvary in only % %), and this increased
theexecutiontime of CPLEX by somefactor TS# . But there
arealsootheraspectsof the hardnessof real-world distri-
butions [Nisan, 1999]. Again this calls for gatheringof
real-world (or at leastderivation of realistic) data,before
focusingon heavily specializedalgorithms.

5 Conclusions

In this paperwe discussedimportantcomputationalas-
pectsof optimalwinnerdeterminationin combinatorialauc-
tions.Wehavecomparedrecentapproachesto thisproblem
with a traditionalapproachto setpartitioning,whichcanbe
usedfor optimal winner determination.The main conclu-
sionof this comparisonis thatmany of thefeaturesof cur-
rentalgorithmsarerediscoveriesof well-known methods.

We then discussedhow mixed integer programming
couldbeutilizedto managemoregeneralproblemsthanthe
onesmanagedby therecenthighly specializedalgorithms,
and that commerciallyavailablesoftware performsexcel-
lently for many probleminstances.We believe thatthiscan
enabletheapplicationof combinatorialauctionsto applica-
tions to which therearenot yet any winner determination
algorithmsavailable. Theapproachintroducedherecanbe
usedin combinationwith many differentforms of combi-
natorialalgorithmsandis of interestregardlessof whether
bids aresealedor open,whetherthe auctionis iterative or
one-shot,andwhetherthecomputationis centralizedor de-
centralized(e.g.let thebidderssuggestbettersolutions).

We alsodiscussedandexemplifiedtheenormousimpact
theprobabilitydistributionof agiventesthasonthecompu-
tationtime. It wasshown thatsomeof thedistributionsused
in benchmarkingcurrentalgorithmsallow for very simple
andefficientalgorithmsthattake advantageof thestructure
of thesedistributions.

In summaryourconclusionsarethat:�
much can be gainedby capitalizing on the achieve-
mentmadein operationsresearch and combinatorial
optimization,�
morework is neededon the studyof what real-world
(or at leastrealistic)instancesmaylook like, and�
highly specializedalgorithms are mainly of interest
(from ane-commercepointof view) for real-world in-
stancesfor which standard algorithmsfall short.

Not only is it useful for electroniccommerceto take
advantageof existing achievementsin operationsresearch
and combinatorialoptimization, but it is also a concern
that introducing “new” algorithmswhile overlooking ex-
isting theory is scientificallyproblematic. Furthermore,it
is actually debatableif developing “new” set packingal-
gorithmsbenchmarked on arbitrarydistributions is a rele-
vant e-commerceresearchactivity. On the otherhand,(i)
gatheringreal world distributions (or derive realisticones
from realisticagentpreferences,agentstrategiesandmar-
ket mechanisms),(ii) investigatingstateof the art of oper-
ationsresearchandcombinatorialoptimizationalgorithms
for thesesettings,and(iii) developingspecialpurposealgo-
rithmswhereneeded,definitelyis.



A final—more fundamentalissue—iswhetherthe ap-
proachusedin this andotherpapersis at all useful. One
view is thatthebidsshouldberestrictedin sucha way that
polynomialtime algorithmscanbeusedto find theoptimal
allocation[Rothkopf et al., 1995]. Anotherview is that it
is unnecessaryto restrictthebids; if thebids happento be
restrictedin thewaysRothkopf et al. suggest[Rothkopf et
al., 1995], thenan appropriatealgorithmwill rapidly find
theoptimalsolutionanyway [Nisan,1999]. We very much
agreewith this latter view. Our argumentsfor this areas
follows. If it is the casethat thereonly area few impor-
tant dependencies(which is requiredfor implying that the
restrictionsproposedby Rothkopf etal. donot decreasethe
surplussignificantly),mostbidswill reflectthesedependen-
cies.Theonesthatreflectother(lessimportant)dependen-
cies will be non-competitive and prunedfrom the search
at an early stage. Furthermore,we arguethat if thereare
somany dependencies(of comparableimportance)that the
winnerdeterminationindeedis computationallyintractable,
thenit seemssafeto conjecturethatit is alwaysbetterto al-
low bids on all combinationsand usean approximateal-
gorithm, than to restrict the bids. The following heuris-
tic algorithm supportsthis point of view. First identify
the mostimportantdependencies(i.e. the onesthat would
have beenusedif we would have taken the restrictingap-
proachby Rothkopf et al. [Rothkopf et al., 1995]), thenas
first heuristicsin the search,only considerbids that fulfill
the restrictions(and let this heuristicsbe commonknowl-
edge).Thenoncetheoptimalsolutionof this restrictedbid
sethasbeenfound,addall otherbidsandsearchuntil acer-
tain dead-lineis met, and take the bestsolution found up
to that point. Under the assumptionthat the time for ex-
tractingonly thebidsfulfilling therestrictionsis negligible
(it must indeedbe small for the restrictingapproachto be
successful—otherwisecheckingthevalidity of bidswill be
toohard),thisapproachcansafelybeexpectedto alwaysdo
asleastaswell astheapproachof only treatingtherestricted
bid space.

Rothkopf et al. [Rothkopf et al., 1995] discussanother
attractive idea; to let bidderssuggestwinning allocations.
As eachbidderwill prioritize its own bids heavily in such
a search(in orderto find a winning combinationof which
its own bids is a part), this may serve as a very efficient
parallelizationof the searchand utilization the computa-
tional power of the participatingagents. In auctionswith
high valuesin which all bidderscanproposebettercombi-
nations,andin whichhighly optimizedsoftware(astheone
describedin this paper)is used,we can thereforeexpect
that very large bid spacescan be searchedin reasonable
time. If—despitegood heuristics,considerablecomputa-
tionalpower(optionallywith thebiddersparticipatingin the
search),andhighly efficientalgorithms(suchasCPLEX)—
theproblemof finding a goodsolutionstill is computation-

ally intractable,thenit is probablygenerallyvery challeng-
ing to constructasimpleandcomputationallyefficientauc-
tion with any significanteconomicefficiency.
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