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Abstract

The conceptof measurdunctionsfor generalizatiorperformances suggested.This
conceptprovides an alternatve way of selectingand evaluatinglearnedmodels(classi-
fiers). In addition, it makesit possibleto statea learningproblemas a computational
problem. The the known prior (meta-)knavledge aboutthe problemdomainis captured
in a measurdunctionthat, to eachpossiblecombinationof a training setanda classifier
assignsa value describinghow goodthe classifieris. The computationaproblemis then
to find a classifiermaximizingthe measurdunction. We arguethatmeasurdunctionsare
of greatvaluefor practicalapplications.Besidesof beingatool for modelselection they:
(i) force usto make explicit the relevant prior knovledge aboutthe learningproblemat
hand, (i) provide a deeperunderstandingf existing algorithms,and (iii) help usin the
constructionof problem-specifialgorithms. We illustrate the last point by suggestinga
novel algorithmbasedn incrementakearchfor a classifiethatoptimizesa givenmeasure
function.

1 Intr oduction

In this work, we suggest new approachio modelselectionandevaluation. Today mostmeth-
odsfor evaluatingthe quality of a learnedmodel(classifier)is basedon somekind of cross-
validation[6]. However, we arguethatit is possibleto make evaluationsthattake into account
otherimportantaspectof the modelthanjust classificatioraccurag on a few instances.Our
approachis basedon measuringexplicit propertiesof the learnedmodelratherthanproperties
of thealgorithmthatproducedhe model. Thereforen contrastto for exampleNakhaeizadeh
andSchnabl[9], we pay no attentionto propertiessuchasthe employed algorithm’s time and
spacecompleity.

For eachpossiblecombinationof a training setanda classifier ameasue functionassigns
a valuedescribinghow goodthe classifieris. Measurefunctionshave a numberof favorable
propertiedrom bothatheoreticalanda practicalpoint of view. They provide acomplementary
tool for selectingmnodelsaswell asassistancen designingnew learningalgorithms.

It hasbeenknown for a long time, seefor examplethe “no free lunch” theoremdcf. [16,
17]), thatthetaskof computingagoodclassifiefrom a datasetis not easilydefinedasa simple
computationaproblem. One purposeof the conceptof measureunctionsis to remedythis
situation. As a consequencaye getan explicit distinctionbetweernproblemformulation,i.e.,
specifyingthe measurdunction,andproblemsolving,i.e., finding a classifiermaximizingthe



measurdunction. By makingthis distinction,we canisolatethemeta-knevledgenecessarjor
modelselectionfrom the detailsof the learningalgorithms.

Measure-lile criteriahave beensuccessfullyusedfor understandingndsolvingotherprob-
lemsin several scientific areas. One exampleis model-orderselectionin linear prediction,
wherethe orderor dimensionof the predictor i.e., the numberof previous valuesusedto es-
timatethe next value,is often chosenaccordingto a measure-lik criterion, suchas Akaike’s
information-theoreticriteria[1], andParzens criterionautorgressve transfer{10].

In the next sectionwe introducethe conceptof measurdunctionsfor generalizatiormperfor
mance.Thisis followed by a discussiorof therelationbetweercommonlyusedheuristicsand
measurdunctions. Next, we presenta casestudywherea simplemeasurdunctionis usedfor
evaluatingthe modelslearnedby somepopularlearningalgorithms. As a result, we provide
clearindicationsthatit is at leastasimportantto spendiime on tuning onealgorithmasit is to
spendtime on choosingbetweendifferenttypesof algorithms.Finally, we illustratethatmea-
surefunctionsarehelpful whendesigningnew algorithms.Thisis doneby presentinga simple
algorithmbasedon incrementalsearchfor a modelthat optimizesa given measurdunction.
Suchanalgorithmallows muchflexibility aswell asclearspecificatiorof usedbiases.

2 Measurefunctions for generalization

For simplicity andto easecomparisorwith previouswork we assumeheuniverseto beafinite
setof instancesndcateyories. However, the ideaof a measurdunctionis not dependenof a
finite universe.

Let U bethesetof all possibleinstancesff a setof instancegff ¢ U), andcg a setof pairs
suchthateachinstancen ff is labeledwith a cateyory. A generalizatiortask,g, is definedby
apair (U; cg). In whatfollowswe will by T referto the setof all possiblegeneralizatiortasks
(givenU andthecateyoriespresentK).

A generalizatioralgorithmis analgorithmthatgivena generalizationtaskproduces clas-
sificationof theentireuniversecy, i.e.,ageneralizatiorfclassifier).Let C bethesetof possible
generalizationsy = U xK. Thus,ageneralizatioralgorithmcomputesafunctionG : T —€.

We arenow readyto introducethe measurdunctionfor generalization:

Definition 1 A measue functionfor generlization performancef, is a functionthatto each
(@; cuy) assignsa valuedescribinghowgoodthe generlizationis, i.e, f : T x C —R.

Typically we want to use measurefunctionsfor judging how good a generalizations with
respecto a certaintrainingset:

Definition 2 Thegenerlization performanceon a particular genealizationtaskg for a gen-
eralizationalgorithmG is definedby f.g; G.g //.

We may now describegeneralizatiorasa computationaproblem: Givena generalizatioriask
¢, andameasurdunctionf, producea generalizatiorthatmaximizesf.

Onefeatureof our notionof measurdunctionsis thatit helpsin simplifying andclarifying
thediscussioronwhengeneralizations meaningful(cf. [16, 17,13]). In short,it canbeproved
thatoncea non-trivial measurdunctionis defined,somealgorithmsarebetterthanothers,see
[3]. By atrivial measurdunctionwe meanonethatgivesconstanbutputregardlesf input.

1To allow noisy andinconsistentraining sets,ff canbe madea multi-set. Examplesof differentmagnitude
(appearingmary timesin training) andmultiple identicalexampleswith incoherentateyoriescanberepresented
usinga multi-set. This hasno effect on ourtheorems.



3 Analyzing heuristicsin terms of measures

Armedwith theconcepbf measurdunctions wearein abetterpositionto analyzeandcompare
existing learningalgorithmsin a way that goesbeyond purely representationaksues. For
example characterizinglgorithmsin termsof which measurdunctionthey maximizeseemgo
bea plausibleway to identify their strengthsandweaknesseaswell astheregionsof expertize
for differentbiased5].

If we try to describethe implicit measurgunctionsoptimizedby the mostpopularalgo-
rithms usedtoday we seethat they basicallyare composedf some,or all, of the following
threewell-known heuristics:

Subset-fifonthetraining set)— thetraininginstanceshouldbe classifiedcorrectly
Similarity — similar instanceshouldbe classifiedsimilarly
Simplicity— the partitioningof the universeshouldbe assimpleaspossible.

As theseheuristicstypically counteracta measurdunction mustbalancea trade-of between
them.However, we begin with discussinghemin isolation.

Subset-fitis the currently mostusedmethodto evaluatelearningalgorithms. We simply
take a numberof instancesvherethe correctclassificationis assumedo be known and let
the algorithmtry to classify these. The value of the measurdunctionis proportionalto the
numberof correctclassificationgmadeby the classifier In somecases]ik e whenthe costof
misclassifications high, we may usedifferentweightson differentcategories.

It is possibleto choosethe subsetin a numberof ways;two basicalternatvesare: (i) the
training setand (i) subsetof instanceshot presenin thetraining set,i.e., a validationsetor
an off-training set. A specialcaseof a subset-fitmeasuras the total-fit measuravhosevalue
is proportionalto the numberof correctclassificationson the entire universe(assuminghat
a correctclassificationof the universeexists). In fact, we canseesubset-fitmeasuresasan
attemptto approximatethe total-fit measure.Therearea numberof othervariantsof subset-
fit measures.For instance,the measuremay also be weightedwith probabilities. Another
variantis thewidely usedcross-validationCV) method.CV performsa sequencef subset-fit
evaluationsandthen computeghe averageof these. A disadwantagewith subset-fitmeasure
functions,is thatthey oftenareof little helpin designinganalgorithm.We can,of course use
subset-fitin an algorithm of a higherorderthat takesa numberof generalizatioralgorithms,
comparegheir generalization®y meansof subset-fiton a validationset,andthenchooseghe
generalizatiorthat givesthe highestgrades.Or, similarly, we canusesubset-fiimeasuregor
tuningthe parametersf a singlealgorithm(cf. VSM [7]).

An intuitive propertyof goodgeneralizations that“similar” instanceshouldbe classified
similarly. A problemwith similarity is thatthereis no objectveway of measuringt. A distance
measures needecandhow distanceshouldbe measuredariesa lot betweerapplicationsAn
oftenusedheuristicis that,giventwo (or more)clustersof instance®f differentcategories,the
decisionborder(s)shouldbe centeredbetweenthe clustersratherthanbeing placedcloserto
oneof theclusters.As aresult,queryinstanceghatresidein the areabetweerthe clusterswill
beclassifiedasbelongingto the category whoseinstancest is mostsimilar to.

The useof simplicity to definea measureunction is an applicationof Ockhams razog
a principle that hasbeensuccessfuln mary scientificfields. An importantreasonfor using
simplicity asa heuristicis to reduceoverfitting to the trainingset. A problemwith simplicity,
just aswith similarity, is thatthereis no objectve methodto measurat. Oftenit is measured
with respecto aparticularrepresentatioschemee.g.,thesizeof adecisiontree.Notethatthis



alsoholdsfor Kolmogoror compleity, whichuseTuringmachinessits representatioacheme.
A measurdunction, on the otherhand,shouldbe independenof the hypothesidanguageof
learningalgorithmsto be useful.

4 A casestudy

We now illustratehow a simplealgorithm-independemheasurdunctioncanbeusedfor select-
ing which of anumberof popularalgorithmsfor a particularapplication.The measurdunction
we usedoesnot correspondo ary known algorithm, ratherit is an attemptto capturein an
algorithm-independenwvay how we want an algorithmto behae in this application. Note,

however, thatthis is only oneof aninfinite numberof possiblemeasurdunctions. Threecom-
mor;classeSJf algorithmswill becomparedbut first let us briefly analyzewhatheuristicshey

use?

Decisiontreeinduction algorithms Subset-fitand simplicity: As an algorithm-specific
measuref simplicity it is commonto usethesizeof thedecisiontree,i.e.,thenumberof nodes.
Differentdecisiontree algorithmsbalancethe trade-of betweensubset-fiton the training set
andsimplicity differently: ID3 [11] givespriority to subset-fifi.e., it triesto createthe simplest
possibletree consistentwvith the training examples)whereaspruningalgorithmssuchasC4.5
[12] triesto balancehetrade-of (i.e., it triesto createanevensimplertreethatdo not have to
be consistentvith thetrainingexamples).

Similarity: Whendealingwith numericfeaturesasimilarity criterionis typically takeninto
consideratiorwhenselectingcut-points. The mostusedapproachs to choosecut-pointsthat
lie centereetweertraininginstance®f differentcateyories.

The backpropagation algorithm Subset-fit: Roughly speaking the backpropagatioml-
gorithm[15] tries to optimizethe subset-fimeasurdunction definedby thetraining set. The
generalizations createdncrementallyin small stepsby anattemptto minimize anerrorfunc-
tion.

Simplicity: A problemwith the plain backpropagatiolgorithmis that the error function
doesnot provide ary penaltyfor overfitting. Thealgorithmwill continueto adjustits weights
until the error function is minimized, possiblyresultingin an unwantedwealth of detail. To
avoid overfitting, it needdo becombinedwith otherstratgiessuchas(i) Decreaséhenumber
of neuronsn orderto getsimplepartitionings.(ii) Rely onthefactthatthebackpropagatioal-
gorithmslowly createsamoreandmorecomplex generalizatiormndstopthe processaccording
to somecriterion, typically a subset-fimeasurealefinedby somevalidationset. Notethatthese
stratggiesarenotincludedin the backpropagatioalgorithm,they areappliedat a meta-level.

Similarity: Thesigmoidfunctionsusedin theneurongewardnot only correctclassification
of instanceshutit doesalsorewardproperdistancesacorrectlyclassifiednstanceshouldbefar
from the hyperplaneepresentedby the neuron. In this way, the decisionbordersrepresented
by neuronshave a tendeng to placethemselesin the middle betweenclustersof different
cateories.

Nearestneighbor algorithms This classof algorithmg[4] is clearlybasedon similarity. A
methodto avoid over-fitting is to look atthek nearestheighborgatherthanonly looking atone
neighbor Largervaluesof k hasatendeng to generatesimplerdecisionborders the number
of isolatedregionsbecomesmallerandsharpcornershave atendeng to be smoothedut.

2We hereconcentrat®n themainheuristicoonwhich thealgorithmsarefounded ratherthanon specificdetails
of thealgorithms.Take for instancehe ID3 algorithm[11], theintentionis to computethe simplestdecisiontree
consistentvith thetrainingexamples.However, asthis is computationallyintractableJD3 emplgysthe concepiof
informationgainto constructareasonablsmalltree.



4.1 An abstract measure function

Let usfirst suggest very generalmeasurdunction. We usethe samenotationasbefore,i.e.,
cg denoteghetraining setandcy denoteghe classifierproducedoy the algorithm. A general
measurdunctioncanbe definedasfollows:
ao% + agsimi.cg; cy/ + agsimp.cy/ (1)
ff

Thefirst termcorrespond$o subset-fion thetrainingset,thefunctionsimi specifieghe simi-
larity aspectandsimp computessimplicity giventhe partitioningof theinstancespace These
functionshave problem-specificlefinitionsandthetrade-of betweerthethreecomponentgan
be balancedy problem-specificonstantgag, a1, anday).

Note that, by choosingdifferentfunctions(simi andsimp) and constantsyve areableto
approximatethe measuregorrespondingo the algorithmsdiscussedn the last section(and
mary otherlearningalgorithms).Take ID3 (with numericalfeatures)or example,simi should
beafunctionthatfavorsdecisionbordersegmentshatarecenteredetweertheclosestraining
instance®n eachsideof thebordersegment,andsimp shouldfavor partitioningsthathave few
rectilinearplanesggments.

4.2 An examplemeasure function

Let usnow make the measurdunction (1) moreconcreteby specifyingthe functionssimi and
simp. We would like to stresghatthis is justanexample,inventedfor a particularapplication.
The pointis not to presenthe ultimate measurdunction, suitablefor all applications.We do
not believe thatsucha measurdunctionexist.

We chooseto expresssimilarity in termsof distancesdetweentraining instancesanddeci-
sionborders.We take on the heuristicsthat correctlyclassifiedinstanceshouldpreferablyre-
sideat”safe” distancearfrom decisionborders.For misclassifiednstancesthereverseshould
hold; instanceshouldbe closeto the borderof aregion containingits own class.Let d; bethe
distancebetweerinstancex; andits closestecisionborder Assumethatwe measuralistance
in suchaway thatd; is positiveif x; is correctlyclassifiedandnegative otherwise.Thechosen
heuristicscanthenbeexpressedy letting x;'s contributionto simi beanincreasingunctionof
d;. Furthermoreijt seemgeasonabl¢hatthe areain the closeneighborhooaf a borderis the
mostcritical area;this canbe capturedby letting the function’s derivative be steepnearzero.
Instancewveryfarfrom abordershouldhardlybeaffectedatall if theborderis slightly adjusted;
thisis capturedy letting thefunctionbe asymptoticallyconstanfor large negative andpositive
values.Hence a plausiblechoicewould beto usea sigmoidfunction. However, in somecases
wheremuch classificationnoiseis expected,we may want the similarity measureo pay less
attentionto the misclassifiednstances For this reasonwe split simi in two partsthatcanbe
weighteddifferently. If x; is correctlyclassifiedwe usel —1=2" diandif x; is misclassified,
we usel=2" di-1: theconstanb is a parameteto tunedistance-dependepd_et R denotethe
setof correctlyclassifiedraininginstancegi.e., cg Ncy). Thetotalsimi functionwill thenbe

k1 ZVXiER 1- El:)l-_C( +k2 ZVXie.Cﬂ\R/'Eé_di_ 1/
el

Then,if we wishto paylessattentionto misclassifiednstancesywe canchooseks j kj.

Next, we turnto thefunctionsimp. Assumingnumericfeaturesye canmeasuresimplicity
by measuringthe total size of the decisionborders,normalizedin somesuitableway. (For
example,if theuniverseis 3-dimensionaive usethetotal areaof the decisionborders.)



Figurel: Left: Decisiontree. Theupperversionis atreeinducedby the D3 algorithmandthe
lower versionis a prunedtree,takenfrom [8, pagel0]. Middle: BackpropagationThe upper
versionuse30 hiddennodesand 26 500 training epochs;the lower used2 hiddennodesand
20 000 epochs.Right: Nearesineighbor The upperversionis 1-nearesheighbor The lower
versionusel0 neighbors.

As the simplicity measurewe use—L, whereL denoteghetotal size of the decisionbor-
ders.
We cannow definea measurdunctionasfollows:
IR| k1) wieR-1 — Etlrd/ +k2 Zv.xie.cfﬂR/- Etlrd_ 1/ B
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Here we mainly considereddomainswith numericalfeatureswhereit is possibleto view
measurdunctionsgeometrically However, the definition of measurdunctionssuitsnominal
or logical featuregust aswell. The measureshemseles,on the otherhand,mustsometimes
be defineddifferently For instance ratherthanbeingmeasuredy the size of decisionbor
ders,simplicity canbe measuredy the minimal descriptionlength[14] of the generalization.
Similarity, onthe otherhand,canbe measuredn termsof Hammingdistances.

4.3 Model evaluation and selection

We have usedthewell-known Iris databas€2]. For the sale of presentationwe only usedtwo
of thefour dimensiongpetallengthandwidth). In onecase whereinstance®f differentcate-
goriescoincide,we madea small perturbation.(This wasmadein orderfor the ID3 algorithm
to have consistentnput.)

We have madethefollowing choices:(i) We normalizeeachdimensionsothatall features
in thetraining sethave avaluebetweerD andl. (i) Thenormalizationconstanb for thesimi



R g1
G Zmé‘{cﬁl 24 Zme'qﬁ% 24 |y, | measurd
ID3 1.000 0.586 0 3.406| 1.208
prunedtree 0.980 0.682 0.005 2.325| 1.260
backprop30nodes| 0.987 0.599 0.002 2.802| 1.215
backprop2 nodes | 0.960 0.703 0.008 2.516| 1.245
1-nearesheighbor | 1.000 0.679 0 3.330| 1.256
10-nearesheighbor| 0.967 0.740 0.009 2.697| 1.265

Tablel: Subset-fitsimilarity, andsimplicity, aswell astheresultingmeasurdor our choiceof
parameters.

functionis choseras+/150. Theintuition behindthisis thatthereare150traininginstancesnd

if thesenstancesverespreadutevenlyonagrid, thedistancebetweertwo instancesvould be

1=+/150 Usingthis distanceasa unit distancegivesa reasonablsigmoid-like behaior of the
simi function. (iii) Thetotallengthof thedecisionborderss measuredh awindow containing
theboundingbox of thetraining setanda surroundingl0% magin.

We applyour measurdo thethreeclasse®f algorithmsdiscusse@bove. For eachclasswe
have two versions:onethattendsto overfit the training set,andonethatincludesa non-over-
fitting criterion. Theinducedgeneralizationaredepictedn Figurel.

As our measuras parameterizedthe choiceof parametersvill governwhich classifieris
“best”. We only give oneexample wherethe parameteraresetaccordingo somesimplerules
of thumbandwith a particularapplicationin mind. Theserulesarechosenso thateachof the
threecomponentfiasapproximatelythe sameeffectonthemeasureWe choseag = 1,a; = 1,
k; = ko = 0:5anda; = 0:025. The motivationis asfollows: (i) We setag = 1. (ii) A
reasonablehoiceis to give the sameweightto similarity andsubset-fit. Thesimilarity measure
lies somavherebetween1 and1. Thus,if we setag = 1, we shouldchoosehalf the weight
for thetwo component®f thethesimi function,i.e. a; = 1, k1 = ko = 0:5. (iii) In orderto
find a suitablevalue of ap, we comparea reasonabl@olerancein subset-fitwith a reasonable
variationin length.In thisapplicationthevariancen thesubset-fimeasureshouldbe expected
to besmall, saythata reasonablalgorithmshouldhave a subset-fimeasuréetweer0.95and
1. To determinea reasonableariationin length,we notethat the total length of two vertical
lines separatinghe threeclassesvould be 2:4. The major part of the decisionborderspasses
through“uninterestingareas”.Thelengthof theborderan theseareaslominateghe simplicity
measurethis indicatesthat we shouldbe quite tolerantto long borders;saythatwe expecta
reasonablalgorithmto have borderlength between2 and4. Hence,a varianceof 0.05 for
subset-fishouldmatcha varianceof 2 for simplicity. Thisgivesap = 0:025. Althoughwe here
try to arguethatthe valuesof ag-a; arereasonablewe do not claim to prove this. Ideally, the
valuesshouldbe determinedhroughcarefulanalysisof the characteristic®f the application
athand.In Tablel, we give the threetermssubset-fit similarity, andsimplicity, aswell asthe
resultingmeasurdor our choiceof parameters.

4.4 Obsewvations from the experiment

Our measurds algorithm-independentyet the table indicatesthat it capturesquite well the
propertieghatalgorithmdesignerstrive for whenapplyingheuristicso find a propertrade-of
betweenrearningthetrainingsetandoverfitting. In thisparticularcasethe10-nearesheighbor



algorithmgave thehighestscore.Now, canwe draw the conclusiorthatit is the bestalgorithm?
No, of coursenot. But giventhe computationaproblemdefinedby the measurdunction and
the training set, it provides the bestsolution of the six algorithms. For other applications,
correspondingo othermeasurdunctions(andtraining sets),we expectdifferentresults. The
mainpoint hereis thatby usingmeasurdunctionsratherthanjust cross-alidation,we areable
to make more sophisticatedvaluations taking into accountotherimportantaspectdhanjust
classificatioraccurag on afew instances.

However, moreinterestinglythe experimentindicatesthat, althoughthe threetypesof al-
gorithmstestedcomefrom differenttraditions,the differencebetweertheir generalizationss
smallerthanthe differencebetweenthe generalizationgomputedby differentversionsof the
samealgorithm. This providesa goodillustration of the factthatit is at leastasimportantto
spendcomputationalpoweron tuning onealgorithmasit is to spendthe poweron choosing
betweerdifferenttypesof algorithms.Thus,oneshouldspendimeto try to find theappropriate
degreeof pruningin decisiontree algorithms,numberof nodesin a neuralnetwork, or k in
k-nearesheighbor

It is worth mentioningthat by addingone more nodeto the decisiontreeinducedby 1D3,
namelya nodethat “cuts off” the thin vertical segmentin the picture,the measurewould in-
creasesignificantly from 1.208to 1.242. The resultingpartition would also “look” simpler
althoughthetreewould be largerandhencemore“complex”.

5 Measure-basedalgorithms

The conceptof measurgunctionsimmediatelysuggestew classesof generalizatioralgo-
rithms. As anexample,considertthefollowing approachStartwith someinitial decisionspace
andmake incrementathangesusingthe measurdunctionasevaluationcriterion. In this way,
we canimplementan optimizationstratgy, suchashill climbing. A majoradwantagewith this
kind of algorithmsis thatby choosinganappropriateneasurdunctionwe canexplicitly specify
the generalizatiorbehaior we arestriving for.

To illustratethis, we have implementeda very simplemeasure-basealgorithmthat, given
adatasetanda measurdunction,searche$or a goodpartitioningof theinstancespace:

1. Lettheentireuniversebe classifiedasoneof the cateyories.

2. Pick atrandomsomegeometricabbjectwhichis placedin the spaceand“painted” by a
randomlychosercategory. This givesanew generalization.

3. Computethe measurdor the new generalizationlf the measuravasimprovedover the
previousone,keepthe new generalizationptherwiseretainthe previousone.

4. Gobackto 2. Stopwhennoimprovementhasbeenmadeduring severaliterations.
5. Redothewholeprocessaa numberof timesandkeeptheresultwith the bestmeasure.

In Stepl, we could have usedsomeotheralgorithmto generatehe initial partitioning. This
would probablyspeedup the process.The last stepis not necessaryit is just a simpleway to
avoid endingup atabadlocal maximum.In our exampleimplementationye let therandomly
chosengeometricalobjectsbe just rectanglesof varying size, either axis-parallelor rotated
45 degrees. To make the algorithmrun faster somesimple heuristicsis applied; after a nev
geometricalobjecthasbeensuccessfullyadded,the algorithmtries addingsimilar objectsat
approximatelythe sameposition.



Figure2: Thegeneralizatiorproducedoy a simplemeasure-basealgorithm.

Althoughtheemplosedmeasurédi.e.,theonediscusse@bove) is quite unsophisticatednd
the methodfor generatingcandidategeneralizationss very rough,this algorithmquickly finds
areasonabl@eneralizatiorfor the Iris dataset(seeFigure?2). With respecto the measureit
alsogivesa “better” generalizatiorthanthe algorithmsevaluatedabove. Theoneshavn in the
figure getsthe value 1.288(the four termsare0.973,0.731,0.007,and 1.891). With a more
sophisticatedlgorithm,a highervaluewould have beenachiesed.

It is importantto notethat measure-basegeneralizatioralgorithmsof the kind described
herearevery generalin the sensethat by choosingan appropriatemeasurgunction, we can
achieve almostary generalizatiorbehaior. In principle,we areableto imitate the behaior of
known algorithms,and moreinterestingly imitate behaior of unknavn algorithms. Thereis
muchmoreto be saidaboutmeasure-basealgorithms,but this is not the placefor describing
thebehaior of particularalgorithmsin detail. Full evaluationof measure-basegorithmswill
be presente@lsavhere.We have justillustratedthe possibility with this example.

6 Concluding remarks

6.1 Measure functions vs. cross-\alidation

Measuregunctionsandstatisticalmethodssuchascross-alidation,arecomplementaryThey
canbeusedseparatelyr in combination.

Whenusingcross-alidation,an algorithmis assumedo give high accurag on the entire
universeif it shavs good statisticalbehaior on available data. In this way, cross-alidation
performsa quantitativeanalysis. The resultof suchanalysisis often sound,but it is easyto
generatecounterexampleswherecross-alidationwill fail. Hence,cross-alidationin itself
givesno guarante¢hatthe outputof the choseralgorithmis "sound”.

Ontheotherhand,usinga measurdunctionwe canguaranteeertainqualitativeproperties
of theproducedyeneralization(s)Therefore we have a mechanisnio ensurethatthe outcome
of analgorithmwill neverbedisastrous.

Cross-alidationandmeasurdunctionscanbe combinedin severalways. For example,in
algorithmselectionwe canapply both methodsand pick the algorithmwhich shavs the best
combinedquality.



6.2 Final comments

The applicationand selectionof classificationalgorithmsis today often guided by rules of
thumb, educatedguessesand hearsay At best,the problemto be solved is analyzedand if
necessary problem-specifialgorithmis constructed.However, the mostcommonapproach
is to comparea numberof algorithms,e.g.,by meansof cross-@lidationand selectthe best
onefor the task. Although the latter approachesre on the right track, we believe that there
is a strongneedfor morerobustmethoddor telling whatclassifiershouldbe appliedto which
problem. We proposesolving a problemby establishinga measurdunction suitablefor the
problemat handand then choosingan algorithmthat aimsto implementthis measure.The
differencebetweenchoosinga suitablealgorithmand choosinga suitablemeasureanay seem
subtle, but we believe it is important—anabstractionfrom ‘ad hoc’ solutionsto thoroughly
motivatedapplicationsof suitableclassifiers.

As we have seen the conceptof measurdunctionssuggestsiew classef generalization
algorithms. One suchclassconsistsof algorithmsthat incrementallysearcheghe spaceof
generalizationg orderto find onethatmaximizesghe measurdunction. We expectthatfuture
work alongthis line will be very fruitful. Anotherfuture line of researchs to investigatethe
possibilitiesof automaticallydeterminingan appropriataneasurdunction giventhe available
dataset, for instance by computingappropriatevaluesfor the parametersf a given measure
function.
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