
PREPRINT. Proc. of the ECML’98 Workshop on Upgrading Learning
to the Meta-Level: Model Selection and Data Transformation,
   pages 54-65, 1998.

Model selectionusingmeasurefunctions

ArneAndersson1, Paul Davidsson2, andJohanLindén1

1 Dept.of ComputerScience,LundUniversity, Box 118,S–22100Lund,Sweden.

2 Dept.of ComputerScience,Universityof Karlskrona/Ronneby, S–37225 Ronneby, Sweden.

arne@dna.lth.se, pdv@ide.hk-r.se, johan@dna.lth.se

Abstract

The conceptof measurefunctionsfor generalizationperformanceis suggested.This
conceptprovides an alternative way of selectingand evaluatinglearnedmodels(classi-
fiers). In addition, it makes it possibleto statea learningproblemas a computational
problem. The the known prior (meta-)knowledgeaboutthe problemdomainis captured
in a measurefunction that, to eachpossiblecombinationof a training setanda classifier,
assignsa valuedescribinghow goodtheclassifieris. Thecomputationalproblemis then
to find a classifiermaximizingthemeasurefunction. We arguethatmeasurefunctionsare
of greatvaluefor practicalapplications.Besidesof beinga tool for modelselection,they:
(i) force us to make explicit the relevant prior knowledgeaboutthe learningproblemat
hand,(ii) provide a deeperunderstandingof existing algorithms,and(iii) help us in the
constructionof problem-specificalgorithms. We illustrate the last point by suggestinga
novel algorithmbasedon incrementalsearchfor aclassifierthatoptimizesagivenmeasure
function.

1 Intr oduction

In this work, we suggestanew approachto modelselectionandevaluation.Today, mostmeth-
odsfor evaluatingthe quality of a learnedmodel(classifier)is basedon somekind of cross-
validation[6]. However, we arguethat it is possibleto make evaluationsthattake into account
otherimportantaspectsof themodelthanjust classificationaccuracy on a few instances.Our
approachis basedon measuringexplicit propertiesof the learnedmodelratherthanproperties
of thealgorithmthatproducedthemodel.Therefore,in contrastto for exampleNakhaeizadeh
andSchnabl[9], we payno attentionto propertiessuchastheemployedalgorithm’s time and
spacecomplexity.

For eachpossiblecombinationof a trainingsetanda classifier, a measure functionassigns
a valuedescribinghow goodthe classifieris. Measurefunctionshave a numberof favorable
propertiesfrom botha theoreticalandapracticalpointof view. They provideacomplementary
tool for selectingmodelsaswell asassistancein designingnew learningalgorithms.

It hasbeenknown for a long time, seefor examplethe “no free lunch” theorems(cf. [16,
17]), thatthetaskof computingagoodclassifierfrom adatasetis noteasilydefinedasasimple
computationalproblem. Onepurposeof the conceptof measurefunctionsis to remedythis
situation.As a consequence,we getanexplicit distinctionbetweenproblemformulation,i.e.,
specifyingthemeasurefunction,andproblemsolving, i.e., finding a classifiermaximizingthe



measurefunction.By makingthisdistinction,wecanisolatethemeta-knowledgenecessaryfor
modelselectionfrom thedetailsof thelearningalgorithms.

Measure-likecriteriahavebeensuccessfullyusedfor understandingandsolvingotherprob-
lems in several scientific areas. One example is model-orderselectionin linear prediction,
wherethe orderor dimensionof the predictor, i.e., thenumberof previous valuesusedto es-
timatethe next value,is often chosenaccordingto a measure-like criterion, suchasAkaike’s
information-theoreticcriteria[1], andParzen’s criterionautoregressive transfer[10].

In thenext sectionwe introducetheconceptof measurefunctionsfor generalizationperfor-
mance.This is followedby a discussionof therelationbetweencommonlyusedheuristicsand
measurefunctions.Next, we presenta casestudywherea simplemeasurefunctionis usedfor
evaluatingthe modelslearnedby somepopularlearningalgorithms. As a result,we provide
clearindicationsthat it is at leastasimportantto spendtime on tuningonealgorithmasit is to
spendtime on choosingbetweendifferenttypesof algorithms.Finally, we illustratethatmea-
surefunctionsarehelpfulwhendesigningnew algorithms.This is doneby presentinga simple
algorithmbasedon incrementalsearchfor a model that optimizesa given measurefunction.
Suchanalgorithmallowsmuchflexibility aswell asclearspecificationof usedbiases.

2 Measure functions for generalization

For simplicity andto easecomparisonwith previouswork weassumetheuniverseto beafinite
setof instancesandcategories.However, the ideaof a measurefunction is not dependentof a
finite universe.

Let
�

bethesetof all possibleinstances,� asetof instances( ��� �
), and ��� asetof pairs

suchthateachinstancein � is labeledwith a category. A generalizationtask, � , is definedby
a pair � �
	 ����� . In whatfollowswe will by  referto thesetof all possiblegeneralizationtasks
(given

�
andthecategoriespresent,� ).1

A generalizationalgorithmis analgorithmthatgivena generalizationtaskproducesaclas-
sificationof theentireuniverse,��� , i.e.,ageneralization(classifier).Let � bethesetof possible
generalizations,��� ��� � . Thus,ageneralizationalgorithmcomputesafunction � : ���� .

We arenow readyto introducethemeasurefunctionfor generalization:

Definition 1 A measure functionfor generalizationperformance, � , is a functionthat to each
��� 	 ����� assignsa valuedescribinghowgoodthegeneralizationis, i.e, � :  � ����� .

Typically we want to usemeasurefunctionsfor judging how good a generalizationis with
respectto a certaintrainingset:

Definition 2 Thegeneralizationperformanceon a particular generalizationtask � for a gen-
eralizationalgorithm � is definedby �! "� 	 �# $��%&% .
We maynow describegeneralizationasa computationalproblem:Givena generalizationtask
� , andameasurefunction � , produceageneralizationthatmaximizes� .

Onefeatureof our notionof measurefunctionsis thatit helpsin simplifying andclarifying
thediscussiononwhengeneralizationis meaningful(cf. [16,17,13]). In short,it canbeproved
thatoncea non-trivial measurefunctionis defined,somealgorithmsarebetterthanothers,see
[3]. By a trivial measurefunctionwe meanonethatgivesconstantoutputregardlessof input.

1To allow noisy andinconsistenttraining sets,' canbe madea multi-set. Examplesof differentmagnitude
(appearingmany timesin training)andmultiple identicalexampleswith incoherentcategoriescanberepresented
usingamulti-set.Thishasno effecton our theorems.



3 Analyzing heuristics in terms of measures

Armedwith theconceptof measurefunctions,wearein abetterpositionto analyzeandcompare
existing learningalgorithmsin a way that goesbeyond purely representationalissues. For
example,characterizingalgorithmsin termsof whichmeasurefunctionthey maximizeseemsto
beaplausibleway to identify theirstrengthsandweaknessesaswell astheregionsof expertize
for differentbiases[5].

If we try to describethe implicit measurefunctionsoptimizedby the mostpopularalgo-
rithms usedtoday, we seethat they basicallyarecomposedof some,or all, of the following
threewell-known heuristics:

Subset-fit(on thetrainingset)– thetraininginstancesshouldbeclassifiedcorrectly

Similarity – similar instancesshouldbeclassifiedsimilarly

Simplicity– thepartitioningof theuniverseshouldbeassimpleaspossible.

As theseheuristicstypically counteract,a measurefunctionmustbalancea trade-off between
them.However, webegin with discussingthemin isolation.

Subset-fitis the currentlymostusedmethodto evaluatelearningalgorithms. We simply
take a numberof instanceswherethe correctclassificationis assumedto be known and let
the algorithmtry to classify these. The valueof the measurefunction is proportionalto the
numberof correctclassificationsmadeby the classifier. In somecases,like whenthe costof
misclassificationis high,wemayusedifferentweightsondifferentcategories.

It is possibleto choosethe subsetin a numberof ways; two basicalternativesare: (i) the
trainingsetand(ii) subsetsof instancesnot presentin the trainingset,i.e., a validationsetor
anoff-training set. A specialcaseof a subset-fitmeasureis the total-fit measurewhosevalue
is proportionalto the numberof correctclassificationson the entireuniverse(assumingthat
a correctclassificationof the universeexists). In fact, we canseesubset-fitmeasuresasan
attemptto approximatethe total-fit measure.Therearea numberof othervariantsof subset-
fit measures.For instance,the measuremay also be weightedwith probabilities. Another
variantis thewidely usedcross-validation(CV) method.CV performsasequenceof subset-fit
evaluationsandthencomputesthe averageof these. A disadvantagewith subset-fitmeasure
functions,is that they oftenareof little help in designinganalgorithm.We can,of course,use
subset-fitin an algorithmof a higherorderthat takesa numberof generalizationalgorithms,
comparestheir generalizationsby meansof subset-fiton a validationset,andthenchoosesthe
generalizationthatgivesthe highestgrades.Or, similarly, we canusesubset-fitmeasuresfor
tuningtheparametersof asinglealgorithm(cf. VSM [7]).

An intuitivepropertyof goodgeneralizationis that“similar” instancesshouldbeclassified
similarly. A problemwith similarity is thatthereis noobjectivewayof measuringit. A distance
measureis neededandhow distancesshouldbemeasuredvariesa lot betweenapplications.An
oftenusedheuristicis that,giventwo (or more)clustersof instancesof differentcategories,the
decisionborder(s)shouldbe centeredbetweenthe clustersratherthanbeingplacedcloserto
oneof theclusters.As a result,queryinstancesthatresidein theareabetweentheclusterswill
beclassifiedasbelongingto thecategorywhoseinstancesit is mostsimilar to.

The useof simplicity to definea measurefunction is an applicationof Ockham’s razor,
a principle that hasbeensuccessfulin many scientificfields. An importantreasonfor using
simplicity asa heuristicis to reduceover-fitting to thetrainingset.A problemwith simplicity,
just aswith similarity, is that thereis no objective methodto measureit. Often it is measured
with respectto aparticularrepresentationscheme,e.g.,thesizeof adecisiontree.Notethatthis



alsoholdsfor Kolmogorov complexity, whichuseTuringmachinesasits representationscheme.
A measurefunction, on the otherhand,shouldbe independentof the hypothesislanguageof
learningalgorithmsto beuseful.

4 A casestudy

Wenow illustratehow asimplealgorithm-independentmeasurefunctioncanbeusedfor select-
ing whichof anumberof popularalgorithmsfor aparticularapplication.Themeasurefunction
we usedoesnot correspondto any known algorithm,ratherit is an attemptto capturein an
algorithm-independentway how we want an algorithm to behave in this application. Note,
however, thatthis is only oneof aninfinite numberof possiblemeasurefunctions.Threecom-
monclassesof algorithmswill becompared,but first let usbriefly analyzewhatheuristicsthey
use.2

Decision tr ee induction algorithms Subset-fitand simplicity: As an algorithm-specific
measureof simplicity it is commonto usethesizeof thedecisiontree,i.e.,thenumberof nodes.
Dif ferentdecisiontreealgorithmsbalancethe trade-off betweensubset-fiton the training set
andsimplicity differently: ID3 [11] givespriority to subset-fit(i.e., it triesto createthesimplest
possibletreeconsistentwith the training examples)whereaspruningalgorithmssuchasC4.5
[12] triesto balancethetrade-off (i.e., it triesto createanevensimplertreethatdo not have to
beconsistentwith thetrainingexamples).

Similarity: Whendealingwith numericfeatures,asimilarity criterionis typically takeninto
considerationwhenselectingcut-points.Themostusedapproachis to choosecut-pointsthat
lie centeredbetweentraininginstancesof differentcategories.

The backpropagation algorithm Subset-fit:Roughlyspeaking,the backpropagational-
gorithm[15] tries to optimizethesubset-fitmeasurefunctiondefinedby the trainingset. The
generalizationis createdincrementallyin smallstepsby anattemptto minimizeanerrorfunc-
tion.

Simplicity: A problemwith theplain backpropagationalgorithmis that the error function
doesnot provide any penaltyfor over-fitting. Thealgorithmwill continueto adjustits weights
until the error function is minimized,possiblyresultingin an unwantedwealthof detail. To
avoid over-fitting, it needsto becombinedwith otherstrategiessuchas(i) Decreasethenumber
of neuronsin orderto getsimplepartitionings.(ii) Relyon thefactthatthebackpropagational-
gorithmslowly createsamoreandmorecomplex generalizationandstoptheprocessaccording
to somecriterion,typically asubset-fitmeasuredefinedby somevalidationset.Notethatthese
strategiesarenot includedin thebackpropagationalgorithm,they areappliedat ameta-level.

Similarity: Thesigmoidfunctionsusedin theneuronsrewardnotonly correctclassification
of instances,but it doesalsorewardproperdistances;acorrectlyclassifiedinstanceshouldbefar
from the hyperplanerepresentedby theneuron. In this way, thedecisionbordersrepresented
by neuronshave a tendency to placethemselves in the middle betweenclustersof different
categories.

Nearestneighbor algorithms Thisclassof algorithms[4] is clearlybasedon similarity. A
methodto avoid over-fitting is to look at the ( nearestneighborsratherthanonly lookingatone
neighbor. Largervaluesof ( hasa tendency to generatesimplerdecisionborders,thenumber
of isolatedregionsbecomessmallerandsharpcornershavea tendency to besmoothedout.

2Wehereconcentrateonthemainheuristicsonwhichthealgorithmsarefounded,ratherthanonspecificdetails
of thealgorithms.Take for instancetheID3 algorithm[11], theintentionis to computethesimplestdecisiontree
consistentwith thetrainingexamples.However, asthis is computationallyintractable,ID3 employstheconceptof
informationgainto constructa reasonablysmalltree.



4.1
)

An abstract measure function

Let usfirst suggesta very generalmeasurefunction. We usethesamenotationasbefore,i.e.,
��� denotesthetrainingsetand ��� denotestheclassifierproducedby thealgorithm. A general
measurefunctioncanbedefinedasfollows:

*
0

+ ���-,.��� ++ ��� + / *
1 0214351  "��� 	 ���6% / *

2 0217398  "���6% (1)

Thefirst termcorrespondsto subset-fiton thetrainingset,thefunction 0214351 specifiesthesimi-
larity aspect,and 0214398 computessimplicity giventhepartitioningof theinstancespace.These
functionshaveproblem-specificdefinitionsandthetrade-off betweenthethreecomponentscan
bebalancedby problem-specificconstants( * 0, * 1, and * 2).

Note that, by choosingdifferentfunctions( 02143:1 and 0214398 ) andconstants,we areableto
approximatethe measurescorrespondingto the algorithmsdiscussedin the last section(and
many otherlearningalgorithms).Take ID3 (with numericalfeatures)for example,02173:1 should
beafunctionthatfavorsdecisionbordersegmentsthatarecenteredbetweentheclosesttraining
instancesoneachsideof thebordersegment,and 0214398 shouldfavor partitioningsthathavefew
rectilinearplanesegments.

4.2 An examplemeasure function

Let usnow make themeasurefunction(1) moreconcreteby specifyingthefunctions0214351 and
0214398 . Wewould like to stressthatthis is just anexample,inventedfor a particularapplication.
Thepoint is not to presenttheultimatemeasurefunction,suitablefor all applications.We do
notbelieve thatsuchameasurefunctionexist.

We chooseto expresssimilarity in termsof distancesbetweentraining instancesanddeci-
sionborders.We take on theheuristicsthatcorrectlyclassifiedinstancesshouldpreferablyre-
sideat”safe” distancefar from decisionborders.For misclassifiedinstances,thereverseshould
hold; instancesshouldbecloseto theborderof a region containingits own class.Let ;=< bethe
distancebetweeninstance>!< andits closestdecisionborder. Assumethatwe measuredistance
in sucha way that ;=< is positive if >!< is correctlyclassifiedandnegativeotherwise.Thechosen
heuristicscanthenbeexpressedby letting >=< ’scontributionto 0214351 beanincreasingfunctionof
;=< . Furthermore,it seemsreasonablethat theareain thecloseneighborhoodof a borderis the
mostcritical area;this canbe capturedby letting the function’s derivative be steepnearzero.
Instancesveryfarfrom abordershouldhardlybeaffectedatall if theborderis slightly adjusted;
this is capturedby lettingthefunctionbeasymptoticallyconstantfor largenegativeandpositive
values.Hence,a plausiblechoicewould beto usea sigmoidfunction. However, in somecases
wheremuchclassificationnoiseis expected,we may want the similarity measureto pay less
attentionto themisclassifiedinstances.For this reason,we split 0214351 in two partsthatcanbe
weighteddifferently. If >!< is correctlyclassified,we use1 ? 1@ 2ACBEDCFandif >=< is misclassified,
weuse1@ 2ACBED F? 1; theconstantG is aparameterto tunedistance-dependency. Let H denotethe
setof correctlyclassifiedtraininginstances(i.e., ���-,9��� ). Thetotal 02143:1 functionwill thenbe

( 1 IKJ FMLON  1 ? 1
2PRQ�S F% / ( 2 IRJ FOLUT VOWYX�N[Z  1

2PRQ�S F ? 1%+ ��� +
Then,if wewish to paylessattentionto misclassifiedinstances,wecanchoose( 2 \ ( 1.

Next, we turn to thefunction 0217398 . Assumingnumericfeatures,wecanmeasuresimplicity
by measuringthe total sizeof the decisionborders,normalizedin somesuitableway. (For
example,if theuniverseis 3-dimensionalweusethetotal areaof thedecisionborders.)



Figure1: Left: Decisiontree.Theupperversionis a treeinducedby theID3 algorithmandthe
lower versionis a prunedtree,takenfrom [8, page10]. Middle: Backpropagation.Theupper
versionuse30 hiddennodesand26 500 training epochs;the lower used2 hiddennodesand
20 000epochs.Right: Nearestneighbor. Theupperversionis 1-nearestneighbor. The lower
versionuse10 neighbors.

As thesimplicity measure,we use ]_^ , where ^ denotesthetotal sizeof thedecisionbor-
ders.

We cannow defineameasurefunctionasfollows:

`
0

acb.a
a"dRe�agf `

1

h
1 iOjlk mon�p 1 q 1

2rOs�t ku f h
2 iOjlk mYv wyx{zKn�|7p 1

2rOs2t k q 1ua"dRe�a q ` 2 }

Herewe mainly considereddomainswith numericalfeatureswhereit is possibleto view
measurefunctionsgeometrically. However, the definition of measurefunctionssuitsnominal
or logical featuresjust aswell. Themeasuresthemselves,on theotherhand,mustsometimes
be defineddifferently. For instance,ratherthanbeingmeasuredby the sizeof decisionbor-
ders,simplicity canbemeasuredby theminimal descriptionlength[14] of thegeneralization.
Similarity, on theotherhand,canbemeasuredin termsof Hammingdistances.

4.3 Model evaluation and selection

Wehaveusedthewell-known Iris database[2]. For thesakeof presentation,weonly usedtwo
of thefour dimensions(petallengthandwidth). In onecase,whereinstancesof differentcate-
goriescoincide,we madea smallperturbation.(This wasmadein orderfor theID3 algorithm
to haveconsistentinput.)

We have madethefollowing choices:(i) We normalizeeachdimensionsothatall features
in thetrainingsethavea valuebetween0 and1. (ii) Thenormalizationconstant~ for the �2�4�5�



� N �� V W � ��� F �M� T 1� 1
2PKQ�S FZ� V W � ��� F �U� � W7� �!� T 1

2P�Q�S F� 1Z� V W � � measure

ID3 1.000 0.586 0 3.406 1.208

prunedtree 0.980 0.682 0.005 2.325 1.260

backprop,30 nodes 0.987 0.599 0.002 2.802 1.215

backprop,2 nodes 0.960 0.703 0.008 2.516 1.245

1-nearestneighbor 1.000 0.679 0 3.330 1.256

10-nearestneighbor 0.967 0.740 0.009 2.697 1.265

Table1: Subset-fit,similarity, andsimplicity, aswell astheresultingmeasurefor our choiceof
parameters.

functionis chosenas� 150. Theintuition behindthis is thatthereare150traininginstancesand
if theseinstanceswerespreadoutevenlyonagrid, thedistancebetweentwo instanceswouldbe
1@ � 150. Usingthis distanceasa unit distancegivesa reasonablesigmoid-likebehavior of the
02143:1 function.(iii) Thetotal lengthof thedecisionbordersis measuredin awindow containing
theboundingboxof thetrainingsetandasurrounding10%margin.

Weapplyourmeasureto thethreeclassesof algorithmsdiscussedabove. For eachclasswe
have two versions:onethat tendsto over-fit thetrainingset,andonethat includesa non-over-
fitting criterion.Theinducedgeneralizationsaredepictedin Figure1.

As our measureis parameterized,the choiceof parameterswill governwhich classifieris
“best”. Weonly giveoneexample,wheretheparametersaresetaccordingto somesimplerules
of thumbandwith a particularapplicationin mind. Theserulesarechosensothateachof the
threecomponentshasapproximatelythesameeffecton themeasure.Wechose* 0 � 1, * 1 � 1,
( 1 � ( 2 � 0 � 5 and * 2 � 0 � 025. The motivation is as follows: (i) We set * 0 � 1. (ii) A
reasonablechoiceis to givethesameweightto similarity andsubset-fit.Thesimilarity measure
lies somewherebetween-1 and1. Thus,if we set * 0 � 1, we shouldchoosehalf the weight
for thetwo componentsof thethe 0214351 function, i.e. * 1 � 1, ( 1 ��( 2 � 0 � 5. (iii) In orderto
find a suitablevalueof * 2, we comparea reasonabletolerancein subset-fitwith a reasonable
variationin length.In thisapplication,thevariancein thesubset-fitmeasureshouldbeexpected
to besmall,saythata reasonablealgorithmshouldhavea subset-fitmeasurebetween0.95and
1. To determinea reasonablevariationin length,we notethat the total lengthof two vertical
linesseparatingthe threeclasseswould be2 � 4. Themajorpartof thedecisionborderspasses
through“uninterestingareas”.Thelengthof thebordersin theseareasdominatesthesimplicity
measure,this indicatesthat we shouldbe quite tolerantto long borders;saythat we expecta
reasonablealgorithmto have borderlengthbetween2 and4. Hence,a varianceof 0.05 for
subset-fitshouldmatchavarianceof 2 for simplicity. Thisgives * 2 � 0 � 025.Althoughwehere
try to arguethat thevaluesof * 0- * 2 arereasonable,we do not claim to prove this. Ideally, the
valuesshouldbe determinedthroughcarefulanalysisof the characteristicsof the application
at hand.In Table1, we give thethreetermssubset-fit,similarity, andsimplicity, aswell asthe
resultingmeasurefor ourchoiceof parameters.

4.4 Observations fr om the experiment

Our measureis algorithm-independent,yet the table indicatesthat it capturesquite well the
propertiesthatalgorithmdesignersstrivefor whenapplyingheuristicsto find apropertrade-off
betweenlearningthetrainingsetandover-fitting. In thisparticularcase,the10-nearestneighbor



algorithmgavethehighestscore.Now, canwedraw theconclusionthatit is thebestalgorithm?
No, of coursenot. But giventhecomputationalproblemdefinedby themeasurefunctionand
the training set, it provides the bestsolution of the six algorithms. For other applications,
correspondingto othermeasurefunctions(andtrainingsets),we expectdifferentresults.The
mainpointhereis thatby usingmeasurefunctionsratherthanjustcross-validation,weareable
to make moresophisticatedevaluations,taking into accountotherimportantaspectsthanjust
classificationaccuracy ona few instances.

However, moreinterestinglythe experimentindicatesthat, althoughthe threetypesof al-
gorithmstestedcomefrom differenttraditions,thedifferencebetweentheir generalizationsis
smallerthanthedifferencebetweenthegeneralizationscomputedby differentversionsof the
samealgorithm. This providesa goodillustrationof the fact that it is at leastas importantto
spendcomputationalpoweron tuning onealgorithm as it is to spendthe poweron choosing
betweendifferenttypesof algorithms.Thus,oneshouldspendtimeto try to find theappropriate
degreeof pruning in decisiontreealgorithms,numberof nodesin a neuralnetwork, or ( in
( -nearestneighbor.

It is worth mentioningthatby addingonemorenodeto thedecisiontreeinducedby ID3,
namelya nodethat “cuts off ” the thin vertical segmentin the picture,the measurewould in-
creasesignificantly, from 1.208to 1.242. The resultingpartition would also“look” simpler,
althoughthetreewouldbelargerandhencemore“complex”.

5 Measure-basedalgorithms

The conceptof measurefunctionsimmediatelysuggestsnew classesof generalizationalgo-
rithms.As anexample,considerthefollowing approach:Startwith someinitial decisionspace
andmake incrementalchanges.usingthemeasurefunctionasevaluationcriterion. In this way,
we canimplementanoptimizationstrategy, suchashill climbing. A majoradvantagewith this
kind of algorithmsis thatby choosinganappropriatemeasurefunctionwecanexplicitly specify
thegeneralizationbehavior we arestriving for.

To illustratethis, we have implementeda very simplemeasure-basedalgorithmthat,given
adatasetanda measurefunction,searchesfor agoodpartitioningof theinstancespace:

1. Let theentireuniversebeclassifiedasoneof thecategories.

2. Pick at randomsomegeometricalobjectwhich is placedin thespaceand“painted” by a
randomlychosencategory. Thisgivesanew generalization.

3. Computethemeasurefor thenew generalization.If themeasurewasimprovedover the
previousone,keepthenew generalization,otherwiseretainthepreviousone.

4. Go backto 2. Stopwhenno improvementhasbeenmadeduringseveraliterations.

5. Redothewholeprocessanumberof timesandkeeptheresultwith thebestmeasure.

In Step1, we could have usedsomeotheralgorithmto generatethe initial partitioning. This
would probablyspeedup theprocess.Thelaststepis not necessary;it is just a simpleway to
avoid endingup at a badlocal maximum.In our exampleimplementation,we let therandomly
chosengeometricalobjectsbe just rectanglesof varying size, either axis-parallelor rotated
45 degrees.To make the algorithmrun faster, somesimpleheuristicsis applied;after a new
geometricalobjecthasbeensuccessfullyadded,the algorithmtries addingsimilar objectsat
approximatelythesameposition.



Figure2: Thegeneralizationproducedby asimplemeasure-basedalgorithm.

Althoughtheemployedmeasure(i.e., theonediscussedabove) is quiteunsophisticatedand
themethodfor generatingcandidategeneralizationsis very rough,this algorithmquickly finds
a reasonablegeneralizationfor the Iris dataset(seeFigure2). With respectto themeasure,it
alsogivesa “better” generalizationthanthealgorithmsevaluatedabove. Theoneshown in the
figure getsthe value1.288(the four termsare0.973,0.731,0.007,and1.891). With a more
sophisticatedalgorithm,a highervaluewouldhavebeenachieved.

It is importantto notethatmeasure-basedgeneralizationalgorithmsof thekind described
herearevery generalin the sensethat by choosingan appropriatemeasurefunction, we can
achievealmostany generalizationbehavior. In principle,we areableto imitatethebehavior of
known algorithms,andmoreinterestingly, imitate behavior of unknown algorithms. Thereis
muchmoreto besaidaboutmeasure-basedalgorithms,but this is not theplacefor describing
thebehavior of particularalgorithmsin detail.Full evaluationof measure-basedalgorithmswill
bepresentedelsewhere.Wehave just illustratedthepossibilitywith this example.

6 Concluding remarks

6.1 Measure functions vs.cross-validation

Measuresfunctionsandstatisticalmethods,suchascross-validation,arecomplementary. They
canbeusedseparatelyor in combination.

Whenusingcross-validation,an algorithmis assumedto give high accuracy on the entire
universeif it shows goodstatisticalbehavior on availabledata. In this way, cross-validation
performsa quantitativeanalysis. The resultof suchanalysisis often sound,but it is easyto
generatecounter-exampleswherecross-validation will fail. Hence,cross-validation in itself
givesno guaranteethattheoutputof thechosenalgorithmis ”sound”.

On theotherhand,usingameasurefunctionwecanguaranteecertainqualitativeproperties
of theproducedgeneralization(s).Therefore,wehave a mechanismto ensurethattheoutcome
of analgorithmwill neverbedisastrous.

Cross-validationandmeasurefunctionscanbecombinedin severalways. For example,in
algorithmselectionwe canapply both methodsandpick the algorithmwhich shows the best
combinedquality.



6.2
�

Final comments

The applicationand selectionof classificationalgorithmsis today often guidedby rules of
thumb,educatedguesses,andhearsay. At best,the problemto be solved is analyzedand if
necessarya problem-specificalgorithmis constructed.However, the mostcommonapproach
is to comparea numberof algorithms,e.g.,by meansof cross-validationandselectthe best
onefor the task. Although the latter approachesareon the right track, we believe that there
is a strongneedfor morerobustmethodsfor telling whatclassifiershouldbeappliedto which
problem. We proposesolving a problemby establishinga measurefunction suitablefor the
problemat handand thenchoosingan algorithmthat aims to implementthis measure.The
differencebetweenchoosinga suitablealgorithmandchoosinga suitablemeasuremay seem
subtle,but we believe it is important—anabstractionfrom ‘ad hoc’ solutionsto thoroughly
motivatedapplicationsof suitableclassifiers.

As we have seen,theconceptof measurefunctionssuggestsnew classesof generalization
algorithms. One suchclassconsistsof algorithmsthat incrementallysearchesthe spaceof
generalizationsin orderto find onethatmaximizesthemeasurefunction.Weexpectthatfuture
work alongthis line will be very fruitful. Anotherfuture line of researchis to investigatethe
possibilitiesof automaticallydetermininganappropriatemeasurefunctiongiventheavailable
dataset,for instance,by computingappropriatevaluesfor theparametersof a givenmeasure
function.
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