PREPRINT. Proc. STOC 2000

Tight(er) Worst-case Bounds on Dynamic Searching and
Priority Queues

Arne Andersson
Computing Science Department
Information Technology, Uppsala University
Box 311, SE - 751 05 Uppsala, Sweeden

arnea@csd.uu.se
http://www.csd.uu.se/~arnea

ABSTRACT

We introduce a novel technique for converting static poly-
nomial space search structures for ordered sets into fully-
dynamic linear space data structures. Based on this we
present optimal bounds for dynamic integer searching, in-
cluding finger search, and exponentially improved bounds
for priority queues.

1. INTRODUCTION
New technical contributions

In this article, we study the worst-case complexity of some
of the most basic problems in data structures: dynamic in-
teger searching, including finger search, and priority queues.
For these problems, we improve the worst-case complexity
dramatically into optimal or near-optimal.

The new results include many technical details; some are
novel while others are just hard work. For increased read-
ability, we concentrate our technical presentation on the pri-
ority queues, since we feel that these require new and fruitful
ideas that can be understood without getting into too many
technical details.

On a high level, the general idea on how to get a good worst-
case behavior in a dynamic data structure is to ensure that
the maintained invariants are “locally” defined. A change at
one place should only have local effects. For the searching
data structure, a redefinition of exponential search trees [2],
combined with much care and bookkeeping, gives the desired
de-amortization. However, for priority queues the case is
much harder. Here, the type of searching, which is really
a batched searching, needs some novel, and very different,
techniques.

Short background

At STOC’90, Fredman and Willard broke the comparison-
based lower bounds for integer sorting using the features of

Mikkel Thorup
AT&T Labs—Research
Shannon Laboratory
180 Park Avenue, Florham Park
NJ 07932, USA

mthorup@research.att.edu

a RAM modeling what we program in imperative program-
ming languages such as C [8]. Their main result was actually
a O(log n/log log n) bound for deterministic searching in lin-
ear space. They asked the fundamental question: how fast
can we search [integers on a RAM]? Since then, much effort
has been spent on finding the inherent complexity of fun-
damental searching and sorting problems. Although much
progress have been done, big gaps have remained for worst-
case complexity with linear or just polynomial space bound.

New Results

Searhing.

In a recent break-through [4], Beame and Fich gave
tight bounds for static search structures with polyno-
mial space, showing matching upper and lower bounds of
O(y/logn/loglogn). Based on a general reduction of An-
dersson [2], called exponential search trees, they obtained
a fully dynamic deterministic search structure supporting
search, insert, and delete in O(4/logn/loglogn) amortized
time.

In this paper, we improve the exponential search trees to
give worst-case bounds. As a result, we provide a linear
space data structure supporting search, insert, and delete in
O(+/log n/ loglog n) worst-case time per operation, which is
optimal even for randomized algorithms. The previous best
deterministic worst-case bound for fully-dynamic searching
was O(log n/loglogn) due to Willard [15, Lemma 2]. With
randomized algorithms, the best expected time bound for
linear or polynomial space was O(y/logn) [8].

Our reduction also imply the following worst-case linear
space trade-offs between the number n, the word-length
w, and the maximal key U < 2¥: O(min{loglogn +
logn/logw, loglogn - Tlgﬂ%%})- The last bound should
be compared with van Emde Boas’ bound of O(loglog U)
[13; 14] that requires randomization (hashing) in order to
achieve linear space [9].

Finger seach.

By finger search we mean that we can have a “finger” point-
ing at a stored key = when searching for a key y. Here a
finger is just a reference returned to the user when z is in-
serted or searched for. The goal is to do better if the number
q of stored keys between x and y is small. Also, we have fin-
ger updates, where for deletions, one has a finger on the key
to be deleted, and for insertions, one has a finger to the key

after which the new key is to be inserted.

In the comparison-based model of computation Dietz and
Raman [7] have provided optimal bounds, supporting finger
searches in O(log q) time while supporting finger updates in
constant time. On the pointer machine, the exact complex-
ity is not settled yet. Brodal [5] has shown how to support
finger searches in O(log q) time and finger inserts in constant
time, but his finger deletes takes O(log™ n) time.

In this paper we present optimal bounds on the RAM;
namely O(+/log g/ loglog q) for finger search with constant
finger updates. Also, we present the first finger search
bounds that are efficient in terms of the absolute distance
|y — x| between x and y.

Priority queues.

Thorup [12] has generalized the above mentioned exponen-
tial search trees to convert his static multi-search struc-
tures into priority queues, yielding a linear space priority
queue supporting find-min in constant time, and insert and
delete in O((loglog n)?) amortized time per operation. Here,
again we improve the conversion so as to yield a worst-
case bound of O((loglogn)?) time per insert or delete. The
previous best worst-case bound for polynomial space was
O(logn/loglogn) [15], even if we ignore general deletions
and only support insert and extract-min.

For randomized linear space algorithms, the best bound is
O(log log n) expected time per insert or extract-min, but for
general deletions, the O(loglogn) bound is only expected
amortized [11].

Model of computation.

Our algorithms runs on a RAM, which models what we pro-
gram in imperative programming languages such as C. The
memory is divided into addressable words of length w. Ad-
dresses are themselves contained in words, so w > logn.
Moreover, we have a constant number of registers, each with
capacity for one word. The basic instructions are: condi-
tional jumps, direct and indirect addressing for loading and
storing words in registers, and some computational instruc-
tions, such as comparisons, addition, and multiplication, for
manipulating words in registers. The space complexity is
the maximal memory address used, and the time complex-
ity is the number of instructions performed. All keys are
assumed to be integers represented as binary strings, each
fitting in one word. One important feature of the RAM is
that it can use keys to compute addresses, as opposed to
comparison-based models of computation. This feature is
commonly used in practice, for example in bucket or radix
sort.

The restriction to integers is not as severe as it may seem.
Floating point numbers, for example, are ordered correctly,
simply by perceiving their bit-string representation as repre-
senting an integer. Another example of the power of integer
ordering is fractions of two one-word integers. Here we get
the right ordering if we carry out the division with floating
point numbers with 2w bits of precession, and then just per-
ceive the result as an integer. The above examples illustrate
how integer ordering can capture many seemingly different
orderings that we would naturally be interested in.
Fredman and Willard [8] have asked how quickly we can
search on a RAM if all the computational instructions are
ACO operations. A computational instruction is an AC°
operation if it is computable by an w®M_sized constant

depth circuit with O(w) input and output bits. In the cir-
cuit we may have negation, and-gates, and or-gates with
unbounded fan-in. Addition, shift, and bit-wise boolean op-
erations are all AC® operations. On the other hand, multi-
plication is not. As it turns out, our O((log log n)?) priority
queue uses only standard AC® operations. However, our
O(+/logn/loglogn) search structure is strongly based on
multiplication. So far, even if we allow amortization and
randomization, no AC? search structure has been presented
using polynomial space and o(logn) time, not even for the
static case. Without requirements of polynomial space, An-
dersson [1] has presented a deterministic worst-case bound
of O(v/Iogn). In this paper, we will present a linear space
worst-case AC® bound of O((logn)*/*+°™M) | thus cracking
the O(log n) bound even in this restricted case.

The exactreductions

Our main results are some general reductions, converting
static data structures into dynamic ones. For searching, our
reduction is captured by the following theorem:

THEOREM 1. Suppose a static search structure on d in-
teger keys can be constructed in O(d*'), k > 2, time and
space so that it supports searches in S(d) time. We can then
construct a dynamic linear space search structure that with
n integer keys supports insert, delete, and searches in time
T(n) where T(n) < T(n*~Y*) + O(S(n)). The reduction
itself uses only standard AC® operations.

COROLLARY 2. There s a fully-dynamic deterministic
linear space search structure supporting insert, delete, and
searches in worst-case time

v/logn/loglogn

O | min{ loglogn - _loglogU

where w is the word length, and U < 2“. If we restrict our-
selves to standard AC® operations, we can support all oper-
ations in O((log n)®/41°W)) worst-case time per operation.

PROOF. The first two bounds follows from [4],
where Beame and Fich show that for = integer
keys, in d°?) time and space, a static deterministic
O(min{+/log d/loglog d,loglog U/ log log log U})-time
search structure can be constructed.

The third bound is based on static fusion trees supporting

searches in time O(ll—gg% +1) [2; 8].

For the AC® bound, we first need to combine a couple of
results to get a static data structure. From Andersson’s
packed B-trees [1], it follows that if in polynomial time
and space, we build a static AC? dictionary with member-
ship queries in time ¢, then in polynomial time and space,
we can build a static search structure with operation time
O(min;{it + logn/i}). In addition, Brodnik et.al. [6] have
shown that such a static dictionary, using only standard AC°
operations, can be built with membership queries in time
t = O((log n)*/*T°(M)). We get the desired static search time
by setting i = O((logn)'/*+°(")), and the dynamic worst-
case time follows from Theorem 1. [

A finger search version of Theorem 1 leads us to the following
finger search version of Corollary 2:

THEOREM 3. There is a fully-dynamic deterministic lin-
ear space search structure that supports finger updates in
constant time, and given a finger to a stored key x, searches
a key y > in time

V1ogq/loglogq

. log1 —
O | min{ loglogg- @ZF%
loglog g + o5

where q is the number of stored keys between x and y. If we

restrict ourselves to AC® operations, we still get a bound of
O((log g)*/*+°®).

For priority queues, we prove our next main reduction:

THEOREM 4. Given d keys, suppose a static structure can
be constructed in O(dk_l), k > 3, time and space, supporting
any batch of d searches in time O(d - S(d)). We can then
construct a dynamic priority queue that with n keys supports
find-min in constant time and insert and delete in T'(n) time
where T(n) < T(n'~Y*) + O(S(n)). The reduction itself
uses only standard AC® operations

COROLLARY 5. There is a dynamic deterministic linear
space priority queue supporting find-min in constant time
and insert and delete in worst-case time O((loglogn)?)

PROOF. Thorup [11; 12] has shown that given a set X of
n keys, a static data structure can be constructed in n®(%)
time and space so that any batch of n searches in X can be
performed in time O(nloglogn). Now the result follows by
application of Theorem 4. [

Contents

In section 2, we briefly review the exponential search trees
as presented in [2]. In section 3, we present a worst-case
version of exponential search trees. The main step here is
the discovery of an alternative definition of the exponential
search trees which is locally stable, Subsequently, in section
4, we improve the techniques from [12] to give worst-case
bounds for priority queues. This is the main technical chal-
lenge in the paper and involves a system of “cascades” for
adaptively emptying buffers in an exponential search tree.
Finally, in Section 5, we sketch the data structure for finger
searching. In this extended abstract, we will skip many tech-
nical details, and focus on communicating the main ideas.

2. EXPONENTIAL SEARCH TREES

We will now briefly review exponential search trees, con-
verting static data structures into fully-dynamic amortized
search structures. The basic definitions and concepts of the
amortized construction will be assumed for the more tech-
nical worst-case construction.

First, by searching a key y in a key set X we mean finding
the largest key x < y in X. An ezponential search tree is
a leaf-oriented multiway search tree where the degrees of
the nodes decrease doubly-exponentially down the tree. By
leaf-oriented, we mean that all keys are stored in the leaves
of the tree. Moreover, with each internal node, we store a
min-key for navigation: if a key arrives at a node, a local
search among the min-keys of the children determines which
child it belongs under.

In our exponential search trees, the local search at each
internal node is performed using a static search structure,

called an S-structure, at each internal node. We assume that
an S-structure over d keys can be built in O(d*) time and
space and that it supports searches in S(d) time. We define
an exponential search tree over n keys recursively:

e The root has degree ©(n'/*).

e The min-keys of the children of the root are stored in
a local S-structure with the properties stated above.

e The subtrees are exponential search trees over
O(n'Y/*) keys.

It immediately follows that searches are supported in time
T(n)=0 (S (O(nl/k))) +T (O(nl’l/k)), which is essen-
tially the time bound we are aiming at.

An exponential search tree over n keys takes linear space.
The space of the S-structure at a node of degree d is
0] (dk’l), and the total space C(n) is essentially given by

C(n) = O((nl/k)k_1)+n1/k _C(nl—l/k)
=C(n) = O(n).

Since O(d* ') bounds not only the space but also the con-
struction time for the S-structure at a degree d node, the
same recursive argument gives that we can construct an ex-
ponential search tree over n keys in linear time.

Below, by the weight, |t|, of a (sub-)tree t we mean the
number of leaves in ¢. By the weight, |v|, of a node v, we
mean the weight of the tree rooted at v.

Balance is maintained in a standard fashion by global and
partial rebuilding. When a subtree gets too heavy, by a
factor of 2, we split it in two, and if it gets too light, by
a factor of 2, we merge it with its neighbor. Constructing
a new subtree rooted at the node ¢ takes O(|t|) time. In
addition, we need to update the S-structure at ¢’s parent v,
in order to reflect the adding or removing of a key v’s list of
child keys. Since v has ©(|v|*/*) children, the construction
time for v’s S-structure is O((|v|*/*)*~!) = O(|v|*~'/*). By
definition, this time is O(|t|). We conclude that we can
reconstruct the subtrees and update the parent’s S-structure
in time linear in the weight of the subtrees.

Exceeding the size constraints requires that a constant frac-
tion of the keys in a subtree have been inserted and deleted
since the subtree was constructed with the right size. Thus,
the reconstruction cost is an amortized constant per key
inserted or deleted from a tree. Since the depth of an expo-
nential search tree is O(log log n), the update cost, excluding
the search cost for finding out were to update, is O(log log n)
amortized time.

This completes our sketchy description of Andersson’s ex-
ponential search trees [2].

3. WORST-CASE

In order to get from the amortized bounds above to worst-
case bounds, we need a new type of data structure. Instead
of a data structure where we occasionally rebuild entire sub-
trees, we need something more in the style of a regular B-
tree, where balance is maintained by locally merging and
splitting nodes. By locally we mean that the merging and
splitting is done just by merging and splitting the children
sequences. This type of data structure is for example used
by Willard [15] to obtain a worst-case version of fusion trees.
The problem with our definition above is that the criteria

for when subtrees are too large or too small are not locally
defined. If two subtrees are merged, the resulting subtree is
larger, and according to our recursive definition, this may
imply that all of the children simultaneously become too
small, so they have to be merged, etc.

Furthermore, since we need to rebuild the S-structure of a
merged or split node, merging and splitting has to be sched-
uled carefully. Even changing the degree of a node by 1,
which happens at the parent of merged or split nodes, re-
quires an expensive update in the S-structure. (In Willard’s
de-amortization of fusion trees [15], an update in a parent
was done by an update in an atomic heap, wish only takes
constant time.)

In summary, in order to obtain worst-case bounds, we need
(i) essential changes in the definition of exponential search
trees, making the definition local in the sense that merges
or splits do neither affect the parent nor the children of the
involved nodes; and (ii) new maintenance algorithms.

Thenew exponentialseach trees.
We will use the following bottom-up definition, where the
exact constants depend on algorithmic details:

DEFINITION 6. In an exponential search tree all leaves
are on the same depth, and we define the height of a node
to be the unique distance from the node to the leaves de-
scending from it. For a mon-root node v at height i the
number of leaves below v is between n;/10 and n;, where
ni = a"VYPT gnd a = 60" = O(1). If the root has
height h, we require np > n > np—_1, but it is not necessary
that n > np/10.

Note for the n; that n;—1 = n;_l/k for 4 > 0, as in the
previous recursive definition. Also, our degrees are asymp-
totically preserved by the weight requirements:

OBSERVATION 7. The degree of a node on level i > 0 can
vary by a factor 100 between (n;/10)/n;—1 = n:/k/lo and
ni/(ni—1/10) = 10n)/¥.

Since the degree of a node is G)(nl1 / k) we will sometimes use
the notation d; = n;/k.

As desired, we have now achieved that merges or splits do
neither affect the weight requirements at the parent nor at
the children of the involved nodes.

As for the original definition, the following can be shown:

LEMMA 8. Ezponential search trees use linear space, and
the search time for an n key erponential search tree is
bounded by T(n) < T(n'~'/*) + O(S(n)).

Maintainingbalance.

We let the split and merge operations, including rebuilding
of S-structures, be run as background processes. At each
update, we follow a search path down the tree of length
O(loglogn). At each node on the search path, we per-
form a local update step. For each local update step, we
spend constant time progressing merge and split processes.
Thereby the worst-case restructuring cost per update be-
comes O(loglogn). Below we present a sketch of the basic
dynamics. It should be noted that we are actually slow-
ing down the merges and splits so as to make sure that the
S-structure at the parent can be kept up to date.

General scheduling principle. We allocate O(n;) time
for a merge or split of siblings on level 7. This will be
divided over n; /16 constant time operations, of which
we do one for every local update step at the involved
siblings. With a good scheduling, which is too compli-
cated for this extended abstract, this suffices to pre-
serve the weights between n;/10 and n;, as required
by Definition 6.

Rebuilding S-structures. The S-structure at each node
is kept up to date by an ongoing cyclic reconstruction.
The children being merged and split are causing the
need for reconstruction. In a node with degree d, a
reconstruction period starts by scanning the current
children for their min-keys in O(d) time, then a new
S-structure for these keys is constructed in O(d* 1)
time, the old S-structure is replaced with the new one
in constant time, and finally, the old S-structure is
destructed in O(d*~') time. By Observation 7, if the

node is on level ¢, d < 10nq}/k, which gives a total

of O((n;/k)k_l) = O(n;—1) time. We can therefore
complete a cycle at a level ¢ node over m;_1/48 local
update steps, spending constant time per step. This
bound will be used in the description of merge and
split below.

Merge and split. Consider a merge of two neighboring
siblings v and w on level ¢ with parent u. In con-
nection with the local update step at v or w triggering
the merge, we remove the min-key from w so that it is
not there the next time we reconstruct the S-structure
at u. The new node vw takes over the min-key from
v, the children lists of v and w are concatenated, and
the construction of an S-structure for vw is started.
Afterwards, we just wait for the n;/16 local updates
to v or w before we declare their merge complete, so
as complete on schedule.

An S-structure at u without w’s removed min-key will
be completed within the next 2 n;/48 < n;/16 local
update steps at uw. Since any update below v or w
has come through u, such an S-structure will complete
before our merge of v and w is declared complete. Also
the S-structure for the new merged node, will complete
within n;_1/48 < n;/16 local update steps.

During the merge, we need to keep a copy of w’s min-
key, for if the S-structure at u finishes before the S-
structure for the merged node vw, then keys arriving
to vw have to be distributed between the current S-
structures for v and w.

Splitting of a node v is very similar, but with the
added complication that we first scan the min-keys and
weights at the children to find a min-key that splits the
key below v in two approximately equally sized parts.

Above we have ignored some important scheduling prob-
lems. In particular, if a node v starts getting light, we
would like to merge it with a neighbor, but both neighbors
may themselves currently be engaged in merging or splitting
processes. In this situation, to avoid that v gets too light,
as we delete keys below v, we need to help the neighbors
finish their processes, and further request them to not en-
gage in other processes without v. However, nodes in merge

and split processes may receive such requests from neigh-
bors on either side, so we need to worry about fairness. All
these scheduling issues are postponed to the journal version
of this extended abstract. This completes our sketchy proof
of Theorem 1.

4. PRIORITY QUEUES

In this section, we de-amortize the exponential search tree
based priority queues of Thorup [12]. This de-amortization
contains the most intriguing technical problems addressed in
this paper. To phrase the problem, we first have to briefly re-
view the O((loglog n)?) amortized priority queue from [12].
The Q(4/logn/loglogn) lower bound of Beame and Fich
[4] for searching, addresses the problem of placing one key
among n keys. However, in [12] it is shown that we can
preprocess n keys for multi-searching so that we can place
n other keys between them in O(loglogn) time per key.
We use a multi-search structure at each node in the expo-
nential search tree. Therefore, we cannot just take update
keys directly down to the leaves. At a node with degree d,
we need to accumulate ©(d) update keys in a buffer before
we send them through the multi-search structure so as to
distribute them between the children. As a result, when an
update key finally reaches a leaf, we have spent a total of
O((loglog n)?) time on it.

A special case occurs along the tree’s leftmost path. For
a priority queue, we need to have the minimum key avail-
able at any time. Therefore the smallest keys are not kept
in buffers. For each node v on the leftmost path, we avoid
putting update keys belonging to the leftmost child in the
buffer. When an update key arrives at v, we check in con-
stant time if it can go to the leftmost child of v. If so, it
goes there immediately. Otherwise, it is put in the buffer at
v,

Turning the ideas above into a priority queue with
O((loglogn)?) amortized cost was non-trivial. The worst-
case solution presented here is quite different in flavor, and
the new definition of exponential search trees allows for dif-
ferent techniques to be used. The main challenge in adding
buffers to our worst-case exponential search trees is that
merges of nodes can cause buffers to overflow, and if they
overflow, there is no simple way of getting rid of the over-
flowing keys. A single update can cause many buffers to
overflow. Furthermore, if we just try to send overflowing
keys down to the children, then the children’s buffers may
start overflowing etc. We will resolve this problem by intro-
ducing a novel cascading technique.

Preliminaryinvestigations.

Our goal is to mimic the construction from the previous
section. First, we make some preliminary definitions and
observations bringing the buffer system into the right for-
mat.

We specify that a buffer at level ¢ may contain at most d; =
nll /k update keys. Each buffer has three rooms: an input
room, a multi-search room, and an output room. The multi-
search room contains an S-structure capable of placing d;/3
keys between the children in O(S(d;)) time. In each room
we have capacity for d;/3 update keys. In a basic ezchange
a key arrives in the input room. Then we do O(S(d;)) work
in the multi-search room, and finally, we pull out a key from
the output room. The work in the multi-search room is

scheduled so that d;/3 key exchanges get a batch of d;/3
keys through the S-structure. Hence, we have a period of
d;/3 exchanges, starting with the input room empty, a new
batch of d;/3 keys in the multi-search room, and the output
room full. After d;/3 key ex changes, the input room is full,
the multi-search is completed, and the output room empty.
Then, in constant time, the input keys are moved to the
multi-search room as a new batch while the processed batch
is moved to the output room.

When a key is inserted or deleted, it is first sent as an up-
date key to the root. When an update key arrives at a
node, it is exchanged in the local buffer. For the update
key coming out of the buffer we know which child it be-
longs under, and it is then sent to that child. In this way,
an update will cause a chain of exchanges on some “search
path” down the tree, typically ending with some update
key arriving at a leaf where it is inserted or deleted. Each
time such a chain passes a node at level i, we have a lo-
cal update step spending O(S(d;)) time on processing the
node’s buffer. Hence, the entire cost of the update satisfies
T(n) = T(n'~*) + O(S(n)), as stated in Theorem 4.

For merge, split, and cyclic reconstruction of S-structures,
we wish to use the same scheduling technique as for our
worst-case search structure in the previous section. An obvi-
ous concern is that we cannot upgrade an S-structure while
some keys are using it for a multi-search. Thus, when done
with a new S-structure, we may have to wait for d;/3 ex-
changes to finish a batch of keys in the buffer’s multi-search
room before we can actually replace the old S-structure in
the buffer. Also, it takes another d;/3 exchanges before we
start getting keys in the output room based on the new S-
structure. Thus, for a merge or split on level i, it now takes
an extra 2d;11/3 local update steps for both the S-structure
and the buffer at the parent to integrate a removed or in-
serted child min-key. However, for k > 3,

1/k 1-2/k

diy1 =ny =ng/n; Sni/n}/:s < n;/60

which implies that the number of extra steps is small com-
pared to the length of a restructuring period (cf. Section
3). Hence, waiting for the buffers do not cause any essential
changes in our bookkeeping.

Splits are implemented as described in the last section, but
for merges we run into problems because the merged buffer
may contain too many keys.

Main challenge: overflowing buffers

When two nodes are merged, their combined buffer may
become too large for the buffer capacity at a single node, and
we have a buffer overflow. Unfortunately, any local update
step can be part of a merge creating a buffer overflow, so
when an update brings us down the tree, we may create an
overflow at every single level. From a worst-case perspective,
it is very tricky to get rid of these buffer overflows, for if we
try to send an overflowing update key further down the tree,
then it may again lead to a chain of overflows.

The most obvious solution to this problem might seem to
be to redefine the buffer capacities so that merges do not
cause buffer overflows. For example, we could let the buffer
capacity be linear in the actual degree of a node. Then,
when merging two nodes, the degrees and buffer capacities
would grow together. However, the overflow problem still
pops up: if we merge two nodes, the parent’s buffer may
suddenly become too large.

Another natural idea would be to let the buffer size at a
node v be bounded by a function f of its weight |v| with
f(|v]) = ©(Jv|*/*). However, then when merging two nodes
we could get a buffer overflow because 2f(|v|) > f(2|v])-
Returning to our definition of the capacity as d;, when two
nodes get merged, we may get a buffer overflow of d; update
keys. Our merge is not complete before we have gotten rid
of this overflow, and for our accounting to work, this has to
happen within the next n;/16 local update steps.

Cascades.

The emptying of buffers are made as carefully scheduled
background processes, called cascades. From a local per-
spective, decrementing a buffer means sending one key down
to a child. This, in turn, will have the effect that the buffer
of that child is incremented. To avoid building up large
buffers, we use essentially the following local strategy: each
time a node receives one update key from above, it sends
two keys further down. In this way, sending a key down to
a child generates a cascade where each involved node decre-
ments its buffer. The idea is that a node which is being
merged performs a number of cascades in order to decrease
its buffer size. In order for this to work, we need to ensure
(i) that a node gets time to get rid of two keys before it
receives another key from above, and (ii) that the cascades
are fast enough to remove all buffer overflow before a merge
is completed.

Implementingpnecascade.

A cascade is done during a depth-first-style traversal of the
tree. Each cascade has a root, and a root v has a cascade
pointer p(v), pointing at the current position of the traver-
sal. Each involved node has a counter, which is 0, 1, or
2. Informally, the counter represents how many keys have
been sent down from the node during the current cascade
in which the node is involved. When a node w is not the
root of a cascade, p(u) is nil, and when u is not involved in
a cascade, its counter is 0.

When the cascade starts at v, p(v) = v while v’s counter
is 0. A cascade step at v is performed in the following way.
Let u be the node pointed at by p(v). We have two cases:

Casel. «’scounterisOor 1.

u has not yet sent down two keys. First we increment the
counter. If the buffer’s output room is non-empty, we take
one key from the buffer, send the key to the proper child
and let p(v) point at that child. In this way we proceed
downwards. (If the output buffer was empty, we just let
p(v) remain pointing at w.)

Case2. v's counteris 2.
In this case, the cascade is done at u. We set the counter
to 0 and let p(v) point at u’s parent, in this way backing up
the tree. An exception occurs when v = v, in which case
the entire cascade is done.

LEMMA 9. Assume that only one cascade takes place at
a time and consider a cascade made at node v at height .
Then, during the cascade, at most 3 - 2° update keys have
passed v, each one causing a merge step at v.

PRrROOF. From the description of a cascade step, it follows
that the cascade performs a traversal of some binary part

of the tree in a depth-first manner. From each node, the
cascade proceeds downwards at most two times, after which
the cascade backs up the tree. (The two steps down the tree
may be to the same child, so it is not a strict depth-first
traversal.)

Since each node in the cascade sends down at most two keys,
the total number of visited nodes (including duplicate visits)
is at most 2°. At each node we make three cascade steps,
hence the cascade at v is finished within 3 - 2% steps. [

Asyndironouswin-win.

Next, we consider the situation with asynchronous ongo-
ing cascades. Assume that when performing a cascade step
rooted at v, we find that p(v) points at the root u of some
other ongoing cascade. Then, a win-win-takeover will take
place. We just set p(v) < p(u) and set p(u) < nil, in this
way marking that u is no longer the root of any cascade. We
then perform one cascade step at the (new) node pointed at
by p(v).

It turns out that this takeover is beneficial for both involved
cascades, and we get the following lemma.

LEMMA 10. Between the occasion when a node v becomes
the root of a cascade, and the next occasion when v is not
part of a cascade (its own cascade or a takeover), at most
3 - 2" update keys have passed v (causing the same number
of merge steps).

PROOF. We have three cases:

Casel, v doesnottake partin anywin-win takeover.
The lemma follows immediately from Lemma 9.

Case2,v'scascades takenoverfromanodew above.
Compared with the situation when v is allowed to finish its
own cascade, the win-win-takeover will have the following
effect on v:

e v will receive one key instead of zero. This does not
affect the number of steps to finish the cascade. Since
v can get rid of 2 keys during the cascade, the cascade
still serves it purpose.

e Since w is an ancestor of v, each update passing v will
also pass w. Hence, the takeover can only increase the
frequency of the cascade steps.

Case3, v takesover a cascadet nodew.
Then, the a part of the cascade done with root u is a direct
saving from the perspective of v. [

LEMMA 11. Let v be a node at height i whose buffer con-
tains more than d; keys. Then, after v has taken part in a
cascade, either as a root or not, v’s buffer size has decreased
by at least one.

PrOOF. Since v’s buffer contains more than d; keys, there
will be enough keys in the output part of the buffer so that
two keys can be sent down by the cascade. On the other
hand, at most one key is added from above by the cascade.
Non-cascade updates occurring during the cascade will leave
the buffer size unchanged. [

From the description above, we note that a cascade step
takes O(S(n;)) time.

Finally, we show that the cascading technique has the de-
sired effect of keeping buffers small enough.

LEMMA 12. After a merge is completed at a node v at
height i, v’s buffer will have size at most d;.

ProoF. The total buffer size of the two merged nodes is
at most 2d;, so since the merge takes n;/16 steps, we need
to get rid of at most d; keys during n;/16 merge steps.
From Lemmas 10 and 11 we know that the repeated cascad-
ing gets rid of one key for every 3 - 2'th merge step. Hence
we need to show that n;/(16-d;) > 3-2°. This can be shown
by calculations beyond this extended abstract. [

Clearing the leftmost path

In order to support find-min in constant time, we need to
make sure that no buffer on the leftmost path contains an
update key belonging to its leftmost child. Therefore, we
make the following simple modification of handling update
keys that arrive during insert, delete, or cascade along the
leftmost path. When an update key arrives at a node on the
path, we first check by one comparison if it belongs to the
leftmost child. If so, we send it down directly.

The property of having no keys from the leftmost path in
buffers is immediately maintained during a split. Problems
arises when a node v on the path is merged with its neighbor
w. Now, keys in the buffer of the parent v will be illegal if
they belonged to w.

We need to get rid of these illegal keys. First, as soon as
the merge has started, all update keys arriving at w heading
for the new merged node vw will be sent down immediately
without entering the buffer at w. In addition, we scan all
update keys in the buffer at the parent w from when the
merge started, identifying all those that belonged under vw,
and then we use cascades to get rid of them. It can be shown
that even these extra cascades do not jeopardize the basic
scheduling of worst-case exponential search trees.

This completes our sketchy proof of Theorem 4. Details are
deferred to the journal version.

5. FINGER SEARCH

Recall that we have a finger pointing at a key x while search-
ing for another key y, and let ¢ be the number of keys be-
tween = and y. W.l.o.g. we assume y > z. In its traditional
formulation, the idea of finger search is that we should be
able to find y quickly if ¢ is small. Here, we also consider an-
other possibility: the search should be fast if y — z is small.
Compared with the data structure for plain searching, we
need some modifications to support finger search and up-
dates efficiently.

First, our new version of exponential search trees is well
suited for connecting neighboring nodes by horizontal links
in the classical way. This allows for the type of tree traver-
sal which is useful for finger searching. Traversing the tree
bottom-up from z until we find a node v such that either v
or its neighbor contains y, and then searching down again,
we immediately get the search complexity in terms of ¢ as
stated in Theorem 3.

In order to obtain the bound in terms of y — x, we need a
more elaborate construction. Essentially, we create a new
kind of S-structure where we store several search struc-
tures in each node of the tree. For each key in a node,

we store a sequence of search structures, representing larger
and larger intervals. The sizes of the intervals are growing
triply-exponentially, and it can be show that, for a node of
degree d, O(dloglogd) search structures are sufficient (we
only need to consider rather small intervals, for if y —
gets too large, the bound in terms of ¢ will suffice). The
total space taken by these search structures can be shown
to be polynomial in the degree d, and since the exponential
search tree can handle any polynomially sized S-structure,
the construction works out.

In order to have efficient finger updates, we need to de-
crease the restructuring cost in exponential search trees from
O(loglog n) to a constant. By changing the parameters, de-
manding that a static search structure over d keys can be
built in time O(d*~?) instead of O(d*~"), we can decrease
the period for merges and splits (cf. Section 3) from O(n;) to
O((ni/ni—1)*72) = o(n; /2) steps. This implies that we can
reduce the number of local update steps needed by a factor
2% and yet preserve that each step takes constant time.
Implementing this with good worst-case bounds requires
careful scheduling in order to find at which nodes to make
the local update steps. We have found such a protocol.
However, while all our other general problem reduction tech-
niques can be implemented on a pointer machine, the com-
puting of this protocol requires tabulation. If we could find
a way to implement our protocol on a pointer machine, we
would solve another long standing open problem: how to
perform constant time finger updates on a pointer machine.
The needed tables are space-consuming. Fortunately, they
are small enough for trees of size ©(loglogn). Therefore,
we divide the exponential search tree into two layers. At
the lower layer, we store small trees and use the tabulated
scheduling to achieve constant update cost. At the top level,
we have a tree containing ©(n/loglogn) keys. Using a
lemma by Levcopoulos and Overmars [10], we can sched-
ule the merging and splitting of small trees so that there
is always O(loglogn) updates between each merge or split
causing an update in the top tree. In this way, we will al-
ways be able to finish the processing of an update in the top
tree before the next split/merge calls for a new insert/delete
at the top tree.

This finishes our sketch of finger search and updates.

6. AN OPEN PROBLEM

It is an interesting open problem what is the right com-
plexity for searching with standard, or even non-standard,
ACP operations? Andersson et.al. [3], have shown that
even if we allow non-standard AC® operations, the exact
complexity of member-ship queries is ©(4/log /loglog n).
This contrast the situation at the RAM, where we can get
down to constant time for membership queries. Interest-

ingly, ©(4/log /loglogn) is also the RAM lower bound for
searching, so the question is potentially, it is possible to

do the ©(y/log /loglogn) searching using AC® operations
only.

7. REFERENCES

[1] A. Andersson. Sublogarithmic searching without mul-
tiplications. In Proc. 36 FOCS, pages 655-663, 1995.

[2] A. Andersson. Faster deterministic sorting and search-
ing in linear space. In Proc. 37" FOCS, pages 135-141,
1996.

3]

[4]

[6]

[7

—

(8]

[9]

[10]

[11]

A. Andersson, P.B. Miltersen, S. Riis, and M. Tho-
rup. Static dictionaries on AC° RAMs: Query time

0O(4/log n/loglog n) is necessary and sufficient. In Proc.
37" FOCS, pages 441-450, 1996.

P. Beame and F. Fich. Optimal bounds for the prede-
cessor problem. In Proc. 815 STOC, pages 295-304,
1999.

G. Brodal. Finger search trees with constant insertion
time. In Proc. 9* SODA, pages 540549, 1998.

A. Brodnik, P. B. Miltersen, and I. Munro. Trans-
dichotomous algorithms without multiplication - some
upper and lower bounds. In Proc. 5** WADS, LNCS
1272, pages 426-439, 1997.

P.F. Dietz and R. Raman. A constant update time fin-
ger search tree. Inf. Proc. Lett., 52:147-154, 1994.

M. L. Fredman and D. E. Willard. Surpassing the infor-
mation theoretic bound with fusion trees. J. Comput.
Syst. Sci., 47:424-436, 1993. See also STOC’90.

K. Mehlhorn and S. Nihler. Bounded ordered dictio-
naries in O(loglogn) time and O(n) space. Inf. Proc.
Lett., 35(4):183-189, 1990.

M. H. Overmars and C. Levcopoulos. A balanced search
tree with O(1) worst-case update time. Acta Informat-
ica, 26:269-277, 1988.

M. Thorup. Randomized sorting in O(nloglogn) time
and linear space using addition, shift, and bit-wise
boolean operations. In Proc. 8* SODA, pages 352-359,
1997.

M. Thorup. Faster deterministic sorting and priority
queues in linear space. In Proc. 9" SODA, pages 550~
555, 1998.

P. van Emde Boas. Preserving order in a forest in less
than logarithmic time and linear space. Inf. Proc. Lett.,
6(3):80-82, 1977.

P. van Emde Boas, R. Kaas, and E. Zijlstra. Design
and implementation of an efficient priority queue. Math.
Syst. Theory, 10:99-127, 1977.

D.E. Willard. Applications of the fusion tree method
to computational geometry and searching. In Proc. 37
SODA, pages 386-395, 1992.

