
Lab 1 — Cache Simulation with Simics

Andreas Sandberg <andreas.sandberg@it.uu.se>

1 Introduction
The purpose of this assignment is to give insights into:

� how a cache works

� how different cache designs affect program execution

� how a program can be tuned for a specific cache configuration

You will extend the full system simulator Simics with a simple cache model and
perform experiments with different programs and cache configurations.

You can (should) team up and work in groups of two. This lab assignment is ex-
amined in the computer lab. During the examination, you will be asked to demonstrate
and explain your solutions.

1.1 Simics
Simics is a full system simulator platform that provides a controlled, deterministic and
fully virtualized environment. Simics allows you to build your own virtual computer,
or extend pre-configured models, based on microprocessors such as Alpha, ARM, Ita-
nium, MIPS, Pentium, PowerPC, SPARC and x86. It is provided by Virtutech1.

The simulated computer is referred to as the target machine and the computer run-
ning the simulator is referred to as the host machine. When referring to input given on
the host, the target and to Simics the following prompts will be used host$, target#
and simics> respectively. Output from Simics and the host machine will be printed
with this font.

2 Getting started

2.1 Uppmax
In this lab we will be using the Os cluster2 at Uppmax. Users of this cluster are allowed
to run interactive jobs. To login on the cluster, connect with SSH to os.uppmax.uu.se,
e.g. using:
host$ ssh -Y user-name@os.uppmax.uu.se.

You are now connected to one of the login nodes of the cluster. These nodes are
only used to test code and submit jobs to the cluster.

1http://www.virtutech.com/
2http://www.uppmax.uu.se/systems/os

Autumn 2010 — Final 1 2010-10-27 16:04:45Z r798

http://www.virtutech.com/
http://www.uppmax.uu.se/systems/os
http://www.virtutech.com/
http://www.uppmax.uu.se/systems/os


Note: If you start Simics on one of the login nodes, it will be terminated after about
an hour.

To start a proper interactive job, run the following command on the login node:
host$ qsh -P g2010003 -l mem=2G -l h_rt=04:00:00

This will start an xterm that can run for a maximum of 4 hours and use a max-
imum of 2 GB of RAM. You may want to change these number if you expect to be
working for more than 4 hours or need more memory. You should always include the
-P g2010003 when submitting related to this course, this ensures that the correct
project is billed for the used CPU time.

2.2 Simics
Simics uses workspaces to manage user projects. A workspace can be thought of as
a local Simics installation, it contains symbolic links to all the relevant Simics bina-
ries and documentation. It can also contain custom modules that implement hardware
components or other parts of the simulation.

Login to Os and execute ~ansan501/avdark/2010/init_lab1.sh to cre-
ate your own workspace. This script creates a new workspace in ~/avdark/lab1
and adds the modules necessary to simulate the x86-architecture. The script also in-
stalls a small cache simulator in ~/avdark/lab1/modules/avdark-cache,
but more on that later.

To start Simics, schedule an xterm on the Os cluster using the instructions in sub-
section 2.1. In the xterm that was started by the previous step, execute the following:
host$ cd ~/avdark/lab1
host$ ./simics ./targets/x86-440bx/cosmo-common.simics
simics> run

This starts a simulation of a 64-bit x86 machine running Fedora Core 5. When the
target machine has booted, login with the user-name root and the password simics.

The boot process takes a few minutes, so be a good student and read the next section
while the machine boots. Pay particular interest to the snapshot functionality, this will
save a lot of time!

3 Simics

3.1 Basics
Simics can be given commands at the Simics prompt: simics>. Simics has several
commands that can be used to control the simulator, view current machine state, set
breakpoints and more. A short description of some simple commands needed for this
assignment follows below. Simics command line interface supports tab-completion. If
you press the tab key, Simics will automatically expand the command you are writing.
If not, it is ambiguous and pressing the tab key again will give you a list of alternatives.

help [CATEGORY] Displays help on various topics. Displays available topics if exe-
cuted without parameters. The CATEGORY argument can be either a topic from
the topic list or a command.

quit Exits Simics.

Autumn 2010 — Final 2 2010-10-27 16:04:45Z r798



run [COUNT] Starts, or continues, the execution. The optional argument COUNT
is the number of instructions to execute, if COUNT is omitted, the simulation
continues until it is explicitly stopped.

stop Stop the simulation. The simulation may be resumed using the run command.

write-configuration NAME Write a snapshot of a machines state to disk. The snap-
shot allows you to restart execution at a given point. To start Simics from a
snapshot, use host$ ./simics -c NAME, where NAME is the name of the
snapshot.

load-module NAME Load the module NAME.

unload-module NAME Unload the module NAME.

list-modules List modules that are loaded or can be loaded.

enable-magic-breakpoint Enables magic breakpoints. This will cause Simics to stop
the execution when a magic instruction is executed in the target machine.

disable-magic-breakpoint Disables magic breakpoints.

3.2 Accessing the host file system
There is a module called hostfs in Simics that allows the target machine to access
the file system of the host machine. This module is loaded by default in the workspace
used in the lab.

To access the host file system from the target you have to mount the file system.
Execute the following command on the target machine:
target# mount /host

This mounts the host file system on /host. For example, execute target# ls
/host/sw to list /sw on the host machine.

Note: The kernel caches file system data, so you might not get the latest version of a
file when you read it on the target after writing to it from the host. If this is a problem,
create a new file with a new name instead of updating the old file.

3.3 The Cache Model
The cache model is a custom extension to Simics. It simulates a direct mapped level
one data cache. The source of the cache model is located in ~/avdark/lab1/
modules/avdark-cache. To load the module and connect it to Simics’ memory
system, run simics> setup-avdark-cache. The cache model has its own set
of commands, use simics> help avdark-cache after loading the module to
list them.

simics> setup-avdark-cache
simics> help avdark-cache
[...]

Command List
[...]

Autumn 2010 — Final 3 2010-10-27 16:04:45Z r798



Commands
dbg-disable disable dbg printing
dbg-enable enable dbg printing
disable disable the cache
do-access do a read/write access.
enable enable the cache
flush flush the cache
info print the cache information
print-internals print the data array
reset-statistics reset statistics
resize resize the cache
statistics print statistics

[...]

These commands are called object commands and can only be executed on an ob-
ject. When the avdark-cache model is instantiated, it will be called dc0. The avdark-
commands are executed on the dc0 object. Try the simics> dc0.info command
to get the info related to the dc0 object. Note that Simics supports tab completion, type
simics> dc0. and press tab twice to get a list of commands applicable to the dc0
object.

Object commands are defined by the Python script commands.py in the source
directory. Another Python script, gcommands.py, is used to define global com-
mands, such as setup-avdark-cache.

4 Measuring Miss Ratio for the RADIX application
In this assignment, your will use the RADIX application as test program for cache miss
ratios. The RADIX application is located in the directory: ~/avdark/lab1/radix

The procedure to measure the miss ratio is as follows: Start Simics as described
above and mount the host file system if you have not done so already. Then start the
RADIX program on the target machine using the host file system. I suggest that you
copy the RADIX program to the targets file system before you run it.

simics> enable-magic-breakpoint
simics> continue
target# cp /host/home/user-name/avdark/lab1/radix/radix ./
target# ./radix -n 100000

The RADIX program contains so called magic breakpoints where Simics stops,
the command enable-magic-breakpointmakes Simics catch such breakpoints.
The idea here is that a magic breakpoint is located before the computation in RADIX
and another after the computation. This makes it possible to execute RADIX and stop
at the first breakpoint. Enable the cache model, continue the execution and, finally,
when the second breakpoint is captured, print the cache statistics.

5 Modifying the cache model
Edit the file avdark-cache.c in the source directory (~/avdark/lab1/modules/
avdark-cache) to modify the cache model. To rebuild the module change directory

Autumn 2010 — Final 4 2010-10-27 16:04:45Z r798



to ~/avdark/lab1 and run host$ make. If you prefer not to change the working
directory use host$ make -C ~/avdark/lab1. This can of course also be done
from Emacs. Press M-x and type compile followed by enter, edit the command line if
needed and then press enter again.

The internals of the cache model are fairly simple, most of the code is just Simics
glue code. Your assignment boils down to rearranging the data line array or/and fix the
tag and index computations.

The dc_dbg_log function can be used to print help information (but only when
debug has been enabled, see the dbg-enable command). The command do-access
can be used to test your cache. It performs an access in the cache (simics> help
dc0.do-access for more information). In combination with the dbg-enable and
print-internals commands, this is a powerful method of debugging your cache
simulator.

The avdark_cache_operate function will be called on all read and write
requests (when the cache is enabled, see the enable command). It is also called when
the do-access command is executed (and the cache is enabled).

All important functions are explained in the source code. It is recommended that
you spend some time with the original cache model to get a basic understanding of it
before you start to modify it.

6 The Assignments

6.1 Simulating an associative cache
At the moment the cache model is only direct mapped. Modify the cache model so that
it can be configured as both a direct mapped (i.e. 1-way) and a 2-way associative data
cache. The 2-way associative cache should use the LRU-replacement policy. Note that
the cache model never handles actual data, Simics takes care of that. The cache model
only contains tags and valid bits.

6.1.1 Evaluation

� Describe the modifications made to the cache model (by detailing the source
code).

� Run 2 or 3 examples with different cache parameters to show those modifications
(i.e. prove that it works). Use the do-access command on the cache object
(dc0) to “insert” accesses into the cache.

6.2 Miss ratio measurements
Test the miss ratios for the RADIX program for the following cache settings:

Use RADIX with the -n 100000 option, i.e. run target# ./radix -n 100000
on the target machine. This makes RADIX sort 100000 keys. The RADIX binary is
located in ~/avdark/lab1/radix.

6.2.1 Evaluation

1. Live-run some examples with different cache parameters.

2. Examine and draw some conclusions from the cache-behavior of RADIX.

Autumn 2010 — Final 5 2010-10-27 16:04:45Z r798



Size Block Size Associativity
16 kB 32 1
16 kB 32 2
32 kB 16 1
32 kB 32 1
32 kB 64 1
32 kB 16 2
32 kB 32 2
32 kB 64 2
64 kB 32 1
64 kB 32 2

Table 1: Cache configurations

Note: You don’t need to test all configurations in Table 1, 6 different config-
urations should be enough to be able to draw some conclusion. Explain how
selected your cache configurations in that case.

6.3 Improving Cache Performance (optional, bonus)
In this assignment you should try to improve the cache performance of a given program
example. The program is a simple matrix multiplication. Try to rewrite the program so
that the cache miss ratio is decreased. Use some of the methods discussed in the course
book to reduce the miss ratio of the program.

You may not change the size of the matrix or use less precision, but otherwise
you are free to experiment with loop-indices, matrix-transponation, blocking etc. The
multiplication should be correct, though. Also, you must use gcc when compiling it.

Use Simics and your modified cache model to measure the miss ratio before and
after your modifications. Note that the Simics model does not stall the processor, you
will therefore not see any improvement in runtime on the simulated system. During
the measurements use a 2-way associative, 64 kB cache with a block size of 64 B. See
subsection 3.2 for information about transferring files to the target, pay special attention
to the note about file system caches.

When experimenting with the optimizations, it might be a good idea to run directly
on the host. In that case, change the matrix parameter SIZE so that the unoptimized
version runs for about 20 seconds. Then try to minimize the execution time (on the
host) without changing the SIZE parameter.

The original program is located in ~/avdark/lab1/multiply. Copy multi-
ply.c and Makefile to a working directory and . . . have fun!

The original code has built in support for verifying the results. You may activate
the verification code using the -v option to the binary. It is a good idea to run the
verifications on the host machine instead of the simulated machine to save some time.

6.3.1 Evaluation

1. Show the optimizations done to the multiplication program and explain them.

2. Verify all your numbers by running simulations and the different versions of the
multiplication program.

Autumn 2010 — Final 6 2010-10-27 16:04:45Z r798



3. Show that your implementation is an improvement.

Autumn 2010 — Final 7 2010-10-27 16:04:45Z r798


	Introduction
	Simics

	Getting started
	Uppmax
	Simics

	Simics
	Basics
	Accessing the host file system
	The Cache Model

	Measuring Miss Ratio for the RADIX application
	Modifying the cache model
	The Assignments
	Simulating an associative cache
	Evaluation

	Miss ratio measurements
	Evaluation

	Improving Cache Performance (optional, bonus)
	Evaluation



