
Advanced Computer Architecture
Lab 1 — Cache Simulation with Pin

Andreas Sembrant <andreas.sembrant@it.uu.se>

1 Introduction
The purpose of this assignment is to give insights into:

• how a cache works

• how different cache designs affect program execution

• how a program can be tuned for a specific cache configuration

You will extend a simple cache model and perform experiments with different pro-
grams and cache configurations.

You can (should) team up and work in groups of two. This lab assignment is ex-
amined in the computer lab. During the examination, you will be asked to demonstrate
and explain your solutions.

1.1 Pin
Pin1 is a dynamic binary instrumentation framework. It allows you to easily insert code
at specified parts of the program. For example, to count number of executed memory
instructions. You write a piece of C++ code that increment a variable every time it is
executed and tell Pin that your code should be executed before or after every memory
instruction. Pin will then execute the binary and insert your code when it encounters a
new memory instruction. It is provided by Intel2 and is free to use.

2 Getting started

2.1 Linux servers
In this assignment we will be using the IT-departments linux servers3. To login, con-
nect with SSH to tussilago.it.uu.se or vitsippa.it.uu.se, e.g. using:

host$ ssh -Y user-name@tussilago.it.uu.se.

or use
1http://en.wikipedia.org/wiki/Pin_(computer_program)
2http://www.pintool.org/
3Note that the linux machines are only available from within the university. If you want to log on from

home, you first need to ssh to a sun server. See https://www.it.uu.se/datordrift/faq/unixinloggning for com-
plete list of servers.

Autumn 2012— Draft 1 2012-09-13 20:32:57Z r84

http://en.wikipedia.org/wiki/Pin_(computer_program)
http://www.pintool.org/
http://en.wikipedia.org/wiki/Pin_(computer_program)
http://www.pintool.org/


host$ linuxlogin.

You should now be connected to one of the linux servers.

2.2 Installing the Lab environment
First we need to download Pin and install the necessary lab files. To do so,

host$ wget http://user.it.uu.se/∼andse541/teaching/
avdark/2012/install_lab1.sh

This will download the installation script. Then run the script.

host$ sh install_lab1.sh

It will install files in your home directory, ∼/avdark. Go there and start the lab.

3 Modifying the cache model
Edit the file avdark-cache.c in the source directory (~/avdark/lab1/avdark-cache)
to modify the cache model. To rebuild the cache model run host$ make. If you pre-
fer not to change the working directory use host$ make -C ~/avdark/lab1/
avdark-cache. This can of course also be done from Emacs. Press M-x and type
compile followed by enter, edit the command line if needed and then press enter again.
Remember to use the test cases to check that your modifications work. There are sep-
arate test cases for direct mapped caches (these should always work) and associative
caches.

The internals of the cache model are fairly simple, most of the code is just Pin glue
code. Your assignment boils down to rearranging the data line array or/and fix the tag
and index computations.

All important functions are explained in the source code. It is recommended that
you spend some time with the original cache model to get a basic understanding of it
before you start to modify it.

4 The Assignments

4.1 Simulating an associative cache
At the moment the cache model is only direct mapped. Modify the cache model so that
it can be configured as both a direct mapped (i.e. 1-way) and a 2-way associative data
cache. The 2-way associative cache should use the LRU-replacement policy. Note that
the cache model never handles actual data. The cache model only contains tags and
valid bits.

To test the existing direct mapped cache you can use the pin-avdc.sh script to
launch applications with the simulator. For example:

host$ ./pin-avdc.sh -a 2 -s 65536 -l 64 -- ls

Autumn 2012— Draft 2 2012-09-13 20:32:57Z r84



The parameters before the double dashes (--) are passed to PIN and the simulator
glue code. The simulator will output its results in avdc.out by default. The simulator
glue code takes the following parameters:

-a ASSOC Set associativity. Default: 1

-s SIZE Set cache size. Default: 8388608B

-l BLOCK_SIZE Set block size. Default: 64B

-o FILE Set output file. Default: avdc.out

4.1.1 Evaluation

• Describe the modifications made to the cache model (by detailing the source
code).

• Run 2 or 3 examples with different cache parameters to show those modifications
(i.e. run “make test” and prove that it works).

4.2 Miss ratio measurements

Test the miss ratios for the RADIX program for the following cache settings:

Size [kB] Block Size [B] Associativity
16 32 1
16 32 2
32 16 1
32 32 1
32 64 1
32 16 2
32 32 2
32 64 2
64 32 1
64 32 2

Table 1: Cache configurations

Use RADIX with the -n 100000 option, i.e. run

host$ ./pin-avdc.sh -s <SIZE> -l <BLOCK_SIZE> -a <ASSOC>
-- ../radix/radix -n 100000

on the target machine. This makes RADIX sort 100000 keys. The RADIX binary is
located in ~/avdark/lab1/radix.

4.2.1 Evaluation

1. Live-run some examples with different cache parameters.

2. Examine and draw some conclusions from the cache-behavior of RADIX.

Autumn 2012— Draft 3 2012-09-13 20:32:57Z r84



. Note: You don’t need to test all configurations in Table 1, 6 different con-
figurations should be enough to be able to draw some conclusion. Explain

how selected your cache configurations in that case.

4.3 Improving Cache Performance (optional, bonus)
In this assignment you should try to improve the cache performance of a given program
example. The program is a simple matrix multiplication. Try to rewrite the program so
that the cache miss ratio is decreased. Use some of the methods discussed in the course
book to reduce the miss ratio of the program.

You may not change the size of the matrix or use less precision, but otherwise
you are free to experiment with loop-indices, matrix-transponation, blocking etc. The
multiplication should be correct, though. Also, you must use gcc when compiling it.

During the measurements use a 2-way associative, 8 MB cache with a block size of
64 B.

When you start playing around with the optimizations, change the matrix parameter
SIZE so that the unoptimized version runs for about 20 seconds. Then try to minimize
the execution time without changing the SIZE parameter.

The original program is located in ~/avdark/lab1/multiply. Copy multiply.
c and Makefile to a working directory and hack away!

The original code has built in support for verifying the results. You may activate
the verification code using the -v option to the binary. It is a good idea to run the
verifications on the host machine instead of the simulated machine to save some time.

4.3.1 Evaluation

1. Show the optimizations done to the multiplication program and explain them.

2. Verify all your numbers by running simulations and the different versions of the
multiplication program.

3. Show that your implementation is an improvement.

Autumn 2012— Draft 4 2012-09-13 20:32:57Z r84


	Introduction
	Pin

	Getting started
	Linux servers
	Installing the Lab environment

	Modifying the cache model
	The Assignments
	Simulating an associative cache
	Evaluation

	Miss ratio measurements
	Evaluation

	Improving Cache Performance (optional, bonus)
	Evaluation



