

Developing Computer Science
Education - How Can It Be Done?

Workshop
March 10, 2006

IDA
Institutionen för datavetenskap

Linköpings universitet

CeTUSS

Centrum för Teknikutbildning i Studenternas Sammanhang

Workshop "Developing Computer Science Education - How Can It Be Done?"
Friday March 10, 2006,

9:30-
10:40

Session 1: Plenary Opening Session chair: Anders Berglund

9:30-9:40 Welcome Address Prof. Mariam Kamkar, Head of Department,
Department of Computer and Information Science,
Linköpings universitet

9:40-
10:40

Invited Talk: Research and Development in
Computing Education

Prof. Lauri Malmi, Helsinki University of Technology

10:40-
11:00

Coffee in "Ljusgården"

11:00-
12:00

Session 2: Course Development I Session chairs: Anders Haraldsson, John
Wilander

 2.1: Discussing programming assignments in a
virtual learning environment

Peter Dalenius, Department of Computer and
Information Science, Linköpings universitet

 2.2: Generalizations later: A bottom up course
design

Olle Willén, Department of Computer and Information
Science, Linköpings universitet

 2.3: Towards a Set of eXtreme Teaching Practices Roy Andersson, Lars Bendix, Department of Computer
Science, Lund Institute of Technology

12:00-
13:00

Lunch in "Ljusgården"

13:00-
14:20

Session 3: Tools for Computer
Science Education

Session chair: Juha Takkinen

 3.1: Authentic Examination System Torbjörn Jonsson, Department of Computer and
Information Science, Linköpings universitet

 3.2: Web-based UNIX training for first year
students

Peter Dalenius, Department of Computer and
Information Science, Linköpings universitet

 3.3: OMNotebook - Interactive Book Software for
Teaching Programming

Anders Fernström, Ingemar Axelsson, Peter Fritzson,
Anders Sandholm, Adrian Pop, Department of
Computer and Information Science, Linköpings
universitet

 3.4: Dealing with tasks in a realistic object-
oriented system- The first result: understandings
of the interface concept in Java

Jonas Boustedt, Department of Information
Technology, Uppsala University

14:20-
14:40

Session 4: Tool Demonstration (and
coffee in "Ljusgården")
x parallel tracks.

Session chair: Olle Willén

 4.1. Authentic Examination System (Paper 3.1), in
a computer lab.

Torbjörn Jonsson, Department of Computer and
Information Science, Linköpings universitet

14:40-
15:40

Session 5: Course Development II Session chairs: Simin Nadjm-Tehrani,
Johan Åberg

 5.1: Teaching parallel programming early Christoph Kessler, Department of Computer and
Information Science, Linköpings universitet

 5.2: How to Construct Small Student Groups? Tim Heyer, Karlstad University

 5.3: An Analysis of Gender Impact on Students'
Performance in a Written Examination of Software
Engineering

Kristian Sandahl, Department of Computer and
Information Science, Linköpings universitet

15:40-
16:00

Closing Discussion Arnold Pears

Research and Development in Computing Education
Lauri Malmi,

<lma@cs.hut.fi>

Professor of Computer Science

Helsinki University of Technology.

Developing education is an essential part of the work of all teachers. Many innovative
approaches, for example, in introductory programming education have been demonstrated by
good teachers. However, in too many cases such novel ideas, tools or support materials are
poorly disseminated among other teachers even in the same institute. The reason may the
lack of evidence. Can we demonstrate actual progress in terms of better learning results,
motivation or use of resources in our courses? This talk will discuss the relation of developing
education and researching education. What can we gain from research when developing our
courses?

Lauri Malmi is a professor of Computer Science at the Helsinki University of Technology. His
field is computing education research, where he has been working on automatic assessment
of programming and algorithmic exercises, interactive visual methods in learning algorithms,
and problem-based learning in introductory programming courses.

Discussing programming assignments in a virtual learning environment

Peter Dalenius
petda@ida.liu.se

Department of Computer and Information Science, Linköpings universitet
2006-02-20

One important aspect of our introductory programming courses has been to cultivate the
students’ ability to reason about code. A programmer should not only be able to solve problems
and design computational processes, but also to participate in a critical discussion about
alternative solutions. The GENIUS1 project allowed us to move that discussion into a virtual
classroom.

The GENIUS project was funded by the European Commission and connected nine European
universities between 2001 and 2003. The aim was to develop and evaluate learning environments
that would enable students to participate in courses from other universities. Our contribution was
to develop a small course in C++ programming that was tested twice, the second time with some
students from other countries. The course consisted of 5 seminars conducted in a virtual
classroom. Before each seminar the students were required to solve a few exercises and hand
them in. Each student was then given another student’s solutions to present and criticize during
the seminar. The group consisted of 8 volunteer students in their second or third year.

We found that the virtual classroom, despite being a new environment both for students and
teachers, supported the critical discussion. The ability to share applications, to point and click and
even modify code as you were speaking, made the environment seem “surprisingly natural”
according to the students.

Motivated by the positive response from the students, we decided to integrate the virtual
classroom discussions into our ordinary courses. During 2004 and 2005 we moved from the
integrated commercial platform used in the GENIUS project to an environment that was a mix
of different open source tools. A group of volunteers from our first year programming course
participated in 3-5 virtual classroom seminars with approximately the same contents as our real
classroom lessons. These students found the experiments with the online seminars interesting,
but were considerably less motivated to participate than our C++ students.

I believe that three main factors lie behind successful use of online seminars: a) Both teachers
and students need some training in using the technology so that it does not stand in the way of
learning. b) The teacher has to be aware that the virtual classroom pedagogy differs from ordinary
classroom pedagogy. For example, the teacher sometimes need to talk the students through the
seminar to make up for the lack of visual queues. c) The course has to be organized so that the
students are stimulated to discuss problems during the seminars instead of just silently participating.

1 Generic E-Learning Environments and Paradigms for the New Pan-European Information and Communication
Technologies Curricula

Generalizations Later: A Bottom-up Course Design

Olle Willén
ollwi@ida.liu.se

Dept of Computer and Information Science
Linköpings universitet, Sweden

2006-02-20

ABSTRACT

A very traditional design of a basic course in programming may consist of repeated sequences
of a lecture to introduce a few new concepts, followed by a lesson giving some practical exam-
ples, concluded with some hours of lab work on a compulsory task. When hours at disposal are
limited you - the ambitious teacher - have to squeeze a lot of stuff into every lecture; one of them
could for instance be assigned to the presentation of ‘control structures’. Even if you don’t have
the ambition to be exhaustive you probably wish to generalize in order to show the wide range
of alternatives, and as a practical consequence it is required that you also use some pieces of
formal notation. Your intention is both to give a set of tools for students to choose from when
they do their practical exercises, and at the same time to give an understanding of the generality
of language elements. As a whole such a lecture could easily be considered as a bit abstract. In
my experience many students will neither remember the higher level perspective (generaliza-
tions, formalisms) demonstrated in lectures of this kind, nor be quite able to extract the concrete
instances they require for their tasks.

You could - perhaps easily - limit your teaching ambitions to just a few very specific cases, aim-
ing at no more than what is really needed in the students’ labs. At the university level this would
however not be quite fair, neither to the students nor to your mission. A broader perspective
must be maintained to satisfy students’ varying needs, understanding, and degrees of curiosity,
and to justify the level of a course as ‘academic’.

The approach above demonstrates a kind of top-down teaching technique which could be ap-
propriate in many learning situations. But with novices with no or little prior experience from
formal notation or algorithmic thinking, and with unfamiliarity with the area’s abstract ways of
viewing, you should not take for granted that this will always work. The amount of information
will often make students cognitively overloaded and confused. You certainly expect their area
background to be very weak, and hence they have nothing to relate to, very little to build new
knowledge from. The philosophy of constructivism emphasizes that new knowledge has to be
built on already existing one, and you have to find out what that knowledge could be. Or, as an
option, try to lay a foundation yourself.

The talk will present an alternative to the supposed traditional course design. The general idea
is a bottom-up approach, where every introduction of new stuff begins with most practical com-
puter based experiments and observations . These hands-on sessions are led and supervised by
a teacher, and the obvious aim is to saw a seed of understanding. Not until later a lecture will
overview the same concepts and from the experiences acquired earlier make the appropriate ad-
vancements and generalizations. However, since this design just recently has been adopted
there is yet no evidence of what impact it may have.

Towards a Set of eXtreme Teaching Practices

Roy Andersson
Department of Computer Science

Lund Institute of Technology
Box 118

SE-221 00 Lund, Sweden
roy.andersson@cs.lth.se

Lars Bendix
Department of Computer Science

Lund Institute of Technology
Box 118

SE-221 00 Lund, Sweden
bendix@cs.lth.se

Abstract
Many universities have experienced an increase in the intake of students and at the same time
cuts in the budgets for teaching. Many teachers have experienced that, for a number of
reasons, they have to adjust their teaching or a course with short notice. These facts pose a
challenge to the teachers’ agility in adapting to changes – and in doing it in a cost efficient
way.
We propose eXtreme Teaching (XT) as a framework that allows teachers to focus on
experimenting with and improving their teaching techniques without compromising quality.
The framework and the associated practices provide quick, accurate feedback that the teacher
can act on. eXtreme Teaching will allow better student learning, better relationships with the
students, increased interaction and development of the staff involved, less risk – and probably
happier staff members.
In this paper, we describe the eXtreme Teaching framework and its nine practices.

Origin
The paper is presented and to be found in Proceedings of the 5th International Conference on
Computer Science Education, page 33-40, Koli, Finland, November 17-20, 2005.

Conference web address:
http://www.cs.joensuu.fi/kolistelut/index.html

Proceedings web address:
http://www.it.utu.fi/koli05/proceedings/final_composition.b5.060207.pdf

Authentic Examination System

Torbjörn Jonsson
Department of Computer Science,

Linköpings Universitet, Sweden

torjo@ida.liu.se

ABSTRACT
Examination in a course can be done in several ways. The most
common way is written examination where each student has a
number of questions to answer. However, such examination is not
similar to how the knowledge learned in the course will be use in
real-life working condition. For a programming course a written
examination is far from a real life working environment. We have
therefore developed the Authentic Examination System (AES),
which is a computer aided examination system. The aim of the
system is to create an atmosphere more similar to the condition
that a student will face when working as a programmer. We
believe that important aspects are that in real-life condition, it is
common to have your own assignment, it is possible to try
(compile and run), you know when you are done, and colleagues
may help a bit.

AES is a system where the student solution is corrected by the
teacher in real-time during the examination. Note that AES is not
an automatic examination system where the solutions are corrected
automatically.

In a traditional written exam, each student is given a set of
questions to answer. It is often so that the student has one or two
occasions to ask the teacher clarifying questions regarding the
exam. After the exam, the teacher corrects the solutions. In our
AES the student has the opportunity to have constant
communication during the examination.

In a traditional written examination the solution is corrected after
the examination occasion and the result is sent to the student
afterwards. It can be (up to) 2 weeks after the examination.
However, in the AES, the solutions are received as they are
produced by the students and we correct them immediately. The
student has the result within a few minutes. Further, we also have
the opportunity to give the student feedback on a solution during
the exam. This gives the student opportunity to update the solution
if it is not correct.

The examination is divided in two parts. The first part is
examination of specific tasks (each task can be sent for correction
separately). The second part is where we set the grade of the
examination. The first part of the examination can be corrected by
several teachers at the same time. This part gives one of the
following results for a task:

Passed - The task is solved in a proper way and it is ok. This means
that the student has completed the task.

Failed - The task is not correct and the student is not allowed to
continue with it. It is still ok to send in others solutions on other
tasks.

Not completed - The task is not good enough. The student may
continue with the task and send in a new solution. If the student
does not send in a new solution the result for the task is Failed.

The results are sent directly to the student during the examination,
and at the same time the result is sent to the grading part (to the
course examiner). Observe that the teachers can set results that the
examiner may override. This leads to the fact that the students
have this result as a preliminary result.

In the second part the examiner can override the result that the
other teachers have set, but it is normally not the case. In this part
the examiner sets the grade for the student. This grade is the
"lowest" grade the student can get and this can be updated from a
lower level to a higher if the student delivers more correct
solutions in the examination.

The system allows the possibility to examine the student solutions
in a "live" situation which leads to a learning situation even in the
examination. The student also has the opportunity to decide when
to stop. If the grade is at the maximum level the student can go
home. Of course the student can go earlier if the result is good
enough, however, we have noticed that most students stay as long
as they are allowed to get the best grade as possible.

Of course the students and teachers have different views of the
communication system. They also have different legal operations
in the system. The student have personal information like name,
person number, student identification "number", information about
the course and time of examination. The student can (1) send
questions, (2) receive answers, (3) send solutions, (4) receive
results and comments on the solutions. The student has also
information about the status of the examination like which task is
done and what are the result of the examination of a task.

The teacher can (1) send information to all students or a specific
one,(2) receive questions and solutions, (3) examine a student
solution, (4) send results and comments of the solution and (5)
much more.

An advantage with the system is that the students are anonymous
to the teacher. That makes the examination better in the way that
the teacher cannot use "old knowledge" learned during the course
on a student such as "this student is smart". It also makes the
examination form gender neutral.

Web-based UNIX training for first year students

Peter Dalenius
petda@ida.liu.se

Department of Computer and Information Science, Linköpings universitet
2006-02-20

The Department of Computer and Information Science hosts around 5000 student computer
accounts with 1000 being first year students. The main working environment in the computer
laboratories (75%) is UNIX, which is unknown to the majority of the new students. Many of our
courses contain laboratory exercises, and the students spend a considerable amount of time using
different pieces of software in our UNIX environment. It is important to us that the students are
familiar with the operating system so that they can focus on the course contents instead of
spending time on trivial tasks like moving files around or figuring out how to use the laser
printer.

During the summer of 2000 I was given the task of developing a web-based course material for
introducing new students to UNIX. I identified three main problems: a) The students come from
different backgrounds and have different experiences. Some have experimented with UNIX-like
systems before, many have some kind of basic ICT training, but the vast majority have never
seen a UNIX system before. b) With the introductions used before, the students seemed to learn
just enough to pass. They never saw the benefits of learning how to use the computer systems
thoroughly. c) There was no clear overview of which ICT resources the department or the
university offered to the students.

The course material was used during the fall of 2000, and during 2001 I developed the material
further by designing and implementing a tool for presenting course material on the web called
STONE (Simple Tool for Online Education). The aim was to create a tool that would be easy to
use and extend, as opposed to some of the monolithic learning management systems on the
market at that time. The STONE system offered three important features: a) The tool included
self-correcting tests, mostly multiple choice, with questions chosen randomly from a set of
alternatives. b) Each user could select the type of presentation he or she preferred. The course
material had, at least to some extent, been written in two variants: one aimed at complete novices
and one aimed at more experienced users. c) The separation of content and presentation made
the material easy to update.

The STONE system and the course material have been used on all the major education programs
in the department since 2001. The content has been updated several times to reflect changes in
the computer systems as well as in student policies. In this paper and/or presentation I will
describe my experiences from maintaining and using a web-based course material. I will present
some results from student evaluations and discuss the course context in which the material has
been used. Finally I will mention some ideas of how to develop the material and the use of it.

OMNotebook – Interactive WYSIWYG Book Software
 for Teaching Programming,

Anders Fernström, Ingemar Axelsson, Peter Fritzson, Anders Sandholm, Adrian Pop
PELAB – Programming Environment Lab, Dept. Computer Science

Linköping University, S-581 83 Linköping, Sweden
{petfr,andsa,adrpo}@ida.liu.se

Abstract
OMNotebook is one of the first open source software systems that makes is possible to create interactive WYSIWYG
books for teaching and learning programming. It has currently been used for course material (DrModelica) in teaching
the Modelica language, but can easily be adapted to electronic books on teaching other programming languages, or
even other subjects such as physics, chemistry, etc., where phenomena can be illustrated by dynamic simulations
within the book. This could substantially improve teaching in a number of areas, including programming.

1 Need for more Interactive Learning
Traditional teaching methods are often too passive and do engage the student. A typical example is traditional lectur-
ing.

Another typical learning method is reading a textbook on a subject matter. This is a good method, but sometimes
requires a lot from the student. Also, learning programming needs interaction and programming exercises in order to
grasp the concept.

A third way, would be to make the book active – be able to run programs and exercises within the book, and mix
lecturing with doing exercises and reading in the interactive book.

2 Interactive Notebooks with Literate Programming
Interactive Electronic Notebooks are active documents that may contain technical computations and text, as well as
graphics. Hence, these documents are suitable to be used for teaching and experimentation, simulation scripting,
model documentation and storage, etc.

2.1 Mathematica Notebooks

Literate Programming (Knuth 1984) is a form of programming where programs are integrated with documentation in
the same document. Mathematica notebooks (Wolfram 1997) is one of the first WYSIWYG (What-You-See-Is-What-
You-Get) systems that support Literate Programming. Such notebooks are used, e.g., in the MathModelica modeling
and simulation environment, e.g. see Figure 1 below and Chapter 19 in (Fritzson 2004)

2.2 OMNotebook

The OMNotebook software (Axelsson 2005, Fernström 2006) is a new open source free software that gives an inter-
active WYSIWYG (What-You-See-Is-What-You-Get) realization of Literate Programming, a form of programming
where programs are integrated with documentation in the same document.

2.3 Tree Structured Hierarchical Document Representation

Traditional documents, e.g. books and reports, essentially always have a hierarchical structure. They are divided into
sections, subsections, paragraphs, etc. Both the document itself and its sections usually have headings as labels for
easier navigation. This kind of structure is also reflected in electronic notebooks. Every notebook corresponds to one
document (one file) and contains a tree structure of cells. A cell can have different kinds of contents, and can even
contain other cells. The notebook hierarchy of cells thus reflects the hierarchy of sections and subsections in a tradi-
tional document such as a book.

Figure 1. Examples of Mathematica notebooks in the MathModelica modeling and simulation environment.

3 The DrModelica Tutoring System – an Application of OMNotebook
Understanding programs is hard, especially code written by someone else. For educational purposes it is essential to
be able to show the source code and to give an explanation of it at the same time.

Moreover, it is important to show the result of the source code’s execution. In modeling and simulation it is also
important to have the source code, the documentation about the source code, the execution results of the simulation
model, and the documentation of the simulation results in the same document. The reason is that the problem solving
process in computational simulation is an iterative process that often requires a modification of the original mathe-
matical model and its software implementation after the interpretation and validation of the computed results corre-
sponding to an initial model.

Most of the environments associated with equation-based modeling languages such as Modelica focus more on
providing efficient numerical algorithms rather than giving attention to the aspects that should facilitate the learning
and teaching of the language. There is a need for an environment facilitating the learning and understanding of Mode-
lica. These are the reasons for developing the DrModelica teaching material for Modelica and for teaching modeling
and simulation.

Figure 2. The start page (main page) of the DrModelica tutoring system using OMNotebook. The link to the HelloWorld example
shown in Figure 3 is marked with an oval.

DrModelica has a hierarchical structure represented as notebooks. The front-page notebook is similar to a table of
contents that holds all other notebooks together by providing links to them. This particular notebook is the first page
the user will see (Figure 2).

In each chapter of DrModelica the user is presented a short summary of the corresponding chapter of the book “Prin-
ciples of Object-Oriented Modeling and Simulation with Modelica 2.1” by Peter Fritzson. The summary introduces
some keywords, being hyperlinks that will lead the user to other notebooks describing the keywords in detail.

Figure 3. The HelloWorld class simulated and plotted using the OMNotebook version of DrModelica.

Now, let us consider that the link “HelloWorld” in DrModelica Section “Getting Started – First Basic Examples” in
Figure 2 is clicked by the user. The new notebook, to which the user is being linked (see Figure 3), is not only a tex-
tual description but also contains one or more examples explaining the specific keyword. In this class, HelloWorld, a
differential equation is specified.

No information in a notebook is fixed, which implies that the user can add, change, or remove anything in a notebook.
Alternatively, the user can create an entirely new notebook in order to write his/her own programs or copy examples
from other notebooks. This new notebook can be linked from existing notebooks.

Figure 4. DrModelica Chapter “Algorithms and Functions” in the main page of DrModelica.

When a class has been successfully evaluated the user can simulate and plot the result, as depicted in Figure 3 for the
simple HelloWorld example model..

After reading a chapter in DrModelica the user can immediately practice the newly acquired information by doing
the exercises that concern the specific chapter. Exercises have been written in order to elucidate language constructs
step by step based on the pedagogical assumption that a student learns better “using the strategy of learning by do-
ing”. The exercises consist of either theoretical questions or practical programming assignments. All exercises provide
answers in order to give the user immediate feedback.

Figure 4 shows the algorithm part of the Chapter “Algorithms and Functions” of the DrModelica teaching mate-
rial. Here the user can read about Modelica language constructs, like algorithm sections, when-statements, and re-
init equations, and then practice these constructs by solving the exercises corresponding to the recently studied sec-
tion.

Figure 5. Exercise 1 in Chapter “Algorithms and Functions” of DrModelica.

Exercise 1 in the algorithm part of Chapter “Algorithms and Functions” is shown in Figure 5. In this exercise the user
has the opportunity to practice different language constructs and then compare the solution to the answer for the exer-
cise. Notice that the answer is not visible until the Answer section is expanded. The answer is shown in Figure 6.

Figure 6. The answer section to Exercise 1 in Chapter “Algorithms and Functions” of DrModelica.

4 Conclusions
The OMNotebook software is one of the first open source software systems that makes is possible to create inter-
active WYSIWYG books for teaching and learning programming. It has currently been used for course material
(DrModelica) in teaching the Modelica language, but can easily be adapted to electronic books on teaching other
programming languages such as Java, Scheme, etc, through its general CORBA interface. This could revolution-
ize teaching in programming.

5 Acknowledgements
Support for Modelica-related research from SSF and Vinnova is gratefully acknowledged. Eva-Lena Lengquist-
Sandelin and Susanna Monemar prepared the first version of the DrModelica tutorial material and thus also con-
tributed to this paper. Daniel Hedberg at MathCore provided advice regarding Qt-based implementation. Peter
Aronsson implemented large parts of the OpenModelica compiler and the communication protocol used from
OMNotebook. PhD students at PELAB (Programming Environment Lab) contributed to various aspects of
OpenModelica.

References
[1] Eric Allen, Robert Cartwright, Brian Stoler. DrJava: A lightweight pedagogic environment for Java. In Pro-

ceedings of the 33rd ACM Technical Symposium on Computer Science Education (SIGCSE 2002) (Northern
Kentucky – The Southern Side of Cincinnati, USA, February 27 – March 3, 2002).

[2] Ingemar Axelsson. OpenModelica Notebook for Interactive Structured Modelica Documents. Final thesis,
LITH-IDA-EX–05/080–SE, Linköping University, Linköping, Sweden, October 21, 2005.

[3] Anders Fernström. Extending OMNotebook – An Interactive Notebook for Structured Modelica Docu-
ments.Final thesis to be presented spring 2006, Dept. Computer and Information Science, Linköping Univer-
sity, Sweden.

[4] Peter Fritzson. Principles of Object Oriented Modeling and Simulation with Modelica 2.1, 940 pages, ISBN
0-471-471631, Wiley-IEEE Press. Feb. 2004.

[5] Peter Fritzson, et al. OpenModelica Users Guide, Preliminary Draft, for OpenModelica 1.3.1, Nov 28 2005.
www.ida.liu.se/projects/OpenModelica.

[6] Knuth, Donald E. Literate Programming. The Computer Journal, NO27(2), pp. 97–111, May 1984.

[7] Eva-Lena Lengquist-Sandelin, Susanna Monemar, Peter Fritzson, and Peter Bunus. DrModelica – A Web-
Based Teaching Environment for Modelica. In Proceedings of the 44th Scandinavian Conference on Simula-
tion and Modeling (SIMS’2003), available at www.scan-sims.org. Västerås, Sweden. September 18-19,
2003.

[8] The Modelica Association. The Modelica Language Specification Version 2.2, March 2005.
http://www.modelica.org.

[9] Stephen Wolfram. The Mathematica Book. Wolfram Media Inc, 1997.

 1

Dealing with tasks in a realistic object-oriented

system

- The first result: understandings of the interface concept in Java

Jonas Boustedt
Department of Information Technology

Uppsala University,
SE-75105 Uppsala, Sweden

Computer Science Department
University of Gävle

SE-80176 Gävle, Sweden
jbt@hig.se

30 November 2005

ABSTRACT
Courses in object-oriented programming cover abstract concepts which in many cases make sense only in larger scale software.
However, our examples are often narrowed down to fit the traditional way of teaching and in the practical assignments the students
are expected to build their solutions from scratch. We are curious about variations in how students understand the concepts in a
wider, more realistic context and variations in their approaches. This curiosity origins from our interest in teaching computer
science and from our ambition to promote the students’ professional careers. This is an empirical study with a phenomenographic
approach where data is collected using a video recorded role play and a following interview. The students acted as "rookies"
who were supposed to complete a software system, developed by a senior programmer. The result of the analysis, so far, is a
categorisation of qualitatively different understandings of the Java interface, on a collective level. However, more results are
expected from this particular study, such as understandings of other concepts, experiences of the software system and different
approaches to solve the task.

Teaching parallel programming early
Christoph W. Kessler

Institute for Computer and Information Science (IDA)
Linköping university, S-58183 Linköping, Sweden

chrke@ida.liu.se

Abstract— In this position paper, we point out the
importance of teaching a basic understanding of parallel
computations and parallel programming early in computer
science education, in order to give students the necessary
expertise to cope with future computer architectures that
will exhibit an explicitly parallel programming model.

We elaborate on a programming model, namely shared-
memory bulk-synchronous parallel programming with sup-
port for nested parallelism, as it is both flexible (can be
mapped to many different parallel architectures) and sim-
ple (offers a shared address space, structured parallelism,
deterministic computation, and is deadlock-free).

We also suggest taking up parallel algorithmic
paradigms such as parallel divide-and-conquer together
with their sequential counterparts in the standard CS
course on data structures and algorithms, in order to
anchor thinking in terms of parallel data and control
structures early in the students’ learning process.

I. INTRODUCTION

For 50 years we have been teaching students program-
ming, algorithms and data structures with a program-
ming model dominated by the sequential von-Neumann
architecture. This model is popular because of its sim-
plicity of control flow and memory consistency and
its resemblance to the functionality of early computer
architectures.

However, recent trends in computer architecture show
that the performance potential of von-Neumann pro-
gramming has finally reached its limits. Computer ar-
chitectures even for the desktop computing domain are,
at least under the hood, increasingly parallel, e.g. in
the form of multithreaded processors and multi-core
architectures. The efforts for grafting the von-Neumann
model on top of thread-level parallel and instruction-
level parallel processor hardware, using techniques such
as dynamic instruction dispatch, branch prediction or
speculative execution, are hitting their limits, in the
form of high design complexity, limited exploitable
instruction-level parallelism in applications, and power
and heat management problems. We foresee that ex-
plicitly parallel computing models will emerge in the
near future to directly address the massive parallelism

available in upcoming processor architectures. In order
to fully exploit their performance potential, applications
will have to be parallelized, that is, be (re)written to
exhibit explicit parallelism. However, most programmers
are reluctant to adopting a parallel programming model,
(1) because parallel programming is notoriously more
complex and error-prone than sequential programming,
at least with the parallel programming systems that are
in use today, and (2) because most programmers were
never trained in thinking in terms of parallel algorithms
and data structures.

For the years to come, explicitly parallel program-
ming paradigms will have to be adopted by more and
more programmers. In this position paper, we suggest
preparing students in time for this paradigm shift. A
first step could be to take up parallel computing issues
relatively early in existing standard courses, e.g. in the
undergraduate course on data structures and algorithms.
Many fundamental algorithmic concepts such as divide-
and-conquer have an immediate parallel counterpart,
which may be considered together. The goal is to anchor
thinking in parallel structures early in the education
process.

In particular, we advocate simple parallel program-
ming models, such as the bulk-synchronous parallel
(BSP) model, because they are (a) still flexible enough to
be mapped to a wide range of parallel architectures, and
(b) simple enough to provide a good basis for the design
and analysis of parallel algorithms and data structures
that offers a compatible extension of the existing theory.

The remainder of this paper is organized as follows.
In Section II we summarize the most important parallel
programming models and discuss their suitability as a
platform for teaching parallel programming early. Sec-
tion III elaborates on one particular parallel program-
ming model and language, NestStep. We discuss more
teaching issues in Section IV, and Section V concludes.

II. SURVEY OF PARALLEL PROGRAMMING MODELS

With the need to exploit explicit parallelism at the
application programming level, programmers will have

TABLE I

SURVEY OF PARALLEL PROGRAMMING MODELS

Progr. Model Control Structure Data View Consistency Main Restriction Examples
Message Passing Asynchronous, MIMD Local N.a. None MPI
Shared Memory Asynchronous, MIMD Shared Weak None Pthreads, OpenMP, UPC, Cilk
Data-Parallel Synchronous, SIMD Shared Strict SIMD-like Control HPF, C�

PRAM Synchronous, MIMD Shared Strict None Fork
BSP Bulk-synchr., MIMD Local N.a. Superstep Structure BSPlib, PUB
NestStep-BSP Nested BSP Shared Superstep Superstep Structure NestStep

to adopt a parallel programming model. In this section,
we briefly review the most important ones.

A. Message passing

The currently predominant model for programming
supercomputers is message passing with MPI, the
message-passing interface [13], which is a portable but
low-level standard for interprocessor communication.
Message passing may be considered a least common
denominator of parallel computing, which is available on
almost every parallel computer system that is in use to-
day. Message passing code is generally unstructured and
hard to understand, maintain and debug. It only supports
a local address space (starting from location 0 on each
processor) and requires the programmer to place explicit
send and receive operations in the code, and maybe
even handle buffering explicitly, in order to exchange
data between processors. Modest improvements such
as one-sided communication (automatic receive), nested
parallelism (by processor group splitting), and collective
communication operations (such as reductions, scatter
and gather) help to somewhat reduce complexity—
usually at the expense of some performance loss—but
are not enforced, such that unstructured parallelism is
still the default.

B. Shared memory and shared address space

Shared-memory parallel computing is, in practice,
often realized by asynchronously operating threads or
processes that share memory. Synchronization between
these parallel activities (here referred to as processors,
for simplicity) can be in the form of asynchronous sig-
nals or mutual exclusion in various forms (semaphores,
locks, monitors etc.). A global address space provides
to the programmer a more natural interface to access
data that is compliant with sequential computing mod-
els. Unstructured shared-memory parallel programming
platforms such as pthreads have been complemented by
more structured languages such as OpenMP [12], which
supports work-sharing constructs to schedule parallel

tasks such as parallel loop iterations etc. onto a fixed
set of processors. Additionally, shared-address-space lan-
guages such as UPC [2] that emulate a shared memory
view on top of a message passing platform have emerged
recently. On the other hand, memory consistency must
increasingly be handled explicitly by the programmer at
a fairly low level, e.g. by flush operations that reconcile
the local value of a cached memory location with its
main memory value. Finally, none of these platforms
really supports nested parallelism.

C. Data-parallel computing

Data-parallel computing is the software equivalent of
SIMD (single instruction stream, multiple data streams)
architectures. Processors share a single program control,
that is, execute at the same time the same operation
on maybe different data (or do nothing). Data-parallel
computing was very popular in the 1980’s and early
1990’s because it mapped directly to the vector pro-
cessors and array computers of that period. Many data-
parallel programming languages have been developed,
most notably High-Performance Fortran (HPF) [4]. Gen-
erally, data-parallel languages offer a shared address
space with a global view of large data structures such as
matrices, vectors etc. Data-parallel computing is suitable
for regular computations on large arrays but suffers
from inflexible control and synchronization structure
in irregular applications, for which a MIMD (multiple
instruction streams, multiple data streams) based model
is more appropriate. Although HPF is not widely used in
practice, many of its concepts have found their way into
standard Fortran and into certain shared-address-space
languages.

D. PRAM model

In the design and analysis of parallel algorithms, we
mainly work with three theoretical models that are all
extensions of the sequential RAM model (Random Ac-
cess Machine, also known as the von-Neumann model):
the PRAM, the BSP, and systolic arrays.

2

The PRAM (Parallel Random Access Machine) mod-
el, see the book by Keller, Kessler and Träff [6] for an
introduction, connects a set of P processors to a single
shared memory module and a common clock signal. In
a very idealistic simplification, shared memory access
time is assumed to be uniform and take one clock cycle,
exactly as long as arithmetic and branch operations.
Hence, the entire machine operates synchronously at the
instruction level. If simultaneous accesses to the same
memory location by multiple processors are resolved in
a deterministic way, the resulting parallel computation
will be deterministic. Memory will always be consistent.
Synchronization can be done via signals, barriers, or
mutual exclusion; deadlocks are possible. As the shared
memory becomes a performance bottleneck without spe-
cial architectural support, the PRAM model has not been
realized in hardware, with one notable exception, the SB-
PRAM research prototype at Saarbrücken university in
the 1990s [6].

E. BSP model

In contrast, the BSP (Bulk-Synchronous Parallel)
model [15] is an abstraction of a restricted message pass-
ing architecture and charges a cost for communication.
The machine is characterized by only three parameters:
the number of processors P , the byte transfer rate g in
point-to-point communication, and the overhead L for a
global barrier synchronization (where g and L may be
functions of P). The BSP programmer must organize
his/her parallel computation as a sequence of supersteps
that are conceptually separated by global barriers. Hence,
the cost of a BSP computation is the sum over the
cost of every superstep. A superstep (see also Figure 1)
consists of a computation phase, where processors only
can access local memory, and a subsequent communica-
tion phase, where processors exchange values by point-
to-point message passing. Hence, BSP programs have
to use local addresses for data, and the programmer
needs to write explicit send and receive statements for
communication. Routines for communication and barrier
synchronization are provided in BSP libraries such as
BSPlib [5] and PUB [1]. Nested parallelism is not
supported in classical BSP; in order to exploit nested
parallelism in programs, it must be flattened explicitly by
the programmer, which is generally difficult for MIMD
computations. Hence, although announced as a “bridg-
ing” model (i.e., more realistic than PRAM but simpler
to program and analyze than completely unstructured
message passing), some of the problems of message
passing programming are inherited. We will show in the
next section how to relax these constraints.

F. Which model is most suitable?

Table I summarizes the described parallel program-
ming models, with their main strenghts and weaknesses.

From a technical point of view, a model that allows to
control the underlying hardware architecture efficiently
is most important in high-performance computing. This
explains the popularity of low-level models such as MPI
and pthreads.

From the educational point of view, a simple, de-
terministic, shared memory model should be taught as
a first parallel programming model. While we would
opt for the PRAM as model of choice for this pur-
pose [10], we are aware that its overabstraction from
existing parallel computer systems may cause motivation
problems for many students. We therefore consider BSP
as a good compromise, as it is simple, deterministic,
semi-structured and relatively easy to use as a basis for
quantitative analysis, while it can be implemented on a
wide range of parallel platforms with decent efficiency.
However, to make it accessible to masses of program-
mers, it needs to equipped with a shared address space
and better support for structured parallelism, which we
will elaborate on in the next section.

The issues of data locality, memory consistency, and
performance tuning remain to be relevant for high-
performance computing in practice, hence interested
students should also be exposed to more complex par-
allel programming models at a later stage of education,
once the fundamentals of parallel computing are well
understood.

III. NESTSTEP

NestStep [8], [7] is a parallel programming language
based on the BSP model. It is defined as a set of
language extensions that may be added, with minor
modifications, to any imperative programming language,
be it procedural or object oriented. The sequential aspect
of computation is inherited from the basis language.
The new NestStep language constructs provide shared
variables and process coordination. The basis language
need not be object oriented, as parallelism is not im-
plicit by distributed objects communicating via remote
method invocation, but expressed by separate language
constructs.

NestStep processes run, in general, on different ma-
chines that are coupled by the NestStep language exten-
sions and runtime system to a virtual parallel computer.
Each processor executes one process with the same
program (SPMD), and the number of processes remains
constant throughout program execution.

3

global barrier

local computation

communication phase

next barrier
update cached copies of shared variables

using cached copies of shared variables

Fig. 1. A BSP superstep. — In NestStep, supersteps form the units
of synchronization and shared memory consistency.

The NestStep processors are organized in groups. The
processors in a group are automatically ranked from
0 to the group size minus one. The main method
of a NestStep program is executed by the root group
containing all available processors of the partition of the
parallel computer the program is running on. A processor
group executes a BSP superstep as a whole. Ordinary,
flat supersteps are denoted in NestStep by the step
statement

step statement

Groups can be dynamically subdivided during pro-
gram execution, following the static nesting structure of
the supersteps. The current processor group is split by
the neststep statement, as in

neststep(2; @=(cond)?1:0) // split group
if (@==1) stmt1();
else stmt2();

into several subgroups, which can execute supersteps
(with local communication and barriers) independent of
each other. At the end of the neststep statement, the
subgroups are merged again, and the parent group is
restored. See Figure 2 for an illustration. Note that this
corresponds to forking an explicitly parallel process into
two parallel subprocesses, and joining them again.

Group splitting can be used immediately for express-
ing parallel divide-and-conquer algorithms.

Variables in NestStep are declared to be either shared
(sh) or private. A private variable exists once on each
processor and is only accessible locally. A shared vari-
able, such as sum in Figure 3, is generally replicated:
one copy of it exists on each processor. The NestStep
runtime system guarantees the superstep consistency
invariant, which says that at entry and exit of a superstep,
the values of all copies of a replicated shared variable
will be equal. Of course, a processor may change the
value of its local copy in the computation phase of a
superstep. Then, the runtime system will take special

changes to shared variables
are only committed within
the current group

subgroup-
local
barrier

subgroup-
local
superstep

end of nested superstep

commit inter-subgroup changes
to shared variables

end of previous superstep

sub-supersteps are independently
executed by the two subgroups

split current group into 2 subgroups
processors join new subgroup
renumber processor ranks

restore parent group

final combine phase

subgroup-wide

Fig. 2. Nesting of supersteps, here visualized for a
neststep(2,...) ... statement splitting the current group into
two subgroups. Dashed horizontal lines represent implicit barriers.

action to automatically make all copies of that variable
consistent again, during the communication phase of
the superstep. The conflict resolution strategy for such
concurrent writes can be programmed individually for
each variable (and even for each superstep, using the
combine clause). For instance, we could specify that an
arbitrary updated value will be broadcast and committed
to all copies, or that a reduction such as the global sum
of all written values will be broadcast and committed.
As the runtime system uses a communication tree to im-
plement this combining of values, parallel reduction and
even prefix computations can be performed on-the-fly
without additional overhead [8]. Exploiting this feature,
parallel prefix computations, which are a basic building
block of many parallel algorithms, can be written in a
very compact and readable way, see Figure 3.

Shared arrays can be either replicated as a whole, or
distributed (each processor owns an equally large part of
it), as a in the example program in Figure 3. Distributed
shared arrays are complemented by appropriate iterator
constructs. For instance, the forall loop

forall (i, a)
stmt(i, a[i]);

scans over the entire array a and assigns to the private
iteration counter i of each processor exactly those
indices of a that are locally stored on this processor.

As superstep computations only allow access to lo-
cally available elements, values of remote elements
needed by a processor must be fetched before entry to
a superstep, and written elements will be shipped (and
combined) in the communication phase at the end of
a superstep. Fetching array elements beforehand can be

4

void parprefix(sh int a[]</>)
{
int *pre; // priv. prefix array
int p=#, Ndp=N/p; // assume p divides N
int myoffset; // my prefix offset
sh int sum = 0;
int i, j = 0;
step {

pre = new_Array(Ndp, Type_int);
forall (i, a) { // owned elements
pre[j++] = sum;
sum += a[i];

}
} combine(sum<+:myoffset>);
j = 0;
step

forall (i, a)
a[i] = pre[j++] + myoffset;

}

Fig. 3. Computing parallel prefix sums in NestStep-C.

a problem in irregular computations where the actual
elements to be accessed are not statically known. A
technique for scheduling the necessary two-sided com-
munication operations on top of NestStep’s combining
mechanism for replicated variables is described in [7].

NestStep does not support mutual exclusion, and is
thus deadlock-free. The main synchronization primitive
is the barrier synchronization included in the step
and neststep statements. In many cases, the need
for mutual exclusion disappears as it can be expressed
by suitably programming the concurrent write conflict
resolution of shared variables. Otherwise, the design
pattern for serializing computation is to determine the
next processor to do the critical computation, usually by
a prefix combine operation at the end of a superstep,
and then masking out all but that processor in the
computation phase of the following superstep.

At the time of writing, the run-time system of Nest-
Step, implemented on top of MPI, is operational. In mea-
surements on a Linux cluster supercomputer, NestStep
outperformed OpenMP (running on top of a distributed-
shared memory emulation layer) by a factor of up to
30 [14]. A front end (compiler) for NestStep is in
preparation.

IV. TEACHING PARALLEL PROGRAMMING

A. Parallel algorithmic paradigms

Many modern textbooks about (sequential) algorithms
teach algorithmic concepts and then present one or
several algorithms as incarnation of that concept. Many
of these concepts indeed have also a direct parallel
counterpart.

Fig. 4. Relative speedup of a parallel mergesort implementation in
NestStep where the merge function is not parallelized. Measurements
were done on a Linux cluster; the different speedup curves correspond
to different configurations of the NestStep runtime system [14].

For instance, divide-and-conquer (DC) is an impor-
tant algorithmic problem solving strategy in sequential
computing. A problem is split into one or more in-
dependent subproblems of smaller size (divide phase);
each subproblem is solved recursively (or directly if it is
trivial) (conquer phase), and finally the subsolutions are
combined to a solution of the original problem instance
(combine phase). Examples for DC computations are
mergesort, FFT, Strassen matrix multiplication, Quick-
sort or Quickhull.

In parallel computing, the parallel DC strategy al-
lows for a simultaneous solution of all subproblems,
because the subproblems are independent of each other.
Parallel DC requires language and system support for
nested parallelism, because new parallel activities are
created in each recursion step. However, a significant
speedup can generally be obtained only if also the work-
intensive parts of the divide and the combine phase
can be parallelized. This effect is often underestimated
by students. For instance, Figure 4 shows the relative
speed-up curve for a student’s implementation of parallel
mergesort that exploits the independence of subproblems
in the DC structure of mergesort but uses a sequen-
tial merge function for combining the sorted subarrays,
which leads to parallel time O�n� with n processors and
elements, rather than O�log� n� which can be achieved
if the merge function is parallelized as well to run in
logarithmic parallel time. If this phenomenon is not made
transparent to students in the form of a work-time-cost
analysis framework (see e.g. [6]), they wonder why their
“fully parallel” code does not scale to large numbers of
processors but shows saturation effects, as in Figure 4.

5

B. Textbooks and curricular issues

At Linköping university, about 300 undergraduate
students in computer science and closely related study
programs per year take one of our fundamental courses
on data structures and algorithms, usually in the second
year. However, only few of these (ca. 40 per year)
find their way into the optional, final-year course on
parallel programming, and only 4–8 PhD students every
second year sign up for a PhD-level course in parallel
programming. Beyond unavoidable diversification and
specialization in the late study phases, this may also be
caused by a lack of anchoring a fundamental understand-
ing of parallel computing in undergraduate education
and, as a consequence, in the mind of the students.

Part of this effect may be attributed to an underrepre-
sentation of parallel computing issues in the established
course literature on algorithms. Standard textbooks on al-
gorithms generally focus on sequential algorithms. Some
also contain a chapter or two on parallel algorithms, such
as Cormen et al. [3]. Up to now, we only know of a single
attempt to provide a unified treatment of both sequential
and parallel algorithms in a single textbook, by Miller
and Boxer [11]. However, their text, albeit fairly short,
covers many different parallel programming models and
interconnection network topologies, making the topic
unnecessarily complex for a second-year student.

Instead, we propose to take up parallel algorithmic
paradigms and some example parallel algorithms in a
second-year algorithms course, but based on a simple
parallel programming model, for instance an enhanced
BSP model as supported by NestStep.

C. Experiences in special courses on parallel computing

In a graduate-level course on parallel programming
models, languages and algorithms, we used the PRAM
model and the C-based PRAM programming language
Fork [6], which is syntactically a predecessor of Nest-
Step. That course contained a small programming project
realizing a bitonic-sort algorithm as presented in theory
in Cormen et al. [3] in Fork and running and evaluating
it on the SBPRAM simulator [9]. The goal was that the
students should understand the structure of the algorithm,
analyze and experimentally verify the time complexity
(O�log�N� with N processors to sort N elements).
Our experiences [10] indicate that the complementation
of the theoretical description of the parallel algorithm
by experimental work was appreciated, and that the
available tools (such as a trace file visualizer showing the
computation and group structure) helped in developing
and debugging the program. We expect similar results
for NestStep once a frontend will be available.

V. CONCLUSION

We have motivated why technical and teaching support
for explicit parallel programming gets more and more
important in the coming years. We have reviewed the
most important parallel programming models, elaborated
on an enhanced version of the BSP model, and described
the NestStep parallel programming language supporting
that model. Overall, we advocate a simple, structured
parallel programming model with deterministic consis-
tency and synchronization mechanism, which should be
accessible to a larger number of students and presented
earlier in the curriculum to create a fundamental un-
derstanding of parallel control and data structures. We
suggested a scenario how parallel programming concepts
could be added into a standard course on algorithms, that
is, relatively early in computer science education.

REFERENCES

[1] Olaf Bonorden, Ben Juurlink, Ingo von Otte, and Ingo Rieping.
The Paderborn University BSP (PUB) Library. Parallel Comput-
ing, 29:187–207, 2003.

[2] William W. Carlson, Jesse M. Draper, David E. Culler, Kathy
Yelick, Eugene Brooks, and Karen Warren. Introduction to UPC
and language specification. Technical Report CCS-TR-99-157,
second printing, IDA Center for Computing Sciences, May 1999.

[3] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.
Introduction to Algorithms. MIT Press, Cambridge, MA, 1990.

[4] High Performance Fortran Forum HPFF. High Performance
Fortran Language Specification. Sci. Progr., 2, 1993.

[5] Jonathan M. D. Hill, Bill McColl, Dan C. Stefanescu, Mark W.
Goudreau, Kevin Lang, Satish B. Rao, Torsten Suel, Thanasis
Tsantilas, and Rob Bisseling. BSPlib: the BSP Programming
Library. Parallel Computing, 24(14):1947–1980, 1998.

[6] Jörg Keller, Christoph Kessler, and Jesper Träff. Practical PRAM
Programming. Wiley, New York, 2000.

[7] Christoph Kessler. Managing distributed shared arrays in a bulk-
synchronous parallel environment. Concurrency – Pract. Exp.,
16:133–153, 2004.

[8] Christoph W. Keßler. NestStep: Nested Parallelism and Virtual
Shared Memory for the BSP model. The J. of Supercomputing,
17:245–262, 2000.

[9] Christoph W. Keßler. Fork homepage, with compiler,
SBPRAM simulator, system software, tools, and documentation.
www.ida.liu.se/�chrke/fork/, 2001.

[10] Christoph W. Kessler. A practical access to the theory of parallel
algorithms. In Proc. ACM SIGCSE’04 Symposium on Computer
Science Education, March 2004.

[11] Russ Miller and Laurence Boxer. Algorithms sequential &
parallel: A unified approach. Prentice Hall, 2000.

[12] OpenMP Architecture Review Board. OpenMP: a Proposed
Industry Standard API for Shared Memory Programming. White
Paper, http://www.openmp.org/, October 1997.

[13] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker,
and Jack Dongarra. MPI: The Complete Reference. MIT Press,
1996.

[14] Joar Sohl. A scalable run-time system for NestStep on cluster
supercomputers. Master thesis LITH-IDA-EX-06/011-SE, IDA,
Linköpings universitet, 58183 Linköping, Sweden, March 2006.

[15] Leslie G. Valiant. A Bridging Model for Parallel Computation.
Comm. ACM, 33(8), August 1990.

6

How to Construct Small Student Groups?

Tim Heyer
Karlstad University

651 88 Karlstad, Sweden

tim.heyer@kau.se

Abstract

Certain student activities in a computer science education are often performed in small
groups from 2 to 4 students. At Karlstad University these activities include e.g. program-
ming activities, writing activities (respondent and opponent), and inspection activities (au-
thor and inspector).

Our starting point was a course in Software Engineering where small student groups had
first to extend given software models and then to inspect another group’s models. Moreover,
each student had to write reports and to criticise other students’ reports.

Over time, we tried four different approaches to construct student groups for the inspection
and the critique: (1) we let the students find partners for the activities, (2) we provided a
list of student groups, (3) we used a paper list to let the students create groups dynamically
depending on their progress, and (4) we let the students create groups dynamically using a
web tool.

The fourth approach is the approach we consider must successful. The tool works basically
as follows. Each student registers once and provides name, email address, and telephone
number. To join a group for an activity, the student logs in and selects the activity from a
list provided by the tool. When a certain amount of students (for example twice the number
of students in a single group) expressed their interest to join a group, then the tool creates
a number of groups and informs the members by email.

When developing our approach, we tried to achieve the following goals: students groups
should vary (being confronted with different approaches to communication, problem solv-
ing et cetera should improve learning), students which are ready earlier should be able to
proceed earlier (otherwise a student could fail a course because of another student), and the
construction of group should require little time from the teacher (the time is better used for
teaching than for administration).

The first, second, and third approach above did not satisfied our goals. We found that
using a tool as briefly described above did satisfy our goals and we use the tool now in other
courses as well.

An Analysis of Gender Impact on Students’
Performance in a Written Examination of Software

Engineering
By

Kristian Sandahl
krs@ida.liu.se

Dept. of Comp. and Info. Sci.
Linköping University, Sweden

Abstract
The student groups in Software Engineering in Sweden are rather homogenous; most
of the students are men of age 19-26. At the department we have for long been aware
of that our examination instruments might wrongly discriminate women just because
instruments have evolved during a long time and set a tradition maintained from a
male perspective only. However, due to the scarcity of female students our knowledge
has been limited.
An opportunity for a fair comparison opened in 2004 in the course TDDB62 Software
Engineering. The course is given annually for students in the 4th year of the
curriculum for Industrial Engineering and Management, especially Computer Science.
On top of general courses in mathematics, management and engineering, the students
take classes in Computer Science for a year full-time studies. The course is also open
to international guest students. This group is very heterogeneous ranging from people
with only basic courses in programming to students aiming for a major in Computer
Science.
The course is organised in a theory part, a small lab. series and a project, where the
students work independently in groups of 6-8 students. The written exam is given in
the middle of the course and covers the general theory of Software Engineering only.
The exam is divided in a short-question part and an essay-problem part. The short
questions are random samples of the entire software life cycle and comprise either
questions for facts or small construction tasks. There are 10 questions giving
maximally 2 credits each. The essay questions requires longer answers and are made
up of larger comparisons between many concepts, larger construction tasks, or
analyses of state-of-practice in Software Engineering. There are 5 questions giving
maximally 10 credits each. The student selects 2 of the essay questions he/she wants
to answer. Maximum credit is 40 the passing threshold is 20.
The distribution of credits for short, essay and entire exam is shown in the box-plot on
next page. The thick lines represent the median value, the box represent 25 percentiles
below and above the median. The thin lines represent extreme values and circles
denote outliers. As can be seen, the median values are higher for male students in all
categories. However, the variance is high, so only the difference that is significant is
the difference on essay questions. The summary of the Mann-Witney test is appended.
The conclusion is that I as examiner have to be more careful in looking for true facts
in essay questions and not be fooled by verbose writing. I also have to be more
conscious about this when I present the examination forms during the lectures.
Scientifically, this is only one data point that needs further replication to yield general
conclusions. I challenge more people to collect similar data.
I’m indebted to Carl Cederberg and Gunilla Mellheden for the data collection.

3761 3761 3761N =

SEX

femalemale

40

30

20

10

0

-10

TOTALRES

ESSAY

SHORT

45
3251523635

45
45

 Ranks

 SEX N Mean Rank Sum of Ranks
male 61 52,86 3224,50
female 37 43,96 1626,50

SHORT

Total 98
male 61 54,26 3310,00
female 37 41,65 1541,00

ESSAY

Total 98
male 61 53,83 3283,50
female 37 42,36 1567,50

TOTALRES

Total 98

 Test Statistics(a)

 SHORT ESSAY TOTALRES
Mann-Whitney U 923,500 838,000 864,500
Wilcoxon W 1626,500 1541,000 1567,500
Z -1,504 -2,140 -1,936
Asymp. Sig. (2-tailed) ,133 ,032 ,053

a Grouping Variable: SEX

