
UNIVERSITY OF ZAGREB

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS

Anastasia Kruchinina

PARALLELIZATION OF THE
SYMMETRIC INDEFINITE

FACTORIZATION

Diploma Thesis

Advisor:
Prof. dr. sc. Sanja Singer

Zagreb, July, 2013

Ovaj diplomski rad obranjen je dana pred ispitnim povjerenstvom
u sastavu:

1. , predsjednik

2. , član

3. , član

Povjerenstvo je rad ocijenilo ocjenom .

Potpisi članova povjerenstva:

1.

2.

3.

To my mother and grandmother
For their love and encouragement

Contents

Contents iv

Introduction 3

1 Symmetric indefinite factorization 4
1.1 Algorithm . 4
1.2 Pivot strategies . 6

2 Error analysis of the complete pivoting 11
2.1 Floating-point arithmetic . 11
2.2 Backward error analysis . 11

3 Implementation 18
3.1 Parallelization on CUDA-enabled GPU 18
3.2 Implementation of complete pivoting . 21
3.3 Results . 28

4 Conclusion and future outlook 37

Bibliography 39

iv

Introduction

Parallel computing is a topic that became very popular in the last few decades. Parallel
computers are being used in many different areas of science such as astrophysics, climate
modelling, quantum chemistry, fluid dynamics and medicine. Parallel programming is a
type of programming where computations can be performed concurrently on different pro-
cessors or devices. There are two different approaches to parallel computing. One of them
is moving the sequential program to multiple cores, which optimized for execution of the
sequential code. The other one is the developing of programs for many-threads processors
with a large number of light weight threads, such as graphics processing units (GPUs).
There is a big difference in the design of many-threads GPUs and general-purpose CPUs.
Depending on the problem we choose one of these architectures. The main purpose of this
study is to develop an understanding of parallel programming on GPUs and implement an
algorithm for symmetric indefinite factorization for CUDA-enabled GPUs.

Symmetric indefinite matrices are matrices with both positive and negative eigenval-
ues. They are very important and they arise in many field of science. Some of those fields
are nonlinear optimization problems that use Newton’s method, certain methods in non-
linear programming, the augmented system of general least squares problems, discretized
incompressible Navier–Stokes equations, and control theory.

The symmetric indefinite factorization was introduced by Bunch and Parlett [4]. Piv-
ots of size 1×1 and 2×2 are used to reduce symmetric indefinite matrix A to block-diagonal
form:

PAPT = MDMT , (1)

where P is a permutation matrix, M is a lower triangular matrix with 1’s on the diagonal and
D is a block-diagonal with 1×1 and 2×2 blocks. Bunch and Parlett also suggest to use com-
plete pivoting to ensure the stability of the factorization. Furthermore, Bunch and Kauf-
man [3] developed a partial pivoting strategy which is less complex, but Ashcraft, Grimes,
and Lewis [1] have shown that it does not provide a bound for elements of matrix M. In the
same paper Ashcraft, Grimes, and Lewis introduced an improved version of the Bunch–
Kaufman pivoting which is usually called the bounded Bunch–Kaufman or rook strategy.

1

CONTENTS 2

One of the most important problems is the problem of finding solutions for linear sys-
tems. For solving linear system Ax = b, where matrix A is a symmetric indefinite, we
can use Gaussian elimination with pivoting to ensure stability. We find the LU factoriza-
tion of matrix A and after that we have to solve two triangular systems. The stability of
the factorization depends on the pivoting strategy which we use, and it costs O(n3). Solv-
ing triangular systems costs O(n2). Gaussian elimination does not take advantage on the
symmetry of the matrix A, because after the first stage of elimination matrix is no longer
symmetric. We are looking for a method which can use the symmetry to reduce cost and
storage.

Symmetric indefinite factorization is used for solving such systems. To obtain solu-
tion we have to find the symmetric indefinite factorization, solve two triangular systems
and solve several 2 × 2 systems for 2 × 2 blocks of the matrix D (for example by using
the Gaussian elimination). Therefore the complexity is again O(n3), but because of the
symmetry amount of operations and storage is halved.

By using the symmetric indefinite factorization we can also obtain the inertia of the
matrix. The inertia of the matrix is a triple (n+, n−, n0) where n+ is the number of positive,
n− of the negative and n0 of equal to zero eigenvalues. Every 2 × 2 block of the matrix
D is indefinite and therefore corresponds to one negative and one positive eigenvalues of
the original matrix A. In the factorization MDMT if the matrix D has p+ positive 1 × 1
diagonal blocks, p− negative 1 × 1 diagonal blocks, p0 zero 1 × 1 diagonal blocks, and q
2 × 2 diagonal blocks, then the inertia of matrix A is (n+, n−, n0) = (p+ + q, p− + q, p0).

Combined with the symmetric indefinite factorization, the block J-Jacobi methods be-
come accurate and efficient eigensolvers for symmetric indefinite matrices [7]. The first
phase of the eigensolver computes the symmetric indefinite factorization (1) of the initial
matrix A. An additional diagonalization of the diagonal blocks of D and the appropriate
scaling of the columns of M yield

PAPT = GJGT ,

where G is a non-singular lower block-triangular with diagonal 1 × 1 and 2 × 2 blocks,
and J = diag(j1, . . . , jn), where ji ∈ {−1, 1, 0}. Matrix J gives as an inertia of the original
matrix A.

Let’s consider the eigenproblem Ax = λx and premultiply it from the left with the ma-
trix GT we obtained in the first phase. We get GTGz = λJz where z = JGT x. Thus the
second part of the eigensolver computes the eigenvalues and eigenvectors of the positive
definite pair (A, J) where A = GTG is positive definite and J is diagonal matrix of signs.
This is equivalent to solving eigenproblem for J-symmetric matrix JGTG. The eigenval-
ues of JGTG and of the pair (GTG, J) are the non-zero eigenvalues of A. To compute this
eigenvalues Hari, Singer and Singer [7] suggest to use the hyperbolic singular value de-
composition of G by using one-sided version of the Jacobi-type algorithm by Veselić [15].

CONTENTS 3

The overall structure of this study has four chapters plus this introductory chapter.
Chapter 1 begins by laying out the symmetric indefinite factorization and the overview
of three popular pivoting strategies: complete, partial and rook. Chapter 2 presents an
overview of the error analysis of the factorization with complete pivoting. The explanation
and details about our implementation of the symmetric indefinite factorization on the GPU
is given in Chapter 3. Finally, Chapter 4 gives a brief summary and outlook on the possible
future work.

I would like to thank my scientific advisor prof. dr. sc. Sanja Singer for her guidance
and support, to Vedran Novaković for his helpful advices and explanations, and to all the
people who helped and motivated me.

Chapter 1

Symmetric indefinite factorization

In this Chapter we introduce the symmetric indefinite factorization for the dense symmetric
indefinite matrices. We will explain the construction of the factors and its properties. Also
we will consider three different pivot strategies for choosing permutation of the original
matrix which assures stability of the factorization.

1.1 Algorithm
Let us consider the LDLT factorization of the symmetric matrix A = LDLT , where L is
lower triangular matrix with 1’s on the diagonal and D is the diagonal matrix:[

−2 4
4 −7

]
=

[
1 0
−2 1

] [
−2 0

0 1

] [
1 −2
0 1

]
.

For every symmetric positive definite matrix this factorization exists and it is unique
and stable without pivoting. The problem is that for indefinite matrices this decompo-
sition becomes unstable or does not even exist because of the impossibility of bringing
large off-diagonal element to the pivot position by symmetric permutations. For instance,
decomposition fails on this simple example of 2 × 2 matrix:

A =

[
0 1
1 0

]
.

Interesting enough, that problem can be solved by a rather small increasing of the
complexity, by allowing 2×2 blocks in the matrix D. Therefore, we use block factorization
ΠAΠT = MDMT called the symmetric indefinite factorization, where Π is a permutation
matrix, M is a lower triangular, and D is a block diagonal. Whenever the matrix D has 2×2
block, matrix M has the identity matrix at the same position (see Figure 1.1). Elements of
the matrix M are usually called multipliers.

4

CHAPTER 1. SYMMETRIC INDEFINITE FACTORIZATION 5

M =

1

1

1

1

1

D =

Figure 1.1: Matrices M and D in the symmetric indefinite factorization

Let A ∈ Rn×n be a nonzero and symmetric. Therefore, we are able to find a permutation
matrix Π so that P is non-singular matrix of order 1 or 2 and so that

ΠAΠT =

[
P CT

C B

]
. (1.1)

Matrix P is usually called a pivot (analogy with Gaussian elimination) and there are
different pivot strategies for choosing it. In the Section 1.2 we will consider some of the
most popular pivot strategies. Once we choose Π, we can factorize A as

ΠAΠT =

[
Is 0

CP−1 In−s

] [
P 0
0 B −CP−1CT

] [
Is 0

CP−1 In−s

]T

. (1.2)

The process of choosing the permutation (1.1) and the factorization (1.2) of the matrix is
repeated recursively on the Schur complement B −CP−1CT .

Let denote A[n] := A and reduced matrix in the (n − k) stage with A[k]. One stage of the
factorization of the A[k] is presented in Algorithm 1.

Algorithm 1: One stage of the symmetric indefinite factorization
A[k] is reduced matrix;
begin

Choose 1 × 1 or 2 × 2 pivot P by some pivoting strategy;
Find multipliers C[k](P[k])−1;
Find Schur complement B −C[k](P[k])−1(C[k])T =: A[k−s] for s = 1 or 2;

The cost of the whole factorization without pivoting is approximately n3/3 and this
is the same as the cost of the Cholesky factorization of positive definite matrices. But
here we must add the cost of identifying and performing permutation, and this cost can be
significant.

This factorization is used for dense symmetric matrices because it does not preserve
sparsity. There are many examples of sparse matrices where only after one stage of the

CHAPTER 1. SYMMETRIC INDEFINITE FACTORIZATION 6

factorization, these matrices will have a lot of nonzero elements. For more information on
algorithms for symmetric indefinite factorization for sparse matrices see Ashcraft, Grimes,
and Lewis [1].

1.2 Pivot strategies
There exists a large number of pivoting strategies for the symmetric indefinite factoriza-
tion with different complexities and stability properties. In this section we will briefly
discuss three pivot strategies: complete, partial and rook. Here we can see the analogy
with Gaussian elimination. Complete pivoting needs O(n3) comparisons, partial strategy
O(n2) comparisons and rook between O(n2) and O(n3) depending on the initial problem.
All of them are backward stable, but only complete and rook strategies provide bound for
multipliers, i.e., elements of the matrix M.

Complete (Bunch–Parlett) pivoting
Complete pivoting was devised by Bunch and Parlett [4]. Let us define µ1 as the maximal
diagonal element by absolute value, and µ0 as the maximal element by absolute value in
the whole matrix (see Figure 1.2).

r

r

p

p q

q

µ1

µ0

Figure 1.2: Looking for the pivot

We want to choose 1 × 1 diagonal pivot µ1 whenever it is possible, and therefore we
will choose it when µ1 is not much smaller then complete pivot µ0. Otherwise, we need to
choose the complete pivot to avoid large element growth in the reduced matrix, in regard
to the original matrix A (for more details see Chapter 2).

Since it is impossible to bring complete pivot element at pivot position (1, 1) by sym-
metric permutations, we choose 2 × 2 pivot which has complete pivot as the off-diagonal
element (1, 2) (see Figure 1.3). Thus we have the complete pivoting presented in Algo-
rithm 2, where parameter 0 < α < 1.

CHAPTER 1. SYMMETRIC INDEFINITE FACTORIZATION 7

1

r

1 r

(a) 1 × 1 pivot

1
2

q
p

1 2 qp

(b) 2 × 2 pivot

Figure 1.3: Permutation of the matrix after choosing the pivot

Properties:
• backward stable (see more in Chapter 2),
• elements of the matrix M are bounded by max {1/α, 1/(1 − α)},
• diagonal blocks in the matrix D are well conditioned,
• it searches the whole reduced matrix at each stage, thus requires a total of O(n3)

comparisons.

Algorithm 2: Complete pivoting
A[k] is reduced matrix;
0 < α < 1;
begin

Find µ1 = maxi |A
[k]
ii | and the least integer r such that |A[k]

rr | = µ1;
Find µ0 = maxi j |A

[k]
i j | and the least row number p and the least column number q

in the pth row such that |A[k]
pq | = µ0;

if µ1 > αµ0 then
Use 1 × 1 pivot A[k]

rr ;
Interchange row and column 1 with r so that P[k] is maximal diagonal
element µ1;

else

Use 2 × 2 pivot
[
A[k]

pp A[k]
pq

A[k]
qp A[k]

qq

]
Interchange rows and columns 1 with p and 2 with q, so that P[k] has a
maximal off-diagonal element µ0 on position (1, 2);

CHAPTER 1. SYMMETRIC INDEFINITE FACTORIZATION 8

Partial (Bunch–Kaufman) pivoting
Partial pivoting strategy for the symmetric indefinite factorization was devised by Bunch
and Kaufman [3] and it is implemented in LAPACK as routine xSYTRF. It searches at most
two columns at each stage, thus it requires in total only O(n2) comparisons. The whole
strategy is given in Algorithm 3.

Algorithm 3: Partial pivoting
A[k] is reduced matrix;
0 < α < 1;
begin

Find γ1 = maxi,1 |A
[k]
i1 | and the least integer r , 1 such that |A[k]

r1 | = γ1;
if γ1 == 0 then

Go to the next stage; /* (0) */

if |A[k]
11 | ≥ αγ1 then

Use 1 × 1 pivot A[k]
11 ; /* (1) */

No interchanges required;

else
Find γr = maxi,r |A

[k]
ir |;

if |A[k]
11 |γr ≥ αγ

2
1 then

Use 1 × 1 pivot A[k]
11 ; /* (2) */

No interchanges required;

else if |A[k]
rr | ≥ αγr then

Use 1 × 1 pivot A[k]
rr ; /* (3) */

Interchange rows and columns 1 with r;

else

Use 2 × 2 pivot
[
A[k]

11 A[k]
1r

A[k]
r1 A[k]

rr

]
; /* (4) */

Interchange rows and columns 2 with r;

In the Bunch–Kaufman pivoting strategy we are again looking for the diagonal pivot
(1 × 1 pivot) whenever it is possible. We choose the diagonal pivot when it is not much
smaller then off-diagonal elements in the same row or column. These are the cases (1) and
(3) in the algorithm (see Figure 1.4). The case (2) may seem strange, but it is the condition
which is needed to prevent the growth of elements in reduced matrix in the case (4).

Higham [8] has given an analysis of the Bunch–Kaufman pivoting and has showed that
it is backward stable. One issue is that the elements of M are not bounded. The problem

CHAPTER 1. SYMMETRIC INDEFINITE FACTORIZATION 9

1

1

r

r

A11

Arr

γr

γ1

Figure 1.4: Possible pivots in Bunch–Kaufman strategy

arises when we compute the upper bound on elements of M for cases (2) and (4). The new
column of M in case (2) (or first new column of M in case (4)) is bounded by a multiple of
ratio γr/γ1 and there is no upper bound on it, so upper bound on elements of M does not
exist. The stability without bound on elements of M requires that large entries of M always
have to be scaled by small entries of D. As Ashcraft, Grimes and Lewis have noted, the
unusual aspect of the algorithm ensures precisely this. Therefore, elements of 2 × 2 blocks
of the matrix D produced in case (4) can be arbitrarily badly conditioned.

Properties:
• backward stable,
• no bound for elements of the matrix M,
• blocks in the matrix D can be badly conditioned,
• needs O(n2) comparisons.

Rook (bounded Bunch–Kaufman) pivoting
In some applications it is required to have bounded matrix M (see the modified Cholesky
algorithm [5]), but partial pivoting strategy does not provide this bound. To fix this problem
Ashcraft, Grimes, and Lewis devised rook pivoting strategy [1]. In their strategy authors
wanted to bound the elements of M, thus they put in the condition γr/γ1 = 1.

The algorithm is presented in Algorithm 4. In this strategy we are again looking for the
diagonal pivot whenever it is possible, therefore we have cases (1) and (2) in the algorithm.
If we are not lucky enough to find the pivot in these cases and the condition γr/γ1 = 1 is
not true in the case (3), we continue to search. So, we allow 2 × 2 block just when we are
able to obtain the upper bound on the elements of M.

We are searching for local maximum off-diagonal element in reduced matrix, i.e., an
off-diagonal element A[k]

ri that is simultaneously the largest in magnitude in both the rth row

CHAPTER 1. SYMMETRIC INDEFINITE FACTORIZATION 10

and the ith column. Ashcraft, Grimes and Lewis have conducted the probabilistic analysis
of the number of stages which are needed to find a local maximum off-diagonal element of
a random matrix and have shown that it is bounded above by en, where e ≈ 2.71828.

Properties:
• backward stable,
• elements of the matrix M are bounded,
• blocks in the matrix D are well conditioned,
• needs between O(n2) and O(n3) comparisons.

Algorithm 4: Rook pivoting
A[k] is reduced matrix;
0 < α < 1;
begin

Find γ1 = maxi,1 |A
[k]
i1 | and the least integer r , 1 such that |A[k]

r1 | = γ1;
if γ1 == 0 then

Go to the next stage; /* (0) */

if |A[k]
11 | ≥ αγ1 then

Use 1 × 1 pivot A[k]
11 ; /* (1) */

No interchanges required;

else
i = 1;
while pivot is not found do

Find the least integer r , i such that |A[k]
ri | = γi;

Find γr = max j,r |A
[k]
jr |;

if |A[k]
rr | ≥ αγr then

Use 1 × 1 pivot A[k]
rr ; /* (2) */

Interchange rows and columns 1 with r;

else if γi == γr then

Use 2 × 2 pivot
[
A[k]

ii A[k]
ir

A[k]
ri A[k]

rr

]
; /* (3) */

Interchange rows and columns 1 with i and 2 with r;

else
i = r, γi = γr;

Chapter 2

Error analysis of the complete pivoting

In Chapter 1 we have considered three pivoting strategies for the symmetric indefinite
factorization. All of them were backward stable. In this Chapter we provide an overview
of the analysis of the complete pivoting strategy given by Bunch [2]. We will find the
bound of the error matrix and show why it is important to have bounded element growth in
reduced matrices.

2.1 Floating-point arithmetic
Rounding errors are unavoidable consequences of working in finite precision arithmetic.
Let f`(exp) denote the computed value of the expression exp. We consider the standard
model of accuracy for basic arithmetic operations [9]:

f`(x op y) = (x op y)(1 + δ), |δ| ≤ u, op = +,−, ∗, /,

where δ is a relative error of performed operation and u is a unit round-off error which
represents an upper bound on the relative error due to rounding in floating point arithmetic,
i.e., every number lying in the range of floating point number system can by approximated
by an element of this system with the relative error no larger than u. This model holds for
most computers, in particular for IEEE standard arithmetic.

2.2 Backward error analysis
By performing computations in the finite precision arithmetic we obtain matrices M and
D, which represent exact factors of a slightly perturbed matrix A + F = MDMT , where F

11

CHAPTER 2. ERROR ANALYSIS OF THE COMPLETE PIVOTING 12

is the error matrix. Algorithm is backward stable if there exists a matrix F which is small
in some norm.

Let A[n] := A ∈ Rn×n be a nonzero symmetric matrix and A[k], k = 1, . . . , n a reduced
matrix of dimension k in the (n− k) stage of algorithm. If in some stage k we perform 2×2
pivoting, then matrix A[n−k] does not exist. We will use the array pivot to remember which
pivots were used for each reduced matrix:

pivot[k] =

1 if A[k] exists and for this reduced matrix we used 1 × 1 pivot,

2 if A[k] exists and for this reduced matrix we used 2 × 2 pivot,

0 if A[k] does not exist.

If we compute all the elements of A[k] in finite precision arithmetic then, in general,
matrix A[k] will not be symmetric due to round-off errors. We will perform computation
only on the lower part of matrix A[k] and simply define A[k]

ji = A[k]
i j for i < j. Therefore, the

error matrix F will be symmetric too.
It is important to mention that the error matrix F resulting from performing the de-

composition on the lower part of matrix A, in general, is not equal to matrix F̃ resulting
from performing the decomposition on the upper part of matrix A. However, Bunch [2] has
shown that F and F̃ obtain the same bound.

Now, we are going to bound the error matrix F in terms of the maximal elements
of reduced matrices. We assume that the original matrix is already permuted so that no
interchanges are required to decompose it with the complete pivoting.

Bounding error matrix F

First of all, let us combine two stages of the algorithm. Let s and t be pivots used for
reduced matrices A[k] and A[k−s], respectively. We have s := pivot[k] and t := pivot[k−s].
We define M[k] := C[k](P[k])−1. Then

A[k] = M[k]D[k](M[k])T =

[
Is 0

M[k] Ik−s

] [
P[k] 0
0 A[k−s]

] [
Is (M[k])T

0 Ik−s

]

=

 Is 0

M[k] It 0
M[k−s] Ik−s−t

 P[k] 0

0
P[k−s] 0

0 A[k−s−t]

 Is (M[k])T

0
It (M[k−s])T

0 Ik−s−t

 . (2.1)

In finite precision arithmetic we have errors in every stage of the calculation. Let A[k]
exact be

the reduced matrix of order k which we obtain by performing one stage in exact arithmetic

CHAPTER 2. ERROR ANALYSIS OF THE COMPLETE PIVOTING 13

and A[k]
finit be the reduced matrix which we obtain by performing one stage in finite precision.

Therefore

A[k]
finit = A[k]

exact + F[k] =

[
P[k] (C[k])T

C[k] A[k−s]

]
+

[
0s (θ[k])T

θ[k] H[k−s]

]
,

where F[k] is the error matrix which we obtain in this stage, θ[k] ∈ R(k−s)×s and H[k−s] ∈

R(k−s)×(k−s). Similarly A[k−s]
finit = A[k−s]

exact + F[k−s].
Using (2.1) it is easy to see that in two stages we obtain the error

F[k] + 0s ⊕ F[k−s] = F[k] +

[
0s 0
0 F[k−s]

]
.

Furthermore we can generalize this result and obtain the error matrix F:

F =

n∑
k=1

pivot[k],0

0n−k ⊕ F[k] =

n∑
k=1

pivot[k],0

[
0n−k 0

0 F[k]

]
,

or elementwise:

|Fi j| ≤

n∑
k=n− j+2
pivot[k]=1

max
i j
|H[k−1]

i j | +

n∑
k=n− j+3
pivot[k]=2

max
i j
|H[k−2]

i j |

+

max

j
|θ

[n− j+1]
j | if pivot[n − j + 1] = 1,

max
j
|θ

[n− j+1]
1 j | if pivot[n − j + 1] = 2,

max
j
|θ

[n− j+2]
2 j | if pivot[n − j + 1] = 0.

Bunch shows that the bounds of elements of the error matrix F[k] in one stage are equal:

• if pivot[k] = 1,

|F[k]| ≤ 2−tµ[k]
0

0 1 1 · · · 1
1
... (1 + 3/α + O(2−t))Jk−1

1

 , (2.2)

where Jk−1 is the matrix of order k − 1 with all elements equal to 1,

• if pivot[k] = 2,

CHAPTER 2. ERROR ANALYSIS OF THE COMPLETE PIVOTING 14

|F[k]| ≤ 2−tµ[k]
0

[
3(1 + α)

1 − α
+ O(2−t)

]

0 0 1 1 · · · 1
0 0 1 1 · · · 1
1 1
...

... (12 − α)/(3(1 + α))Jk−2

1 1

, (2.3)

where Jk−2 is the matrix of order k − 2 with all elements equal to 1.
From (2.2) and (2.3) we get for i ≥ j

|Fi j|2t ≤

(
1 +

3
α

+ O(2−t)
) n∑

k=n− j+2
pivot[k]=1

µ[k]
0 +

(
1 +

11
1 − α

+ O(2−t)
) n∑

k=n− j+3
pivot[k]=2

µ[k]
0

+

µ
[n− j+1]
0 if pivot[n − j + 1] = 1,

µ
[n− j+1]
0

[
3(1 + α)

1 − α
+ O(2−t)

]
if pivot[n − j + 1] = 2,

µ
[n− j+2]
0

[
3(1 + α)

1 − α
+ O(2−t)

]
if pivot[n − j + 1] = 0.

Note that

a
n∑

k=n− j+2
pivot[k]=1

µ[k]
0 + b

n∑
k=n− j+3
pivot[k]=2

µ[k]
0 ≤ (j − 1) max{a, b/2} max

n− j+2≤k≤n
µ[k]

0 ,

so we obtain the following bound for error matrix F:

|Fi j| ≤ 2−t max
n− j+2≤k≤n

µ[k]
0

[
(j − 1) max

(
1 +

3
α

+ O
(
2−t) , 1

2

{
1 +

11
1 − α

+ O
(
2−t)})

+

1 if pivot[n − j + 1] = 1,
3(1 + α)

1 − α
+ O

(
2−t) if pivot[n − j + 1] , 1.

 (2.4)

‖F‖1 ≤ 2−t max
1≤k≤n

µ[k]
0

[
1
2

n2 max
(
1 +

3
α

+ O(2−t),
1
2

{
1 +

11
1 − α

+ O(2−t)
})

+
1
2

n
(
3(1 + α)

1 − α
+ O

(
2−t))] . (2.5)

CHAPTER 2. ERROR ANALYSIS OF THE COMPLETE PIVOTING 15

Bound on element growth
Bounds (2.4) and (2.5) show the importance of preventing rapid growth of the elements
in the reduced matrix. We are looking for bounds on elements of the reduced matrix
A[k]. As before, we define maximal by absolute value element in the reduced matrix with
µ[k]

0 = maxi j |A
[k]
i j | and maximal by absolute value diagonal element with µ[k]

1 = maxi |A
[k]
ii |.

Maximal elements in the original matrix are µ0 := µ[n]
0 and µ1 := µ[n]

1 .
We consider both cases: when pivot matrix P is of order s = 1 and s = 2. Again, we

assume that all needed interchanges of rows and columns have already been made:

A[k] =

[
P CT

C A[k−s]

]
=

[
Is 0

CP−1 Ik−s

] [
P 0
0 A[k−s]

] [
Is 0

CP−1 Ik−s

]T

. (2.6)

• If pivot[k] = 1,

matrix P is of order 1 and |P| = µ[k]
1 > 0.

From (2.6) multipliers and elements of the reduced matrix A[k−1] are bounded with

max
i
|(CP−1)i| ≤

µ[k]
0

µ[k]
1

, (2.7)

max
i j
|A[k−1]

i j | ≤ µ[k]
0

1 − µ[k]
0

µ[k]
1

 . (2.8)

So, we can use the 1 × 1 pivot only if µ[k]
1 /µ

[k]
0 is bounded away from zero.

• If pivot[k] = 2,

matrix P is of order 2 and | det P| =: ν > 0.
From (2.6) multipliers and elements of the reduced matrix A[k−2] are bounded with

max
il
|(CP−1)il| ≤ µ

[k]
0

µ[k]
0 + µ[k]

1

ν
, for l = 1, 2, (2.9)

max
i j
|A[k−2]

i j | ≤ µ[k]
0

1 + 2µ[k]
0 (µ[k]

0 + µ[k]
1)

ν
. (2.10)

From above we can see that we can use the 2×2 pivot only if ν is bounded away from zero.
Therefore, we need to bound ν from below when we are not able to use the 1 × 1 pivot,

i.e., when µ[k]
1 /µ

[k]
0 is near zero. The next theorem says that the complete pivoting strategy

provides us the necessary bound.

CHAPTER 2. ERROR ANALYSIS OF THE COMPLETE PIVOTING 16

Theorem 2.2.1. Let A be a symmetric matrix, and let µ0 = maxi j |Ai j| and µ1 = maxi |Aii|.
If in one stage of the method with complete pivoting strategy we use pivot matrix P of order
2, then

µ2
0 − µ

2
1 ≤ | det P| ≤ µ2

0 + µ2
1.

Proof. Let

P =

[
A11 A12

A21 A22

]
,

where A12 = A21 = µ0 > µ1.
Therefore,

| det P| = |A11A22 − A2
12| = µ2

0 − A11A22 ≥ µ
2
0 − µ

2
1,

and
| det P| = |A11A22 − A2

12| ≤ |A11A22| + |A2
12| ≤ µ

2
0 + µ2

1. �

We want to find a number α where 0 < α < 1 whose usage in the complete pivoting
strategy will provide us the best bound on the element growth (see Section 1.2). We will
choose the 1 × 1 pivot whenever µ[k]

1 /µ
[k]
0 ≥ α and the 2 × 2 pivot otherwise.

Let us look on bounds which we can obtain from (2.7), (2.9), (2.8) and (2.10) by doing
two consecutive stages with 1 × 1 pivots and one stage with the 2 × 2 pivot:

for 1 × 1 pivot: µ[k]
0 ≤ µ

[k+2]
0

(
1 +

1
α

)2

,

for 2 × 2 pivot: µ[k]
0 ≤ µ

[k+2]
0

(
1 +

2
1 − α

)
.

(2.11)

If α = 0 (this case corresponds to the use of a pivot of order 1 in each iteration) or α = 1
(this case corresponds to the use of a pivot of order 2 in each iteration) then the bound goes
to infinity so the both cases are unstable. Let us find the optimal α to reduce the element
growth.

We seek for a minimum

G(α) = min
0<α<1

max

(
1 +

1
α

)2

, 1 +
2

1 − α

 .
The minimum will be reached if the terms on the right-hand side are equal, i.e., if(

1 +
1
α

)2

=

(
1 +

2
1 − α

)
.

The positive root of this quadratic equation is α0 = 1+
√

17
8 , so the minimum G(α0) is 9+

√
17

2 .

CHAPTER 2. ERROR ANALYSIS OF THE COMPLETE PIVOTING 17

Now we are able to bound the elements of reduced matrices using (2.11) for α0 = 1+
√

17
8 :

µ[k]
0 ≤ µ

[k+2]
0

9 +
√

17
2

 ≤ µ0

9 +
√

17
2

 n−k
2

< µ0(2.57)n−k.

This bound is overestimating. Bunch in [2] computed a better bound on elements in all the
reduced matrices:

max
k

max
i j
|A[k]

i j | <
√

n f (n)µ0(3.07)(n − 1)0.446, f (n) =

n∏
k=2

k1/(k−1).

Interesting enough that the obtained bound is no more than (3.07)(n − 1)0.446 times larger
than the bound for LU factorization with complete pivoting.

Complete pivoting strategy also provides bound on multipliers. Note that this bound
does not depend on the original matrix, just on the parameter α we chose. Using (2.7) and
(2.9) we obtain for α0 = 1+

√
17

8 :

max
i j
|Mi j| ≤

1
α
< 1.562 for 1 × 1 pivot,

1
1 − α

< 2.781 for 2 × 2 pivot.

From the analysis above we can conclude that α0 is the best candidate for the parameter
α. Therefore, in our implementation we will use α = α0. For further comments on this
topic, see Bunch [2], and Bunch and Parlett [4].

Chapter 3

Implementation

Graphics processing unit (GPU) is a device for PC or game console that performs graphic
rendering. Modern GPUs process and display computer graphics very efficiently. Due
to the specialized pipelined architecture, they process graphical information much more
effectively than typical CPU.

GPU can be used together with a CPU to accelerate general-purpose scientific and
engineering applications. NVIDIA cards support API extensions to the C programming
language [14] such as CUDA (Compute Unified Device Architecture) which allows CPU-
based applications to access directly the resources of a GPU for more general-purpose
computing without the limitations of using a graphics API.

In this Chapter we will give details about our implementation of the symmetric indef-
inite factorization with complete pivoting on GPU with CUDA and an overview of the
numerical results.

3.1 Parallelization on CUDA-enabled GPU
When we start working with GPU, we are faced with SIMT (Single Instruction–Multiple
Thread) architecture, i.e., one instruction is performed by many independent threads on
different data. The set of threads which are working on the same task is called grid. All of
these threads are being executed by scalar processors (SP) or CUDA Cores, which are part
of streaming multiprocessors (SM). The multiprocessor creates, manages, schedules, and
executes threads in groups of 32 parallel threads called warps, which are parts of larger
structures called blocks. For example, Fermi GPUs have 16 SMs and every one of them
has 32 CUDA Cores.

Multiple thread blocks can execute concurrently on one SM. The threads of the one
thread block can execute concurrently on just one SM, i.e., they cannot be divided between
different SMs, and therefore have access only to its resources. Thread blocks never mi-

18

CHAPTER 3. IMPLEMENTATION 19

grate from one SM to another. In one moment SM executes exactly one warp and after its
completion or while it is waiting for completing of some long-latency operation such as ac-
cessing global memory, SM is choosing another warp and starting to execute it. Therefore,
threads in one warp are implicitly synchronized.

GPU and CPU
There are fundamental differences in design styles of GPU and CPU (see Figure 3.1).

Control unit

Cache

DRAM

ALU

ALU

ALU

ALU

(a) CPU

DRAM

(b) GPU

Figure 3.1: Differences in design styles of GPU and CPU

First, the CPU comes with large caches. The cache memory is on-chip memory and
is designed to convert low latency memory accesses to short latency cache accesses by
keeping as many as possible data in the cache. So, in many cases when we need to catch
some data from DRAM which takes a long latency, we will find the needed data in the
cache. CPU also possesses many important control mechanisms which help to reduce la-
tency, for instance branch prediction and data forwarding. The branch prediction attempts
to avoid waste of time waiting until the conditional jump instruction has passed the execute
stage and tries to guess which way a branch will go before this is known for sure. Chosen
branch is then fetched and partially executed. If the guess was wrong, instructions are dis-
carded and the pipeline starts over with the correct branch, incurring a delay. Moreover,
after producing operation, execution unit puts results to register file and then catches back
this result for use by another operation. This takes some time. But with data forward-
ing technology we are able to use the result produced by previous instruction in the next
clock cycle without going to register files. In addition, CPU uses powerful ALUs which

CHAPTER 3. IMPLEMENTATION 20

reduce operation latency. Because of these properties CPU design style is often referred as
latency-oriented [11].

On the other side, the GPU design style is commonly referred to as throughput-oriented
design. The GPU usually comes with very small caches which help to control bandwidth
requirements so that all multiple threads that access the same memory location don’t need
go to the DRAM. GPU use energy efficient ALU and have a very simple control mecha-
nisms, thus they have long operation latency and there are no techniques such as branch
prediction or data forwarding. So, we have a large number of threads which take a po-
tentially long time to execute. But hardware takes advantage of this situation and pushes
some threads to work while others are waiting for long latency memory access or arithmetic
operations.

Thus CPUs are great for task parallelism, i.e., to perform different calculations on the
same or different sets of data, and GPUs are great for data parallelism when each scalar
processor performs the same task on different pieces of distributed data. So CPU + GPU is
a powerful combination because CPU consists of a few cores optimized for serial process-
ing, while GPU consists of thousands of smaller, more efficient cores designed for parallel
computations. Serial portions of the code run on the CPU while parallel portions run on
the GPU. This is a reason why CUDA programming model supports both GPU and CPU
executions of an application. CUDA C is an extension of the programming language C
with additional keywords and application programming interfaces.

Traditionally CPU is called the host and GPU is called the device. The function that
executes on the device and can be called from the host is called kernel. Actually, it executes
as a grid of blocks of threads, which execute the same code on different data stored in GPU
memory. Kernel must be declared with a specific qualifier (global , device or/and
host), which determines which compilers are used to compile it.

The basic princip of programming on GPU with CUDA is following:
1. prepare data and define kernel functions,
2. load data from CPU to GPU,
3. start kernel function,
4. load data from GPU to CPU.

CUBLAS library
The NVIDIA CUDA Basic Linear Algebra Subroutines (CUBLAS) library is a GPU-ac-
celerated version of the complete standard BLAS library. It is freely available as a part
of the CUDA Toolkit. CUBLAS allows the user to access the computation resources of
NVIDIA GPU. It supports all 152 standard routines for single, double, complex, and dou-
ble complex precision plus extensions for writing and retrieving data from the GPU. Note

CHAPTER 3. IMPLEMENTATION 21

that the CUBLAS library uses column-major storage, and 1-based indexing for maximum
compatibility with Fortran.

3.2 Implementation of complete pivoting
The symmetric indefinite factorization with complete pivoting presented in Algorithm 2
was implemented for CUDA-enabled GPU using CUBLAS library. The algorithm for
symmetric indefinite factorization has two main parts which depend of each other and
repeat iteratively: choosing pivot and computing reduced matrix.

Choosing pivot
Before implementing some algorithm we need to decide how to store data in the memory.
The input for symmetric indefinite factorization is one matrix A of order n and the outputs
are two factors M and D and permutation matrix Π.

Matrix M has 1’s on the diagonal. As it was mentioned in Chapter 1 if D has 2 × 2
block on the diagonal then, in the corresponding place, matrix M has the identity matrix.
Therefore, we can store both factors M and D into the same matrix. Additionally, in every
stage we only need the reduced matrix, so computed parts of matrices M, D and the reduced
matrix can overwrite the original matrix A. So, we need to allocate memory for just one
matrix of order n and remember which pivot we were using in every stage.

One possibility is to store permutation vector and pivots in separate vectors, where the
permutation vector is just a compact representation of the permutation matrix and vector of
pivots is similar to vector pivot which was used in Chapter 2. In our implementation we
use a different way to store the needed information. The similar approach was used in the
implementation of symmetric indefinite factorization with Bunch-Kaufman pivot strategy
in LAPACK function DSYTRF.

In every stage we are only working with the reduced matrix and interchange first row
and column with another row and column in this reduced matrix (or two first rows and
columns with another two rows and columns if we choose the 2 × 2 pivot). Therefore we
need to store just numbers of rows and columns with which we made interchanges. To
distinguish 2×2 from 1×1 pivots we add negative sign to the second number when we are
using the 2 × 2 pivot.

For example, we made the following interchanges on a matrix of order 4:
1. 1 × 1 pivot: 1←→ 3,
2. 2 × 2 pivot: 2←→ 2 and 3←→ 4,
3. 1 × 1 pivot: 4←→ 4.

where i ←→ j means that we interchange rows and columns i and j. Then we obtain the
following vector of interchanges: I =

[
3 2 −4 4

]T
.

CHAPTER 3. IMPLEMENTATION 22

Therefore, as the result we obtain vector of interchanges by which we can easily obtain
the permutation matrix Π such that ΠT AΠ = LDLT and retrieve information about pivots.
To obtain matrix Π we are going from the last element of vector I to the first (i.e., from the
last interchange to the first) and in some way we reconstruct history of interchanges. For
example, the permutation matrix Π obtained from vector of interchanges I is equal to

Π =
[
4 2 1 3

]T

(see Figure 3.2). The advantage of this approach is that we are able to store all needed
information in just one vector, rather than two.

start →

3 2 -4 4 →

3 2 -4 4 →

3 2 -4 4 →

3 2 -4 4 →start →

1 2 0 1pivot =

↑

4 2 1 3

1 2 4 3

1 2 4 3

1 2 3 4

= Π

Figure 3.2: Restoring permutation vector Π and pivot vector

The next question is in what way we shall store a matrix in the GPU global memory.
The matrix is symmetric so we are only using its lower or upper triangle. Therefore, we can
store the whole squared matrix in GPU memory and work with just one triangle. Otherwise
we can store matrix as a vector in a packed format (just one triangle stored column by
column in one array). The second approach uses less memory but to access a random
element in the matrix we need to compute its position in vector, which can significantly
increase execution time.

We tried both approaches and by using the packed format we achieved a significant
speedup in the contrast with the first whole-matrix storage format (more than 5 times on
matrices of order 10000). In our implementation we did not need to access random ele-
ments in matrix very often and we used specialized functions for working with matrices in
packed format provided by CUBLAS library. The matrix was stored in two parts: vector
A which contained the whole matrix with zero diagonal (we will call it the matrix-vector)
and the vector D which contained its diagonal (we will call it the diagonal-vector).

Working with a matrix in a packed format involves some complications during comput-
ing of the indexes. Here we provide functions for converting indexes of the whole matrix

CHAPTER 3. IMPLEMENTATION 23

to index of the matrix in a packed format (when the upper triangle of the matrix is stored
row by row) and reverse:

1 __host__ __device__

2 int f2Dto1D(const int row, const int col, const int N)

3 {

4 return row*(2*N-1-row)/2 + col; ;

5 }

6

7 __host__ __device__

8 void f1Dto2D(const int ind, const int N, int *rowA, int *colA)

9 {

10 int row = 0, col;

11 int count;

12 double b=2*N+1, d;

13

14 d = b*b - 8 * (ind-1);

15 row = floor((b-sqrt(d))/2);

16 *rowA = row;

17

18 count = (2*N-row)*(row+1)/2;

19 col = N-count+ind;

20

21 *colA = col;

22 }

Listing 3.1: Functions for converting indexes

The packed storage format is very helpful for searching pivots. To find maximum by
absolute value off-diagonal and diagonal elements in the reduced matrix, we just need two
calls of CUBLAS function cublasIdamax on corresponding parts of matrix-vector and
diagonal-vector.

After we know the indexes of maximum by absolute value off-diagonal and diagonal
elements, we are able to decide which pivot to choose according to the complete pivoting.

Compute reduced matrix
In the previous part we explained how to choose a pivot. Now we will explain how to
compute the reduced matrix. According to the chosen pivot we will do the following steps:

if the 1 × 1 pivot P was chosen then
1. swap rows and columns to put the pivot element on pivot position,

CHAPTER 3. IMPLEMENTATION 24

2. compute one rank-one update A = A − PCCT for the reduced matrix A,
3. compute multipliers.

if the 2 × 2 pivot P was chosen then
1. swap rows and columns to put pivot element on off-diagonal position in the 2 × 2

pivot,
2. compute eigendecomposition of the pivot matrix QPQT = Λ,
3. compute two rank-one updates A = A − (CQ)Λ−1(CQ)T for the reduced matrix A,
4. compute multipliers.

Now we explain every step with more details. Interchanges of row p and column q
are performed on GPU in three steps. For easier explanation, here we consider the whole
squared matrix A of order n and represent needed interchanges using lower triangle of this
matrix (see Figure 3.3):
• A(p, i)←→ A(q, i) for i = 1, . . . , p − 1,
• A(i, p)←→ A(i, q) for i = q + 1, . . . , n,
• A(i, p)←→ A(q, i) for i = p + 1, . . . , q − 1,
• A(p, p)←→ A(q, q),

where A(l, k) ←→ A(n,m) means interchange of elements A(l, k) and A(n,m). In addition,
for a matrix stored in the packed format we need to convert indexes using functions from
Listing 3.1.

q

qp

p

Figure 3.3: Interchanging rows and columns

We divide the process of computing the reduced matrix A if 2 × 2 pivot was chosen
on three steps. Computing explicit inverse of P can be unstable, so we first find its spectral
decomposition

QPQT = Λ =

[
a 0
0 b

]
,

and compute the reduced matrix A as two rank-one updates:

A = A −CP−1CT = A − (CQ)Λ−1(CQ)T = A − a(CQ):1(CQ)T
:1 − b(CQ):2(CQ)T

:2,

CHAPTER 3. IMPLEMENTATION 25

where (CQ):i for i = 1, 2 means ith column of the matrix CQ. Similarly for multipliers:

CP−1 = CQΛ−1QT =
[
a(CQ):1 b(CQ):2

]
QT .

Rank-one update for matrices stored in packed format is implemented in function
cublasDspr provided by CUBLAS library. To improve accuracy we decided to com-
pute eigendecomposition on host by using LAPACK function DLAEV2. Therefore we need
to load the pivot data from GPU to CPU and we are doing it by using mapped memory.

Mapped memory

For the host and all the devices of compute capability 2.0 and higher one single address
space is used. This space is used for allocations made on the device or on the host via
function cudaHostAlloc. Which memory (host or device) a pointer points is determined
automatically. There are two types of memory which can be used to allocate memory
on CPU: pinned and non-pinned memory. Pages of memory which is non-pinned can be
moved from physical memory to disk or their location can be changed. Allocation stored
in the pinned memory is always in physical memory and it will never be swapped out, so
devices can fetch it without the help of CPU.

CUDA drivers use direct memory access (DMA) to transfer data between CPU and
GPU. If data is allocated in the non-pinned memory, it is first transferred from the non-
pinned memory to the buffer in the pinned memory and only after that to the GPU. There-
fore, by using pinned memory we skip the first step of transferring data to the buffer in the
pinned memory. The GPU memory size does not limit the size of the mapped host mem-
ory, thus it can be used when there is not enough memory on GPU. However the pinned
memory is a limited resource. Any memory defined as being pinned must always be in
RAM. Thus, that leaves less space in RAM for other system applications.

There is another advantage of the pinned memory. The block of the pinned memory can
also be mapped into the address space of the device and provide asynchronous transparent
access to the data without requiring an explicit programmer initiated copy. Such allocation
can be done by putting cudaHostAllocMapped flag to cudaHostAlloc function, which
returns pointer to allocated memory on the host. Device pointer to this mapped memory
can be obtained by calling cudaHostGetDevicePointer.

Since the mapped pinned memory is shared between the host and the device, the appli-
cation must synchronize memory accesses to avoid any potential errors caused by simul-
taneous memory access. Therefore, we need to put cudaDeviceSynchronize between
kernel which writes data to the mapped memory and the function on CPU which uses
written data:

1 write_to_mapped_mem<<<grid, block>>>(DEVICE_MAPPED_DATA, ...);

CHAPTER 3. IMPLEMENTATION 26

2 cudaDeviceSynchronize();

3 compute_pivot(CPU_MAPPED_DATA, ...);

Listing 3.2: Using mapped memory

There is also a danger that compiler will make some optimizations because it assumes
that just the current CPU can change the value. Therefore, we must put the volatile
keyword to the declaration of the array CPU MAPPED DATA in function compute pivot in
Listing 3.2 to prevent compiler to change the code (by assuming that the data does not
change in ways it does not know about). Thus it will reload this array from memory every
time it is read in code.

Hierarchical data format files (HDF5)
In our implementation we use hierarchical data format files (HDF5) for storing test ma-
trices. HDF5 is a file format and a library designed to store and organize large amounts
of data. We are working with matrices stored in the packed format and HDF5 library
provides us the possibility for reading/writing just one triangle of the matrix column by
column from/to the HDF5 file. HDF5 file consists of two major objects:
• group – a container of other groups and datasets,
• dataset – a multidimensional array of data of the same type.

Dataspace defines the size and shape of the dataset. In HDF5 there are three kinds of
dataspaces: scalar, simple and null. We are interested in the simple dataspace because it
defines a multidimensional array of elements. The dimensionality of the simple dataspace
is fixed and is defined at the creation time. The size of the each dimension can grow during
its lifetime, from the current size up to the maximum size specified during the creation. To
define a simple dataspace one can use H5Screate simple.

So, suppose we have a squared matrix stored in the HDF5 file. We wish to read just
one triangle of the matrix and store it in the packed format. We have to do following:

1. define dataspaces in file and in memory,
2. select part of the dataset in file from which we want to read data and select part of

the dataset in memory where we want to write data,
3. transfer data from selected part of the dataset in file to selected part of the dataset in

memory.
We need to do similar steps for writing matrix into a file. There are two forms of selection
provided by HDF5: hyperslab and point. Hyperslab allows us to select rectangle region
in the dataset and point selection allows us to select individual points. An HDF5 hyperslab
is a rectangular pattern defined by four arrays: offset (starting location), stride (distance
between elements in the selection), count (number of the elements) and block (dimension
of selected blocks). The function H5Sselect hyperslab performs the selection.

CHAPTER 3. IMPLEMENTATION 27

We can do the reading or writing of the selected data by using function H5Dread and
H5Dwrite provided by HDF5 library. Example of reading an upper triangle of matrix
stored in the HDF5 file to matrix-vector A and diagonal-vector D is presented in List-
ing 3.3.

1 // reading NxN matrix from HDF5 file

2 // matrices A and D have been allocated before

3 int num = 0;

4 for(i = 0; i < N; ++i)

5 {

6 // selection in dataset in file

7 offset[0] = i;

8 offset[1] = i;

9 count[0] = 1;

10 count[1] = N-i;

11 H5Sselect_hyperslab (dataspace, H5S_SELECT_SET, offset,

12 NULL, count, NULL);

13

14 // selection in dataset in memory

15 offset[0] = 0;

16 offset[1] = num;

17 count[0] = 1;

18 count[1] = N-i;

19 H5Sselect_hyperslab (memspace, H5S_SELECT_SET, offset,

20 NULL, count, NULL);

21

22 // read data from one selection to another

23 H5Dread (dataset, H5T_NATIVE_DOUBLE, memspace,

24 dataspace, H5P_DEFAULT, A);

25 D[i] = A[num];

26 A[num] = 0;

27 num += N-i;

28 }

Listing 3.3: Reading matrix from HDF5 file and storing it in packed format

By reading just one half rather the whole matrix, we avoid the need to store the whole
matrix into the memory, and read/write operations are performed 4 to 5 times faster.

CHAPTER 3. IMPLEMENTATION 28

3.3 Results
Algorithm for the symmetric indefinite factorization with complete pivoting was imple-
mented for GPU using CUDA 5.5 RC. The host part was implemented in C. In this section
we first present the performance analysis of our implementation which was made using the
NVIDIA Visual Profiler. In the second part we give the obtained numerical results.

All the experiments to measure the performance of the implementation were conducted
primarily on an NVIDIA Tesla S2050 graphics card with 3 GBs of memory, and Intel Xeon
X5620 processor, 2.40 GHz with 4 dual-cores. Algorithm was coded in the C programming
language and compiled with NVIDIA nvcc compiler, version 5.5.0, with -O3 optimization
level. All the references to LAPACK functions are actually references to the corresponding
Intel MKL 11.0.4 implementations.

Profiler results
The NVIDIA Visual Profiler is a tool that allows us to visualize and optimize the perfor-
mance of CUDA application. It provides a statistical summary of the events observed in the
application and helps to identify the bottlenecks of the program. Visual Profiler constructs
a timeline which contain a row for the each type of kernel executed by the application.
Near the name of the each kernel is a label with the ratio of its execution time to the total
execution time. Every row consists of intervals which indicate the total execution time of
all instances of that kernel compared to the total execution time of all kernels. The time-
line generated for our program with the random matrix of order 3000 input is presented in
Figure 3.4.

Figure 3.4: Timeline

Some of these kernels are from the CUBLAS library and we cannot influence on their
performance. With the orange rectangles we denote our kernels. Note that the first two
kernels in the timeline are the most expensive ones, together they require more than 80%
of the total execution time. The first one of them performs rank-one updates and the second
one computes maximum by absolute value off-diagonal element in reduced matrices. The

CHAPTER 3. IMPLEMENTATION 29

white lines crossing the timeline are periods without any useful work. They caused by
function CudaDeviceSynchronize, which blocks the host thread until the device has
completed all preceding requested tasks. This synchronization is needed before reading
data from mapped memory.

The options Zoom In/Zoom Out allows us to see more details about kernel’s execution
time, for example we can consider just one step of the factorization (see Figure 3.5).

Figure 3.5: One step of the algorithm in timeline

Profiler can collect different performance counters. In a single run it can collect
only a few of them. For more counters we need multiple runs, which is done by Visual
Profiler automatically. In Figure 3.6 we give the summary counters for all kernels in our
implementation. Again, we denote our kernels with the orange rectangle.

Figure 3.6: NVIDIA Visual Profiler counters

Warp execution efficiency is a ratio of the average active threads per warp to the max-
imum number of threads per warp supported on a multiprocessor. Branch efficiency is a
measure of how many branches diverged in a warp. So for kernels update diagonal and
mapping we can conclude that there is no divergent branches in a warps. Global store/read
memory efficiency counter gives the ratio of the global memory store/load throughput re-
quested by the kernel to the actual global memory store/load throughput required for the
kernel. For the mapping kernel global store memory efficiency is equal 400%, that means
that requested by kernel store throughput is four times more than actual store throughput. It
happens because some accesses to global memory are coalesced or combined to the single
access.

CHAPTER 3. IMPLEMENTATION 30

Numerical results
For testing purposes, random symmetric indefinite matrices of order n, with equidistant
spectra in interval [−n, n − 1], were generated in MATLAB [12].

Sequential implementation of the factorization was implemented in C using LAPACK.
It was compiled by Intel icc compiler, version 13.1.2, with the optimization level -O3.
Timing and achieved speedup of the parallel implementation for these random matrices, in
the relation to the sequential one, is given in Figure 3.7, where n denotes the dimension of
the test matrix. The sequential implementation is faster for matrices up to order 1000. The
reason for this is that the parallel implementation needs time for initialization of CUDA.

0 500 1,000 1,500 2,000
0

1

2

3

n

Time, sec

Sequential
Parallel (GPU)

0.2 0.4 0.6 0.8 1

·104

4

6

8

10

12

n

Speed-up

Figure 3.7: Time for sequential and parallel implementations and achieved speed up

Speed is very important for the scientific computations, but before computing fast, one
has to compute correctly. The features supported by the GPU are encoded in the compute
capability number. Current generations of GPUs support both single and double precision
defined in IEEE 754 standard [10].

As explained in the whitepaper [16], because of the difference in architecture, the re-
sults on CPU and GPU will not be the same. Floating point operations are not associative.
By using more threads we rearrange operations, therefore the same sequence of operations
on CPU and GPU may not be performed and we may not got the same numerical result.

The plots in Figure 3.8 are the results of successive computations of the relative error
‖A − MDMT ‖/‖A‖ as a function of the matrix size, where ‖ · ‖ is the matrix infinity norm.
We show a relative errors for three different random symmetric indefinite matrices for every
order n for both sequential and parallel implementations.

CHAPTER 3. IMPLEMENTATION 31

200 400 600 800 1,000

2

4

6

8

·10−15

n

Relative error

Sequential
Parallel (GPU)

1,000 2,000 3,000 4,000 5,000 6,000

1

2

3

·10−14

n

Relative error

Sequential
Parallel (GPU)

Figure 3.8: Relative error for random matrices of order n. For every n was taken three
different matrices.

It is interesting to see the results of the factorizations that used only 1 × 1 or 2 × 2
pivots in every step. Implementation distinguishes these two cases and performs different
actions, as was explained in the previous section. Since the case of the 1 × 1 pivot needs
less computations, we expect that the algorithm will be faster on positive definite matrices
(that is when the algorithm uses 1× 1 pivot every time). However, by using the 2× 2 pivot,
we perform less steps (we use one 2 × 2 pivot instead of two 1 × 1 pivots).

As test matrices we used Hadamard and symmetric Clement (or Kac) matrices gen-
erated using MATLAB [12]. Hadamard matrix is a symmetric indefinite of 1’s and −1’s
whose columns are orthogonal, and in algorithm it always takes 1 × 1 pivots.

Clement matrix is a tridiagonal matrix with zeros on its main diagonal and known
eigenvalues, which include plus and minus the numbers n − 1, n − 3, n − 5, . . . , (1 or 0).
Because of its structure in algortihm it always takes 2 × 2 pivots.

In Figures 3.11 and 3.14 we have the factorization data and plots of the element growth
maxi j |A

[n−k]
i j |/maxi j |Ai j| on each stage, where A is the original matrix and A[n−k] is the re-

duced matrix on stage k. Factorization data includes order of the matrix, its rank, the total
number of swaps separately for both 1 × 1 and 2 × 2 pivots, the total number of pivots,
execution time and relative error. Pivots 1 × 1 and 2 × 2 on each stage are colored in blue
and red, respectively.

Furthermore, it is interesting to see how the matrix is changing throughout the stages.
We show the pictures of the Hadamard matrix on different stages. Large elements of the
matrix are colored in red, and the smaller ones are blue. In Figure 3.15 we have a lower
triangle of the Hadamard matrix of order 512 on 1st (original), 101st, 205th, 322nd, 421st

CHAPTER 3. IMPLEMENTATION 32

Hadamard matrix
Desc.: matrix of 1’s and −1’s

with orthogonal columns
Order 1024
Rank 1024
1 × 1 swaps 0
2 × 2 swaps 0
1 × 1 pivots 1024
2 × 2 pivots 0
Time 0.34 sec
Rel. error 0

Figure 3.9: Factorization data Figure 3.10: Elements growth

Figure 3.11: Hadamard matrix

Clement matrix
Desc.: tridiagonal matrix with

zeros on its main diagonal
Order 1024
Rank 1024
1 × 1 swaps 0
2 × 2 swaps 930
1 × 1 pivots 0
2 × 2 pivots 512
Time 0.29 sec
Rel. error 6.14 × 10−16

Figure 3.12: Factorization data Figure 3.13: Elements growth

Figure 3.14: Clement matrix

and 512th (final) stage of the factorization. We can see the construction of matrices M and
D (here D is diagonal because matrix A is positive definite) which overwrite the original
matrix in each stage. At the end of algorithm, matrix M uncovers its amazing fractal
structure, called Sierpinski carpet.

We tested our implementation on a number of matrices drawn from The university of
Florida sparse matrix collection [6]. We used dense matrices from different applications to
demonstrate a wide spectrum of problems where the symmetric indefinite matrices arise.

CHAPTER 3. IMPLEMENTATION 33

(a) Original matrix (b) Stage 101 (c) Stage 205

(d) Stage 322 (e) Stage 421 (f) Final matrix

Figure 3.15: Factorization of the Hadamard matrix (lower triangle)

We present the data of three of them in Figures 3.16, 3.18 and 3.20.
The plots 3.17, 3.19 and 3.21 show the elements growth for these matrices, where blue

and red points indicate that 1 × 1 and 2 × 2 pivot was used in this stage, respectively. The
names of matrices we used are the same as in the collection.

Singular matrices

Our code is designed mainly for dense non-singular matrices, but it can also be used for
singular matrices. Factorization is regarded as complete if the absolute value of elements
of the reduced matrix becomes less than a given tolerance. In that case, our program will
return the computed rank of the original matrix. The tolerance depends on the magnitude
of elements in the original matrix. More precisely, it is equal to the product of maximum
by absolute value element in the original matrix and the machine epsilon. Note that rank
can be underestimated or overestimated if we have an inappropriate tolerance.

CHAPTER 3. IMPLEMENTATION 34

Alemdar matrix
Desc.: Finite-element matrix
Order 6245
Rank 6245
1 × 1 swaps 3632
2 × 2 swaps 2581
1 × 1 pivots 3635
2 × 2 pivots 1305
Time 9.8 sec
Rel. error 4.689 × 10−14

Figure 3.16: Factorization data Figure 3.17: Elements growth

human gene1 matrix
Desc.: Human gene network
Order 22283
Rank 22283
1 × 1 swaps 21970
2 × 2 swaps 278
1 × 1 pivots 22003
2 × 2 pivots 140
Time 7.6 min
Rel. error 4.620 × 10−15

Figure 3.18: Factorization data Figure 3.19: Elements growth

astro-ph matrix
Desc.: Collaboration network
Order 16706
Rank 15668
1 × 1 swaps 7003
2 × 2 swaps 8660
1 × 1 pivots 7006
2 × 2 pivots 4331
Time 2.7 min
Rel. error 2.977 × 10−15

Figure 3.20: Factorization data Figure 3.21: Elements growth

CHAPTER 3. IMPLEMENTATION 35

The famous Hilbert matrix has a full rank, but it is very ill-conditioned, and it is hard to
compute its rank numerically. For Hilbert matrix of order 2000, MATLAB function rank
gives us the result 25 and our implementation with the tolerance as explained above gives
us the result 30. The example of a successful computation of rank is the alemdar matrix
(see Figure 3.16).

Dependence on the parameter α

The important question that arises when dealing with symmetric indefinite factorization
is when to take the 2 × 2 rather than 1 × 1 pivot. By complete pivoting we choose the
1 × 1 pivot when maximum by absolute value diagonal element µ1 in the reduced matrix
is not much smaller then maximum by absolute value off-diagonal element µ0, i.e., when
µ1/µ0 > α for some 0 < α < 1. In Chapter 2 we have shown that the parameter α which
prevents the rapid growth of elements is equal to

α0 =
1 +
√

17
8

.

Others values of the parameter α are also possible, but then the respective bounds on
elements will be larger or go to infinity. In Table 3.1 we give the relative errors of computed
factorizations for three matrices (astro-ph and alemdar used before, and one random
matrix of order 3000) when using different parameters α. Highlighted row corresponds to
the parameter equal to the optimal α0. We denote the more accurate results with the red
colour. Note that some of these results are obtained for non-optimal parameters.

α astro-ph 3000 alemdar
0.01 3.938794e-15 1.766888e-14 4.971599e-14
0.15 2.757264e-15 1.766888e-14 4.884935e-14
0.29 3.137581e-15 1.766888e-14 4.599203e-14
0.43 3.282157e-15 1.766888e-14 4.507927e-14
0.57 3.274952e-15 1.824500e-14 4.721938e-14
α0 2.977507e-15 1.721470e-14 4.689740e-14

0.71 2.956007e-15 1.753908e-14 4.127681e-14
0.85 2.946825e-15 2.050335e-14 4.011067e-14
0.99 1.703524e-14 7.376952e-14 4.573181e-14

Table 3.1: Relative errors for different parameters α

CHAPTER 3. IMPLEMENTATION 36

GJGT factorization

In the introduction we briefly explained the method for computing eigenpairs for symmetric
indefinite matrices that uses the symmetric indefinite factorization. The first part of this
method is computing the factorization PAPT = GJGT of original matrix A (called GJGT

factorization), where G is a lower block-triangular and J is diagonal matrix with 1’s, -1’s
and 0’s on the diagonal. Authors in [13] used a Fortran routine for generation of the needed
matrices G and J. Firstly, they computed symmetric indefinite factorization with complete
pivoting and after that transformed obtained matrices M and D to the matrices G and J. We
compared the results from their Fortran routine (written in a 128-bit extended precision)
with results obtained with our CUDA C implementation. Diagonalization of matrix D and
scaling of M was implemented in a separated CUDA C program. Obtained relative errors
for matrices of order n are given in Figure 3.22.

0 1,000 2,000 3,000 4,000
0

2

4

6

8

·10−14

n

Relative error

GJGT Fortran
GJGT CUDA C

Figure 3.22: Relative errors for Fortran and CUDA C implementations for GJGT

factorization

Chapter 4

Conclusion and future outlook

In this final chapter we will briefly review the goals that we have achieved throughout this
thesis. We will summarize and bring together the main results and ideas covered in this
work, make final comments which include suggestions for improvement and future work.

The purpose of this thesis was to study and implement the symmetric indefinite fac-
torization for dense matrices on GPU. In Chapter 1 we introduced the factorization and
discussed the most popular pivot strategies. The complete pivoting is the most stable of
them and it can be efficiently implemented for GPU. Therefore, for our implementation
we chose the complete pivoting. In Chapter 2 we have presented an analysis of complete
pivoting following the results of Bunch [2] and have showed that it is backward stable and
provides bound for the multipliers. The latter is important for several algorithms, such as
modified Cholesky factorization. In Chapter 3 we provided the details of our implementa-
tion and obtained numerical results. These results have shown that the factorization with
complete pivoting can be efficiently implemented on GPU and our implementation gave
very accurate results.

In [13] it was pointed out that the implementation of symmetric indefinite factorization
is the essential missing part of the complete GPU-based symmetric indefinite Jacobi-type
eigensolver. It would be interesting to replace the missing part with our implementation
and compare obtained results with the already existing ones.

Implementation of the symmetric indefinite factorization was developed for dense ma-
trices and cannot be used effectively for sparse matrices. Ashcraft, Grimes and Lewis [1]
address the sparse problem and discuss the constraints imposed by the goal of preserving
sparsity. They have shown that sparsity prevents the application of the techniques that were
used to solve the dense problem, and have developed different approaches. The next step
could also be the parallelization of that suggested algorithms on GPU.

In applications can arise very large matrices that cannot fit within the global memory.
For example, the finite element matrix in practical applications often has the dimension of

37

CHAPTER 4. CONCLUSION AND FUTURE OUTLOOK 38

order of tens or hundreds of thousands. Tesla S2050 provides 3 GB of global memory.
Matrices of order 30 thousands or more cannot be computed with our algorithm using this
GPU. If we need to compute the factorization for a larger matrix, we have two choices: to
find a machine with larger memory or use the so called out-of-core algorithm where factors
are stored on the disk. The disk-to-memory bandwidth is usually about two orders of mag-
nitude lower than memory-to-processor bandwidth. Therefore, the out-of-core algorithm
needs to take care about the disk input/output accesses. Therefore, the possible direction
of a similar study is the out-of-core implementation.

Bibliography

[1] C. Ashcraft, R. G. Grimes, and J. G. Lewis, Accurate symmetric indefinite linear
equation solvers, SIAM Journal on Matrix Analysis and Applications 20 (1999), 513–
561.

[2] J. R. Bunch, Analysis of the diagonal pivoting method, SIAM Journal on Numerical
Analysis 8 (1971), 656–680.

[3] J. R. Bunch and L. Kaufman, Some stable methods for calculating inertia and solving
symmetric linear systems, Math. Comp. 31 (1977), 163–179.

[4] J. R. Bunch and B. N. Parlett, Direct methods for solving symmetric indefinite systems
of linear equations, SIAM Journal on Numerical Analysis 8 (1971), 639–655.

[5] S. H. Cheng and N. J. Higham, A modified Cholesky algorithm based on a symmet-
ric indefinite factorization, SIAM Journal on Matrix Analysis and Applications 19
(1998), 1097–1110.

[6] T. A. Davis and Y. Hu, The university of florida sparse matrix collection, ACM Trans-
actions on Mathematical Software 38 (2011), 1:1–1:25.

[7] V. Hari, S. Singer, and S. Singer, Full block J-Jacobi method for Hermitian matrices,
Techn. rep., Dept. of Mathematics, Univ. of Zagreb, 2010, submitted for publication.

[8] N. J. Higham, Stability of the diagonal pivoting method with partial pivoting, SIAM
Journal on Matrix Analysis and Applications 18 (1997), 52–65.

[9] , Accuracy and stability of numerical algorithms, 2nd ed., Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, USA, 2002.

[10] IEEE 754-2008, standard for floating-point arithmetic, August 2008.

[11] D. B. Kirk and W. W. Hwu, Programming massively parallel processors: A hands-
on approach, 2nd ed., Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2013.

39

[12] MATLAB, The Mathworks Inc., Natick, Massachusetts, 2010.

[13] V. Novaković and S. Singer, A GPU-based hyperbolic SVD algorithm, BIT 51 (2011),
1009–1030.

[14] NVIDIA CUDA C Programming guide, June 2011.

[15] K. Veselić and V. Hari, A note on one-sided Jacobi algorithm, Numer. Math. 56
(1989), 627–633.

[16] N. Whitehead and A. Fit-Florea, Precision & performance: Floating point and IEEE
754 compliance for NVIDIA GPUs, Nvidia technical white paper, NVidia, 2011.

Sažetak

Simetrična indefinitna faktorizacija je ekvivalent faktorizaciji Choleskog za matrice koje
su simetrične, ali nisu pozitivno definitne. U takvoj faktorizaciji uvijek se primjenjuje
pivotiranje i pivoti su 1 × 1 ili 2 × 2 matrice. Algoritam se može iskoristiti za rješavanje
indefinitnih linearnih sustava i kao prva faza algoritma za traženje svojstvenih vrijednosti
simetrične indefinitne matrice. Cilj ovog diplomskog rada je paralelizacija algoritma za
simetričnu indefinitnu faktorizaciju s potpunim pivotiranjem na grafičkoj kartici (GPU).
Numerička testiranja pokazuju ubrzanje i dobru točnost u usporedbi sa sekvencijalnom
verzijom.

Summary

The symmetric indefinite factorization is an equivalent to the Cholesky factorization for
matrices that are symmetric, but not positive definite. This factorization uses some kind of
pivoting, and takes 1 × 1 or 2 × 2 matrices as pivot elements. This algorithm can be used
for solving symmetric indefinite linear systems and as the first stage of solving symmetric
indefinite eigenvalue problem. The goal of this thesis is a parallelization of the algorithm
for symmetric indefinite factorization with complete pivoting on a graphics processing unit
(GPU). Numerical testing shows improvement in speed and good accuracy compared to
the sequential version.

Biography

I was born on the 18th of December 1991 in Orehovo-Zuevo (Russian Federation). After
finishing school, I enrolled at the Faculty of Applied Mathematics and Control Processes
of Saint-Petersburg State University. After moving to Croatia, I continued my studies at
the University of Zagreb’s Faculty of Science, at the Department of Mathematics. After
successfully completing my undergraduate degree programme in Mathematics, I enrolled
at the University’s graduate programme in Computer Science and Mathematics.

	Contents
	Introduction
	Symmetric indefinite factorization
	Algorithm
	Pivot strategies

	Error analysis of the complete pivoting
	Floating-point arithmetic
	Backward error analysis

	Implementation
	Parallelization on CUDA-enabled GPU
	Implementation of complete pivoting
	Results

	Conclusion and future outlook
	Bibliography

