

Anastasia Kruchinina

Uppsala University

October 2015

Anastasia Kruchinina

What is quantum chemistry?

Quantum chemistry - understanding properties of matter at a subatomic scale.

Which scales we are talking about:

- electronic cloud of an isolated atom: 1 Å = 10^{-10} m
- size of the nucleus: 10^{-14} m (10000 times smaller!)
- vibration period of the molecular bond: 1 fs = 10^{-15} s

Quantum chemistry calculations: modelling very small size systems during very short time

Anastasia Kruchinina

⁽http://www.particleadventure.org/)

Modelling steps

Applications

- modelling complex biological systems (DNA studies)
- drug design (preselecting molecules as potential good candidates)
- materials industry (selecting materials with the right properties)
- chemical industry
- food industry
- . . .

Mathematical model

The **Schrödinger equation** rules the interactions between nuclei and electrons.

Non-relativistic time independent form (eigenvalue problem):

Mathematical model

Born-Oppenheimer approximation:

Assume that nuclei are fixed and do not move. Compute electronic wavefunction.

Then the total ground state energy is

 $E = E_{electrons} + E_{nuclei}$

Electronic structure is the state of motion of electrons in an electrostatic field created by stationary nuclei.

Electronic structure calculations: numerically determination of electronic structure and predicting properties of matter from it.

$Mathematical\ model$

 $E_{electrons} - ?$

Electronic Schrödinger equation:

$$H_{el}\Phi = E\Phi, \quad \Phi = \Phi(\text{coord. of electrons})$$

Mathematical model

 $E_{electrons} - ?$

Electronic Schrödinger equation:

$$H_{el}\Phi = E\Phi$$
, $\Phi = \Phi$ (coord. of electrons)

Another approximation:

assume the form of the wavefunction – Φ expressed using single-particle wavefunctions ψ_i

Numerical discretization

Discretization of the single-particle wavefunction ψ_i

- Finite difference
- Finite elements; localized basis functions

Chosen basis set $\{\chi_j\}_{j=1}^m$

$$\psi_i = \sum_{j=1}^m \frac{C_{ji}\chi_j}{i}, \quad i = 1, \dots, N$$

$Solution \ method$

Our non-linear eigenvalue problem:

$$\widehat{H}(C)C = EC$$

(1) fix C, compute
$$\widehat{H}$$

(2) solve $\widehat{H}C = EC$ to get new C
(3) if not converged, return to step (1)

$Solution \ method$

Our non-linear eigenvalue problem:

$$\widehat{H}(C)C = EC$$

(1) fix *C*, compute
$$\widehat{H}$$

(2) solve $\widehat{H}C = EC$ to get new *C*
(3) if not converged, return to step (1)

Direct diagonalization is too expensive! We want linear scaling!

Implementation

- quantum chemistry program "Ergo"
- Chunks and Tasks programming model

Plans and goals

- Parallelize Ergo using Chunks and Tasks
- Controlling errors due to approximations, only one threshold value!

Thank you for your attention!

