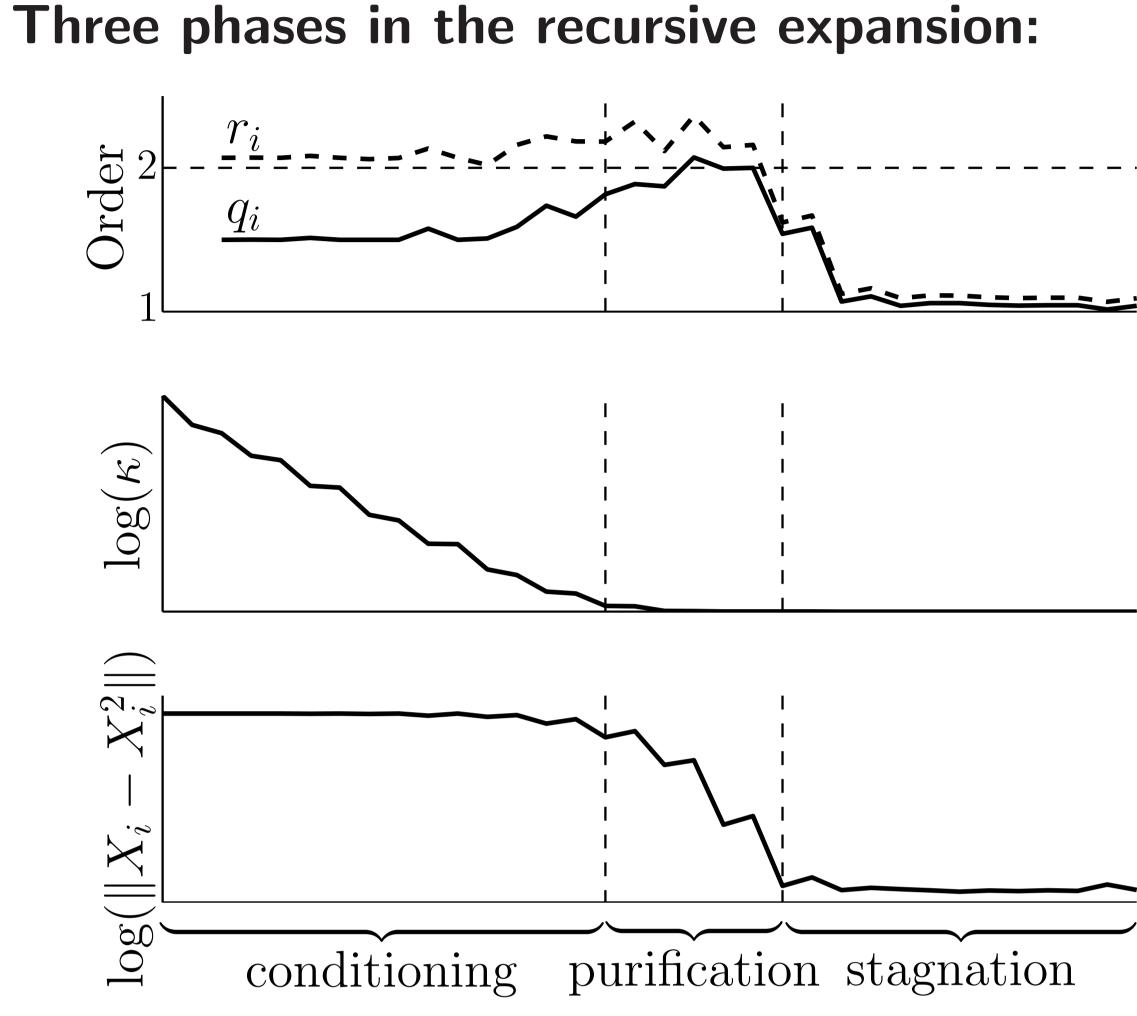


Introduction



Theory

Given recursive expansion polynomials f_i : $e_i = \|X_i - X_i^2\|_2$ Theoretical order of convergence q satisfies:

$$\lim_{i o\infty}rac{e_i}{e_{i-1}^q}=C^{lpha}$$

Observed order of convergence in iteration *i*:

$$q_i := rac{\log(e_i/C_{\infty})}{\log(e_{i-1})} \Rightarrow r_i := rac{\log(e_i/C_q)}{\log(e_{i-1})}$$

Our solution [1]: find smallest C_q such that
 $r_i \ge q \quad \Leftrightarrow \quad C_q \ge rac{e_i}{c^q}$

 e_{i-1}^q Compute r_i in every iteration. If $r_i < q$, expansion reached stagnation phase (stop expansion).

How to find C_q ?

- ▶ find $\max_{x \in [0,1]} \frac{f_i(x) f_i(x)^2}{(x x^2)^q}$
- ightarrow q > 1 is the theoretical order of convergence
- \blacktriangleright due to possible small perturbations of the order, use $\tilde{q} < q$

Use Frobenius or mixed [2] norm for large systems: $\|X_i - X_i^2\|_2 \le \|X_i - X_i^2\|_M \le \|X_i - X_i^2\|_F$

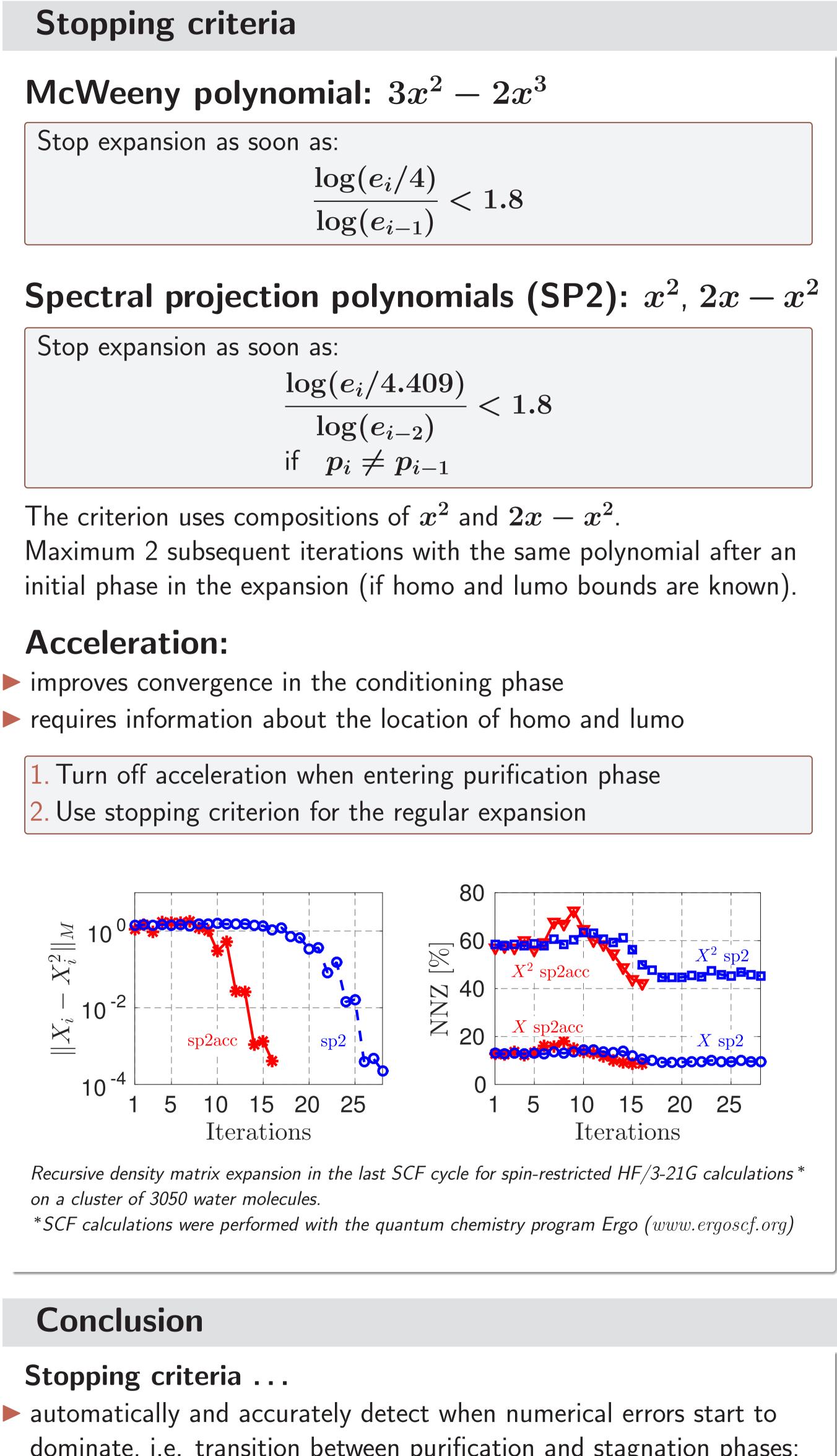
Parameterless stopping criteria for density matrix expansions

Stopping criteria

 $\log(e_{i-1}$

Stop expansion as soon as:	
$\log(e_i/4.409)$	/ 1
$\overline{\log(e_{i-2})}$ <	
if $p_i eq p_{i-1}$	

Acceleration:



on a cluster of 3050 water molecules.

Conclusion

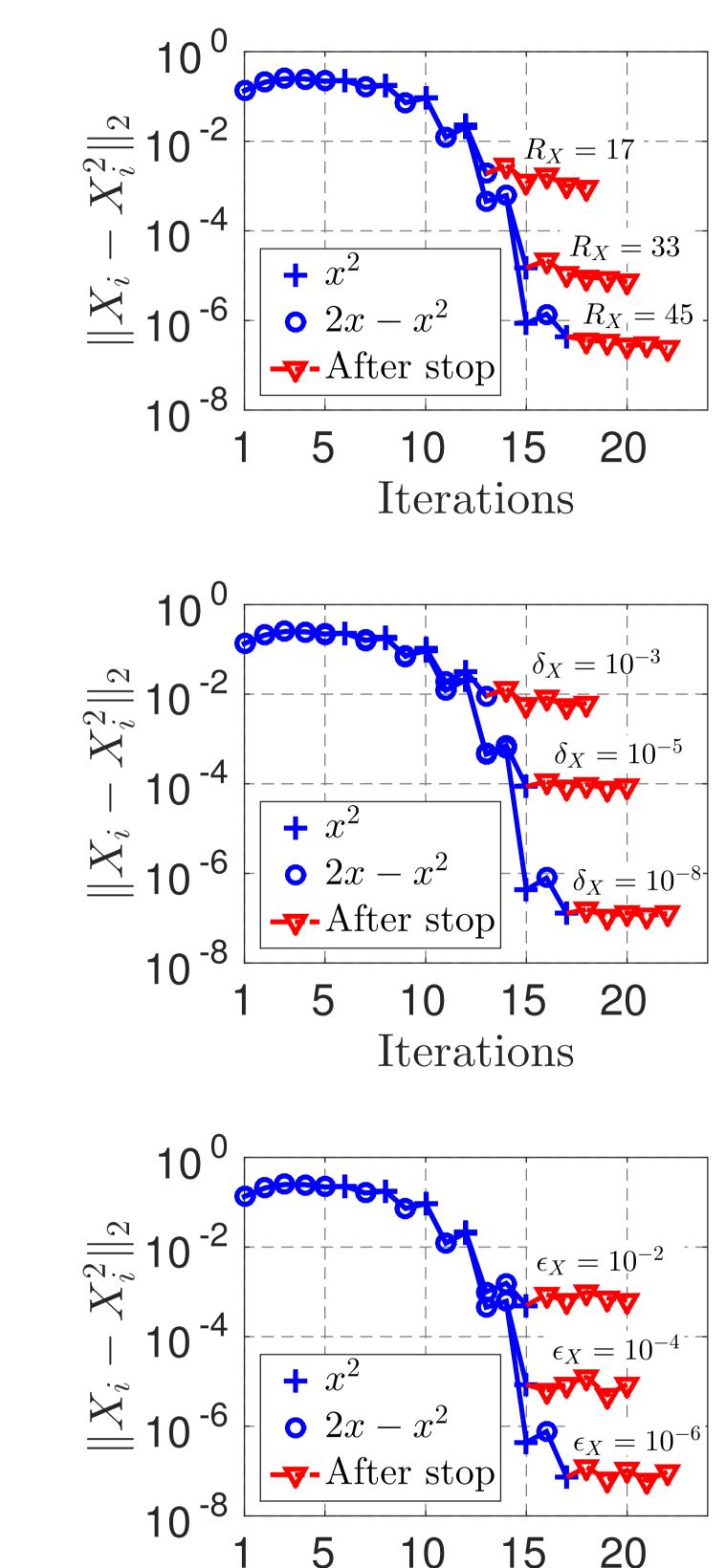
Stopping criteria . . .

automatically and accurately detect when numerical errors start to dominate, i.e. transition between purification and stagnation phases; do not require any user defined parameter; are general, can be derived for various choices of polynomials; can be used for various strategies for removal of small matrix elements; can be used for dense and sparse matrices; ▶ are easy to implement.

Anastasia Kruchinina, Elias Rudberg, and Emanuel H. Rubensson

Department of Information Technology, Uppsala University, Sweden

Results



Iterations

Recursive density matrix expansion based on SP2 polynomials. Hamiltonian matrix coming from converged HF/STO-3G calculations * on a linear alkane molecule $C_{160}H_{322}$.

Acknowledgements

Support from the Göran Gustafsson foundation, the Swedish research council (grant no. 621-2012-3861), the Lisa and Carl–Gustav Esseen foundation, and the Swedish national strategic e-science research program (eSSENCE) is gratefully acknowledged.

References

- for density matrix expansions in electronic structure calculations," *arXiv:1507.02087*, July 2015.

Cutoff radius based truncation with cutoff radius R_X [a.u.].

Magnitude based truncation with threshold value δ_X .

Truncation with **control of** the error in the occupied subspace.

 $\sin \theta < \epsilon_X$, where θ is the largest canonical angle between the exact and perturbed subspaces.

[1] A. Kruchinina, E. Rudberg, and E. H. Rubensson, "Parameterless stopping criteria

[2] E. H. Rubensson and E. Rudberg, "Bringing about matrix sparsity in linear scaling electronic structure calculations," J. Comput. Chem., vol. 32, pp. 1411–1423, 2011.

anastasia.kruchinina@it.uu.se