
The Chunks and Tasks
parallel programming model

Emanuel H. Rubensson, Elias Rudberg, Anton Artemov, Anastasia Kruchinina

Department of Information Technology, Uppsala University, Sweden

Introduction

We propose Chunks and Tasks, a parallel programming model built
on abstractions for both data and work. The application programmer
focuses on parallel algorithm development and on exposing
parallelism in both work and data.
The programmer divides work into smaller units called tasks and data
into smaller pieces called chunks. The library maps tasks and chunks
to physical resources.

The Chunks and Tasks interface

The chunk and task abstractions are key to Chunks and Tasks.

I Chunk abstraction: The user defines chunk classes used to store
data and chunk children. A chunk is registered by passing its control
to the Chunks and Tasks library, and is read-only after that. In return
a chunk identifier is received that can be used to specify
dependencies.

I Task abstraction: A task type is defined by a number of input
chunk types, the work to be performed and a single output chunk
type. In a task registration the user specifies the task type and
identifiers for input chunks.

Example:
quad-tree matrices and trace computation

CHT_TASK_TYPE_IMPLEMENTATION((Trace));

cht::ID Trace::execute(Matrix const & A) {

if (lowestLevel) {

CDouble result = computeTraceExplicitly();

return registerChunk(new CDouble(result),

cht::persistent);

}

cht::ID id1 = registerTask<Trace>(A.children[0]);

cht::ID id2 = registerTask<Trace>(A.children[3]);

return registerTask<Sum>(id1,id2,cht::persistent);

}

References
http://www.chunks-and-tasks.org

E.H. Rubensson, E. Rudberg, Chunks and Tasks: A programming model for
parallelization of dynamic algorithms, Parallel Computing, 2013

E.H. Rubensson, E. Rudberg, Locality-aware parallel block-sparse matrix-matrix
multiplication using the Chunks and Tasks programming model, arxiv:1501.07800,
2015

Performance of block-sparse matrix multiplication

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

Fill factor

W
a
ll 

c
lo

c
k
 t
im

e
 (

s
)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

Fill factor

T
F

lo
p

/s

 

 

Theoretical peak
ACML peak
Chunks and Tasks 

Multiplication of 80000×80000 block-sparse matrices represented by quad-trees of chunks, running on

30 nodes (480 cores) on the Tintin cluster.

0 2 4 6 8 10 12

x 10
6

0

20

40

60

80

100

120

140

160

No. of basis functions

W
a
ll 

ti
m

e
 [
s
]

 

 

25 nodes

50 nodes

100 nodes

30 40 50 60 70 80 90 100
1

1.5

2

2.5

3

3.5

4

No. of nodes

S
p
e
e

d
u

p
 w

.r
.t

. 
2

5
 n

o
d

e
s
 c

a
s
e

 

 

ideal
mat size 5335120
mat size 3437525
mat size 2054101

Timings and scaling for symmetric matrix square computations on the Tintin cluster. Left: Timings

for computations on overlap matrices for water clusters of varying size. Nearly linear system-size

scaling is observed. Right: Scaling with respect to number of nodes. The speedups are relative to the

25 nodes case. We get closer to ideal speedup when the matrix size is increased.

A pilot implementation

I Implemented using C++, pthreads, and MPI-2.
I Workers spawned using MPI_Comm_spawn().
I Workers operate a task scheduler and a chunk management service.
I The distribution of work is based on task stealing.
I Recently used chunks are cached.

0 100 200 300 400 500
0

5

10

15

20

25

30

35

No. of worker processes

W
a

ll 
ti
m

e
 [

s
]

 

 

CombBLAS
CHTML

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5

4

No. of worker processes

W
a
ll 

ti
m

e
 [
s
]

 

 

CHTML

Weak scaling test of sparse matrix-matrix multiplication comparing our Chunks and Tasks quadtree

approach (CHTML) with the Sparse SUMMA algorithm as implemented in the Combinatorial BLAS

library (CombBLAS).

Summary

I Developed for dynamic hierarchical algorithms.
I Scalable: No “master node” managing all work or data.
I No explicit communication calls in user code.
I Determinism, freedom from race conditions and deadlocks.
I Feasible to implement efficient backends.
I Fail safety: local recovery possible.

Acknowledgements

Support from the Göran Gustafsson foundation, the Swedish research council, the Lisa
and Carl–Gustav Esseen foundation, and the Swedish national strategic e-science
research program (eSSENCE) is gratefully acknowledged. Computational resources
provided by SNIC at UPPMAX.

http://www.it.uu.se {emanuel.rubensson, elias.rudberg, anton.artemov, anastasia.kruchinina}@it.uu.se


