The Chunks and Tasks
parallel programming model

UPPSALA
UNIVERSITET Emanuel H. Rubensson, Elias Rudberg, Anton Artemov, Anastasia Kruchinina
Department of Information Technology, Uppsala University, Sweden
Introduction Performance of block-sparse matrix multiplication
We propose Chuﬁnks and Tasks, a parallel programming model built - ;
on abstractions for both data and work. The application programmer o0 .
focuses on parallel algorithm development and on exposing el 2 1
parallelism in both work and data. o al
- . . . = 200t %; : ; ;
The programmer divides work into smaller units called tasks and data 3 _— /6/9/9,&
. . . S 150f .
into smaller pieces called chunks. The library maps tasks and chunks 5 IR S S
to physical resources. ! —Theorstioal pea |
501 - --ACML peak
‘ j j j —e—Chunks and Tasks
. 0 ' ' ' ' 0 ' ' ' '
The Chunks and Tasks interface S M 0 Mo
_ Multiplication of 80000%X 80000 block-sparse matrices represented by quad-trees of chunks, running on
The chunk and task abstractions are key to Chunks and Tasks. 30 nodes (480 cores) on the Tintin cluster.
» Chunk abstraction: The user defines chunk classes used to store 160 D O 2
data and chunk children. A chunk is registered by passing its control e] ggg) o matsize 5895120
to the Chunks and Tasks library, and is read-only after that. In return | g | marsze A
a chunk identifier is received that can be used to specify ?ZZ o
' = =25
dependencies. 0 47 .]
» Task abstraction: A task type is defined by a number of input 0 pS L~ |2 ;s
chunk types, the work to be performed and a single output chunk 20 " |-==100 nodes| 15
type. In a task registration the user specifies the task type and 4 s 8 10 12 o e s oo
. R . No. of basis functions x 10° No. of nodes
identifiers for input chunks.
Timings and scaling for symmetric matrix square computations on the Tintin cluster. Left: Timings

for computations on overlap matrices for water clusters of varying size. Nearly linear system-size
scaling is observed. Right: Scaling with respect to number of nodes. The speedups are relative to the

Example:
quad-tree matrices and trace computation

25 nodes case. We get closer to ideal speedup when the matrix size is increased.

A pilot implementation
CHT_TASK_TYPE_IMPLEMENTATION((Trace));

cht::ID Trace::execute(Matrix const & A) { » Implemented using C+-+, pthreads, and MPI-2.
if (lowestLevel) A » Workers spawned using MPI_Comm_spawn ().
CDouble result = computeTraceExplicitly(); » Workers operate a task scheduler and a chunk management service.

return registerChunk(new CDouble(result),

» The distribution of work is based on task stealing.
cht: :persistent);

» Recently used chunks are cached.

cht::ID idl = registerTask<Trace>(A.children[0]); >/ - CombBLAS| ; ey
cht::ID id2 = registerTask<Trace>(A.children[3]); goe~emIME p P -
return registerTask<Sum>(idl,id2,cht::persistent); > ol
} - y .
o220 LY D
= =
Chunk Task = =
+writeToBuffer() #registerTask() g oy g“
+assignFromBuffer() #registerChunk()
+getSize() #copyChunk () o~
+memoryUsage () #getInputChunkID() /
+getChildChunks () A 5L U VTR UUURIUUOE SEUURURUROS = . 0.5
Library JA\ o o~ 6 o o)
L 0 R ; ; ; 0
0 100 200 300 400 500 0 100 200 300 400 500
User code " No. of worker processes No. of worker processes
Trace Weak scaling test of sparse matrix-matrix multiplication comparing our Chunks and Tasks quadtree
CDouble S TInput: Matrix approach (CHTML) with the Sparse SUMMA algorithm as implemented in the Combinatorial BLAS
double x um +output: CDouble library (CombBLAS).
+writeToBuffer() +input: CDouble, CDouble +execute()
+assignFromBuffer() +output: CDouble
+getSize() +execute() Summary

Matrix

children (2x2)
matrix elements

» Developed for dynamic hierarchical algorithms.

» Scalable: No “master node” managing all work or data.

+writeToBuffer()

+assignFromBuffer() T -

rgetsize() @ . » No explicit communication calls in user code.

+getChildChunks () W o o
» Determinism, freedom from race conditions and deadlocks.
» Feasible to implement efficient backends.
» Fail safety: local recovery possible.

References

http://www.chunks-and-tasks.org

E.H. Rubensson, E. Rudberg, Chunks and Tasks: A programming model for ACknOWIedgements

parallelization of dynamic algorithms, Parallel Computing, 2013 Support from the Goran Gustafsson foundation, the Swedish research council, the Lisa

E.H._prensson,_E. Rudberg, Locality-aware parallel l_)lock—sparse matrix-matrix and Carl-Gustav Esseen foundation, and the Swedish national strategic e-science
multiplication using the Chunks and Tasks programming model, arxiv:1501.07800, research program (eSSENCE) is gratefully acknowledged. Computational resources
2015 provided by SNIC at UPPMAX.

http://www.it.uu.se {emanuel.rubensson, elias.rudberg, anton.artemov, anastasia.kruchinina}@it.uu.se

