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Introduction

Three phases in the recursive expansion:

Order

log(r)

conditioning purification stagnation

log (|| Xi — X7|)

K is a condition number for the problem of computing the density matrix.

Theory

Given recursive expansion polynomials f;: e; = || X; — X/||2
Theoretical order of convergence q satisfies:
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Observed order of convergence in iteration 2:

~ log(e;/C) ~ log(e;/Cy)
q; - — = ;=
log(ei—1) log(ei—1)
Our solution [1]: find smallest C; such that
r, > q < Cq > q
€i—1

' Compute 7; in every iteration.
If r; < @, expansion reached stagnation phase (stop expansion).

How to find C,?
fi(z)—fi(z)*
(z—x2)
» g > 1 is the theoretical order of convergence

> flnd maxme[o,l]

» due to possible small perturbations of the order, use g < g

norm for large systems:

1X: — X7 ll2 < 11X — X7 lIm <

Use Frobenius or mixed [2
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Stopping criteria

McWeeny polynomial: 3z° — 223
| Stop expansion as soon as:
lo €; 4
glei/d) _ ¢
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Spectral projection polynomials (SP2): =2 2x — x
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Stop expansion as soon as:

log(e;/4.409)

< 1.8

log(e;_2)
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The criterion uses compositions of * and 2o — x*.

2

Maximum 2 subsequent iterations with the same polynomial after an initial
phase in the expansion (if homo and lumo bounds are known).

Acceleration:

» improves convergence in the conditioning phase

» requires information about the location of homo and lumo

1. Turn off acceleration when entering purification phase
2. Use stopping criterion for the regular expansion
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Recursive density matrix expansion in the last SCF cycle for spin-restricted HF /3-21G calculations* on a cluster

of 3050 water molecules.

*SCF calculations were performed with the quantum chemistry program Ergo (www.ergoscf.org)

Conclusion

Stopping criteria ...

» automatically and accurately detect when numerical errors start to dominate,
I.e. transition between purification and stagnation phases;

» do not require any user defined parameter;

» are general, can be derived for various choices of polynomials;

» can be used for various strategies for removal of small matrix elements;
» can be used for dense and sparse matrices;

» are easy to implement.
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Results

Stopping criteria and various truncation strategies:
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Magnitude based

truncation

with

threshold value 0 x.

Truncation with control of the
error in the occupied

subspace.

sin @ < ex, where 0 is the largest
canonical angle between the exact
and perturbed subspaces.

Recursive density matrix expansion based on SP2 polynomials. Hamiltonian matrix coming from converged

HF/STO-3G calculations™ on a linear alkane molecule CygoH322.
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