The URDME manual

Version 1.0

Josef Cullhed Stefan Engblom' Andreas Hellander'
December 15, 2008

! Div of Scientific Computing, Dept of Information Technology
Uppsala University, P. O. Box 337, SE-75105 Uppsala, Sweden

email: stefane@it.uu.se, andreas.hellander@it.uu.se

Abstract

We have developed URDME, a general software for simulation of
stochastic reaction-diffusion processes on unstructured meshes. This
allows for a more flexible handling of complicated geometries and
curved boundaries compared to simulations on structured, Cartesian
meshes. The underlying algorithm is the next subvolume method
(NSM), extended to unstructured meshes by obtaining diffusion jump
coefficients from the finite element formulation of the corresponding
macroscopic equation.

In this manual, we describe how to use the software together with
Comsol Multiphysics 3.4 and Matlab to set up simulations. We
provide a detailed account of the code structure and of the available
interfaces. This makes modifications and extensions of the code pos-
sible. We also give two detailed examples, in which we describe the
process of simulating and visualizing two models from the systems
biology literature in a step-by-step manner.

Keywords: URDME, reaction-diffusion master equation, stochastic
chemical kinetics, stochastic spatial simulation, unstructured meshes.

1 Introduction

Stochastic simulation methods are frequently used to study the behavior of
cellular control systems modeled as continuous-time discrete-space Markov
processes (CTMC). Compared to the most frequently used deterministic

model, the reaction rate equations, the mesoscopic stochastic description
can capture effects from intrinsic noise on the behavior of the networks
1, 6, 23, 24, 27].

In the discrete mesoscopic model the state of the system is the copy
number of the different chemical species and the reactions are usually as-
sumed to take place in a well-stirred reaction volume. The chemical master
equation is the governing equation for the probability density, and for small
to medium sized systems it can be solved by direct, deterministic methods
8,9, 13, 19, 22, 26]. For larger models however, exact or approximate kinetic
Monte Carlo methods [15, 16] are frequently used to generate realizations of
the stochastic process. Many different hybrid and multiscale methods have
also emerged that deal with the typical stiffness of biochemical reactions
networks in different ways, see e.g. [2, 4, 17, 20, 21, 25].

Many processes inside the living cell can not be expected to be explained
in a well-stirred context. The natural macroscopic model is the reaction-
diffusion equation and it has the same limitations as the reaction rate equa-
tions. By discretizing the space with small subvolumes it is possible to model
the reaction-diffusion process by a CTMC in the same formalism as for the
well-stirred case. A diffusion event is now modeled as a first order reaction
from a subvolume to an adjacent one and the state of the system is the
number of molecules of each species in each subvolume. The corresponding
master equation is called the reaction-diffusion master equation (RDME)
and due to the very high dimensionality it cannot be solved by deterministic
methods for realistic problem sizes.

The RDME has been used to study biochemical systems in [5, 12]. Here
the next subvolume method (NSM) [5], an extension of Gibson and Bruck’s
next reaction method (NRM) [14], was suggested as an efficient method for
realizing sample trajectories. An implementation on a structured Cartesian
grid is freely available in the software MesoRD [18].

The method was extended to unstructured meshes in [10] by making
connections to the finite element method (FEM). This has several advantages,
but the most notable one is the ability to handle complicated geometries in a
flexible way which is particularly important when internal structures of the
cell must be taken into account.

This manual describes the software URDME which implements the un-
structured extension of NSM as suggested in [10]. The purpose with the code
is to provide an efficient, modular implementation that is easy to use for sim-
ulating and studying a particular model in an applied context, but also for
developing and testing new approximate methods. We achieve this by relying
on commercial software for the geometry definition, meshing, preprocessing
and visualization and use a highly efficient computational core written in

Ansi C. This keeps the implementation of the actual Monte Carlo simula-
tion small and easily extendible, while the user benefits from the advanced
pre- and postprocessing capabilities of modern FEM software. In URDME,
we have chosen to provide an interface to Comsol Multiphysics 3.4 [3].

The rest of this manual is organized as follows. In Section 2 we recapit-
ulate the mesoscopic reaction-diffusion model and show how the stochastic
diffusion intensities are obtained from a FEM discretization of the diffusion
equation. An overview of the code structure is also offered in Section 3. The
details concerning the input to the code, the provided interface to Comsol
Multiphysics 3.4 and the way models should be specified are found in
Section 4. Finally, two models are set up and simulated in a step-by-step
manner in Section 5, which is followed in Section 6 by a short discussion of
performance.

2 Background

In this section we briefly describe how reaction and diffusion events are mod-
eled and how we obtain the diffusion rate constants when the domain is
discretized using an unstructured mesh. For a fuller introduction to the
subject along with many additional references, consult [7].

The computational core of URDME is based on the next subvolume
method (NSM) [5], but it has been adapted to simulation on unstructured
meshes by supporting a more general input format. Details concerning the
actual simulation algorithms can be found in Appendix A.

2.1 Mesoscopic chemical kinetics

In a well-stirred chemical environment reactions are understood as transitions
between the states of the integer-valued state space counting the number of
molecules of each of D different species. The intensity of a transition is
described by a reaction propensity defining the transition probability per
unit of time for moving from the state x to x — N,;

@, v N, (2.1)
where N, € ZP is the transition step and is the rth column in the stoichio-
metric matriz N. Eq. (2.1) defines a continuous-time Markov chain over the
positive D-dimensional integer lattice.

When the reactions take place in a container of volume (2, it is sometimes
useful to know that the propensities often satisfy the simple scaling law

wy(x) = Qu,(2/Q) (2.2)

for some function w, which does not involve). Intensities of this form are
called density dependent and arise naturally in a variety of situations [11,
Ch. 11).

2.2 Mesoscopic diffusion

In the mesoscale model, a diffusion event is modeled as a first order reaction
taking species S; in subvolume (; from its present subvolume to an adjacent
subvolume (j,

Sy L 5, (2.3)
where x;; is the number of molecules of species [in subvolume 7. On a uniform
Cartesian mesh such as those used in MesoRD [18], the rate constant takes
the value a;; = v/h*® where h is the side length of the subvolumes and
is the diffusion constant. In URDME we use an unstructured mesh made
up of tetrahedra and the rate constants are taken such that the expected
value of the number of molecules divided by the volume (the concentration)
converges to the solution obtained from a consistent FEM discretization of
the diffusion equation

up = yAu. (2.4)

Using piecewise linear Lagrange elements and mass lumping, we obtain the
discrete problem
u =M 1Ku (2.5)

where M is the lumped mass matrix and K = {k;;} is the stiffness matrix.
The rate constants on the unstructured mesh are then given by
1
Qjj = ﬁikija (2-6)

where (2; is the diagonal entry of M and can be interpreted as the volume
of the dual element associated with mesh node i (see Figure 2.1). For more
details, consult [10].

The assumption made in the mesoscopic model is that molecules are well-
stirred within a dual cell. These dual cells correspond to the cubes of the
staggered grid in a Cartesian mesh.

3 Code overview

In this section we give an overview of the structure of the code. The compu-
tational core of URDME is an efficient implementation of NSM and addition-
ally consists of a small set of routines written in Ansi C, Matlab and Comsol

4

Figure 2.1: A 2D example of an unstructured triangular mesh. The primal
mesh is shown in dashed and the dual in solid. Within each dual element
the system is assumed to be well-stirred, and molecules can jump from each
dual cell to the neighboring ones.

Script. Table 3.1 shows the directory structure of URDME together with a
short description of each routine.

The software logically consists of three major parts. From bottom to top
those are the Ansi C kernel, a Matlab/Mex-interface to the kernel and an
interface to the FEM software. By design, the computational core is stand-
alone, and in principle, for each FEM software a separate interface can be
provided. This interface needs to export the internal representation of the
problem and the mesh and convert it to the input format of rdme_solve
which is detailed in Section 4. The actual call to rdme_solve is made via
a gateway routine which could be a C main() function or as in our case,
through a Matlab/Mex construction.

We have provided an interface to Comsol Multiphysics 3.4, which is
used to specify the problem, create the mesh and provides for postprocessing.
Since Comsol Script is very similar to the Matlab language, it is convenient
to supply the gateway routine as a Mex-function using the Matlab C API. The
Comsol Script routine fem2rdme assembles the matrix with diffusion rate
constants D and the lumped mass matrix M. They are written to a .mat file
together with information of the mesh and the different subdomains. This

Directory | File(s) Description
src rdme.c The computational core rdme_solve.
binheap.c The binary heap used in rdme_solve.
report.c Report function used in rdme_solve.
mexrdme.c Mex-interface to rdme_solve.
include rdme.h Header for rdme.c.
propensities.h. | Definition of the propensity function
datatype.
binheap.h Header for binheap.c.
report.h Header for report.c.
comsol fem2rdme.m Comsol-script converting Comsol’s FEM-
struct to a valid rdme_solve-input.
rdme2fem.m Comsol-script for conversion of the out-
put of rdme.m to the solution format in
Comsol. The purpose is to obtain a valid
FEM-struct so that e.g. Comsol’s postpro-
cessing can be used.
msrc rdme.m Matlab-wrapper for mexrdme. Handles
error checking of the input.
make.m Makefile for building the Mex-file
mexrdme.
startup.m Initializes URDME.
examples (various) Contains files specifying the two examples
studied in detail in Section 5.
doc manual.pdf The most recent version of this manual.

Table 3.1: Overview of the files and routines that make up URDME.

.mat file can subsequently be loaded into Matlab where some of the other
inputs are specified and the simulation is made via rdme.

The chemical reactions in the model can be specified in two different ways.
Either as inline propensities specified from within Matlab or as compiled
propensities where the rate functions are defined in a separate model file
written in Ansi C. Inline propensities can be used to define basic polynomial

rate laws, while the compiled propensities are completely general. The details
of this are found in Section 4.

When the model has been completely specified, the call to rdme_solve is
made via the interface pair rdme.m/mexrdme.c.

At first, this construction may appear both cumbersome and inconve-
nient. However, the structure is transparent and makes it possible to separate
the computational core from the actual FEM software used and development
and maintenance of the core is made easier. Also, there are inputs to the
stochastic simulation that are hard to standardize such as initial conditions
or “exotic” diffusion over manifolds. Using Matlab as an interface facilitates
handling of input and non-standard pre- and postprocessing since both the
input and output data are available in Matlab. Hence the user can provide
postprocessing routines which is particularly valuable in experimental stages
of model development.

It is of course possible to eliminate the dependence on Matlab by pro-
viding another gateway in the form of for example a C main() routine, that
directly reads the .mat file provided by the Comsol interface. This might be
included in a later release.

4 Details and specifications

In this section we give a detailed description of the input to rdme_solve and
we also give some details concerning the provided interface routines. Any
gateway routine (see for example ‘rdme.m’ and ‘mexrdme.c’) should carefully
ensure that the input has the correct format since the computational kernel
puts very little effort in error checking.

4.1 Input to rdme_solve

Tables 4.1 and 4.2 summarize the input to rdme_solve. For precise type
definitions, consult the preamble of the source file ‘rdme.c’.

The diffusion matrix D and the (diagonal of) the lumped mass matrix
vol as well as the vector giving the (generalized) subdomain number of each
subvolume, sd, are generated by the Comsol interface routine fem2rdme.
How sd can be specified in the Comsol GUI is explained in Section 5. The
generalized data vector data may be used to pass any additional arguments
to the compiled propensity functions.

The stoichiometry matrix N, the dependency graph G, the initial condition
u0, the vector of output times tspan as well as the definition of the inline

propensities (if they are used) are explicitly specified in Matlab and passed
on to rdme_solve via the Mex-interface in rdme, cf. Section 4.2.1.

If compiled propensities are used, they are specified as a vector of func-
tion pointers, prop. This is slightly more involved and is explained in Sec-
tion 4.2.2.

The above mentioned data is passed to sd via the Matlab interface rdme.
The other inputs (see ‘rdme.c’) are implicitly defined by the data structures,
and are obtained automatically in mexrdme, where also the report function
report is defined. The functionality of the report function is stated in the
help section of ‘rdme.m’ and can easily be modified to suit the need of the
user.

4.2 Specifying propensities for chemical reactions

We have provided two separate methods to specify the reaction propensities.
Simple polynomial rate laws can be provided as inline propensities and can
be specified on the gateway level (e.g. in Matlab).

The other option is to specify the rate laws in a model file written in C
and recompile the Mex-interace. To simplify this process, we have supplied
a makefile in ‘/msrc/make.m’ using the mex command in Matlab with make
options for two platforms (Linux and OS X). We have also provided an
example GNU Makefile in ‘/src/Makefile’ that allows full control of the make
process. The example shows how to compile URDME on an Intel based
MacBook using gcc and the Intel compiler icc. Both the Matlab and GNU
Makefile will require some local editing, see Section 5.1.

For other configurations, it should be fairly straightforward to modify
the Makefiles in order to compile the code. When using Mex the user needs
to make sure that the configuration is set up correctly and that a proper
compiler is installed. In Section 5 we show examples of using both the inline
propensities and compiled propensities.

Note that one can easily use both inline and compiled propensities simul-
taneously. This is convenient when only a few propensities are complicated
and has to be compiled.

4.2.1 Inline propensities

An “inline propensity” is a compact data format for specifying basic chemical
reactions with polynomial rate laws. An inline propensity P can be defined

Name

Type

Description

Ncells
Mspecies

Mreactions
M1
dsize

u0

tspan

prop

report

vol

sd

data

scalar (int)
scalar (int)

scalar (int)
scalar (int)
scalar (int)

Matrix
(MspeciesxNcells)
(int)

vector (double)

Vector[Mreactions-M1]
(PropensityFun)
ReportFun

Vector|Ncells| (double)

Vector|Ncells] (int)

Matrix (dsizexNcells)
(double)

Number of subvolumes.

Number of different species.
This also defines Ndofs:=
MspeciesxNcells.

Number of reactions.

Number of inline propensities.

Size of the data vector used in the
propensity function.

u0(i,7) gives the initial number of
species ¢ in subvolume j.

An increasing sequence of points in
time where the state of the system is
to be returned.

Propensity function pointers. See
Section 4.2 for details.
Pointer to a report function. This

function is called every time the
chain reaches a value in tspan.

The volume of the macroelements,
i.e. the diagonal elements of the
lumped mass-matrix M.

The subdomain numbers of all sub-
volumes. See Section 5.2 for more
details.

Generalized data vector. A pointer
to column j is passed as an additional
argument to the propensities in sub-

volume j.

Table 4.1: The first few input arguments to rdme_solve. See also Table 4.2.

Name | Type Description

D Sparse matrix (Ndofsx | The transpose of the diffusion matrix
Ndofs) (double) M~'K obtained from the FEM dis-
cretization of the macroscopic diffu-
sion equation, cf. (2.5). Each column
in D (i.e. each row in M~'K) corre-
sponds to a subvolume, and the non-
zero coefficients D(i,j) give the dif-
fusion rate constant from subvolume
7 to subvolume j.

N Sparse matrix (Mspeciesx | The stoichiometry matrix. Each col-
Mreactions) (int) umn corresponds to a reaction, and
execution of reaction j amounts to
subtracting the jth column from the
state vector.

G Sparse matrix (Mreactionsx | Dependency graph. The first
[Mspecies+Mreactions]) Mspecies columns correspond to
(int) diffusion events and the following

Mreactions columns to reactions. A
non-zeros entry in element i of col-
umn j indicates that propensity ¢
needs to be recalculated if the event
j occurs. See Section 5 for examples.

K Matrix (3 x M1) (double) The rate constants of the inline
propensities.
I Matrix (3 x M1) (int) Specifies which species are involved
in each inline propensity.
S Sparse matrix (Mgx M1) (int) | Column j contains a list of all subdo-
where Mg € [0,Ncells] mains in which the jth inline propen-

sity is off. For more details concern-
ing the inline propensities, see Sec-
tion 4.2.

Table 4.2: Input arguments to rdme_solve (continued from Table 4.1). For
more details, see the source file ‘rdme.c’. For sparse matrices, the compressed
column sparse (CCS) format is used. This is the same format Matlab uses
and online documentation is available.

10

as

7]{1“(%71) + kgxk +]CgQ lf/L = j

k XTiTyj . . .
P(z) = { L+ koxy + ksQ if i # j,
20

Here z is the column in x which contains the state of the subvolume con-
sidered and (2 is the corresponding volume. The coefficients and indices are
specified in matrices K and I where K(:,r) = [ky; ko; k3] and I(:,r) = [i; j; K]
are the constants corresponding to the rth inline propensity. The matrix S
is a (possibly empty) sparse matrix such that S(:,r) lists all subdomains in
which the rth inline propensity is turned off. Note that no inline propensities
are active in subdomain zero!

4.2.2 Compiled propensities

The rate functions can also be supplied as an Ansi C model file. This is
necessary if the rate functions are not simple polynomials or if they depend
on additional input. Changing models in this setting amounts to recompiling
the Mex gateway with the desired model file.

Any model file must implement the following routines:

e PropensityFun *ALLOC_propensities(void)
e void FREE_propensities(PropensityFun *ptr)

The first function should allocate and initialize an array of function pointers
to the propensity functions and return a pointer to this array. The second
function should deallocate the pointer ptr but sometimes additional actions
need to be implemented.

An important point is that neither Ansi C’s malloc/free nor Matlab’s
mxMalloc/mxFree should be invoked explicitly. Instead it is preferred to use
the defines MALLOC/FREE which can be modified at the stage of compilation
(see for example ‘/msrc/make.m’)

The datatype PropensityFun is defined in the header ‘propensities.h’
(found in the ‘include’ directory) as

typedef double (*PropensityFun) (const int *, double,
const double *, int);

Below is a commented example of a model file defining a simple chemical
system composed of a single species X undergoing a dimerization reaction.

11

/* Propensity definition of a simple dimerization reaction.

#include <stdlib.h>

#include <stdio.h>

/* Type definition of propensity functions: */
#include "propensities.h"

/* Rate constant (in units M"{-1}s"{-1}). */
const double k = 1le-3;

double rFunl(const int *x, double vol,
const double *data, int sd)
/* Propensity for the reaction X + X -> 0. */
{
return k*xx[0]*(x[0]-1)/vol;
}

PropensityFun *ALLOC_propensities(void)

/* Allocation. */

{
PropensityFun *ptr = MALLOC(sizeof (PropensityFun));
ptr[0] = rFuni;

return ptr;

3

void FREE_propensities(PropensityFun *ptr)
/* Deallocation. */
{
FREE (ptr) ;
}

*/

More advanced examples can be found in the model files found in the
‘examples’ directory; ‘/bistab/bistab.c” and ‘/Min/Min.c’ corresponding to
the examples discussed in Section 5. There we also explain how to compile

and link the propensity functions.

5 Examples

In this section we provide a step-by-step description of how to set up and
simulate two different models from the systems biology literature. The first

12

is a model of a bistable system displaying phase separation when the species
are diffusing slowly. This model was first studied in [5] for simple geometries.
In this example, we will simulate the system in a model of a S. cerevisiae cell
containing a nucleus and a large vacuole and we will see the ease with which
we handle inner (curved) boundaries.

The second example is a model of protein oscillations in a model of an
E. coli cell proposed in [12]. Here we will illustrate how to use different
subdomains in order to incorporate membrane diffusion in the model.

5.1 Installing URDME

There is no automated installation procedure. Simply download the source
and decompress it in a directory of your choice (it will result in the path
to the code being ¢/yourdir/urdme/’). There are a few path dependencies
that need local editing. In the following, all paths are given relative to
‘/yourdir /urdme/’.

1. If you plan to use the GNU Makefile, open it (‘/src/Makefile’) and edit
the variables PREFIX, MATLAB_EXT and MATLAB_LIB. In addition, you
may need to modify other variables, depending on your configuration.

2. Open the file ‘/msrc/make.m’. In Matlab, use the function mexext to
find out the extension of Mex-files on your platform. If it is something
different from the provided examples (‘'mexa64’ and 'mexmaci’), you
will have to add an option similar to the existing ones. The compile
and link flags of the first example (‘mexa64’) are likely to work for most
Linux flavors and for Solaris (using gec). The second option will likely
work for a wide range of OS X configurations. More information on
how to build a valid Mex-file on your platform can be obtained from
the file ‘mexopts.sh’ (or ‘mexopts.bat’ in a Windows environment) in
your Matlab installation directory.

Before proceeding, make sure that URDME compiles. In Matlab, change the
directory to ‘/msrc’ and type
>> make ../examples/bistab/bistab.c
or using the GNU Makefile, from a bash-shell, change the directory to ‘/src’
and type
$ make MODEL=../examples/bistab/bistab

If mexrdme was built successfully, you can proceed to the examples in the
two following sections.

Currently, there is no support for Windows. To use URDME in a Win-
dows environment we recommend installing gcc for Windows (such as in

13

Mingw) and using for example the freely available tool gnumex to configure
mex to use gcc.

5.2 General workflow

In this section we describe the general workflow involved in setting up and
simulating a model using the Comsol and Matlab interfaces. In the following
sections, we then consider two specific examples in some detail.

1. Specify the model. In order to do this, you need to define the ge-
ometry as well as the chemical reactions in the model. In Comsol
Multiphysics 3.4 a geometry can be created and a discretization of
the diffusion equation with Neumann boundary conditions is readily
obtained. In Matlab, a model file that defines the stoichiometry ma-
trix N and the dependency graph G can easily be specified. Depending
on how the reactions are to be given, this file may also define the inline
propensities.

2. Convert the FEM structure to valid input. After meshing your model,
export the FEM structure to Comsol Script and create a model .mat
file for use by the Matlab interface. This can be achieved by calling
the interface routine fem2rdme.

3. Run the simulation. Load the model file in Matlab, specify initial condi-
tions and (if you are using compiled propensities) compile the gateway
mexrdme using either ‘make.m’ or the GNU makefile, cf. Section 5.1.
Then run the simulation by calling rdme_solve via the interface rdme.

4. Postprocessing. Save the result to a result .mat file. In Comsol Script,
load this file and add the solution to the FEM struct previously ex-
ported by calling rdme2fem. At this point, you can use all postpro-
cessing options available in Comsol. If you have other needs not cov-
ered by the built-in routines, you can implement your own routines in
e.g. Matlab.

5.3 A bistable system in S. cerevisiae

In this section we will simulate the model from [5] in a spherical volume
modeling a Brewer’s yeast cell. It contains a nucleus and a large vacuole,
which will be treated as solid objects into which no molecules can enter. The
set of chemical reactions in the system can be found in Table 5.1. All the
files needed to complete this example can be found in the directory ‘/exam-
ples/bistab/’.

14

Es™ E 4+ A Es 2 Ep+ B
kaq kq,

E,+B=FEsB EB+A:‘EBA
kq kq

E.B+ B % FuBy EBA+A%" FpAs
d d
Al B

Table 5.1: The chemical reactions of the bistable model. The constants take
the values k; = 15057 %, k, = 1.2 x 108571 M ! ky = 10s7! and ky = 657 1.

1. Start Comsol Multiphysics 3.4. Inthe Model navigator, select ‘Open’
and open the file ‘bistab.mph’. This model file specifies the yeast ge-
ometry and in the Draw mode you can study the different subdomains.

2. The model is composed of three subdomains. We will treat the inner
structures as solid objects that molecules cannot enter. This can be
achieved in different ways. One of them is to set the diffusion coefficient
identically to zero in these subdomains. Here we will remove these inner
structures and create holes in the geometry which reduces the number
of degrees of freedom. In the Draw mode, select all three subdomains
by shift-clicking on them in turn. In the ‘Draw’ menu, select ‘Create
Composite Object’” and choose ‘Difference’ (this can also be done using
the action buttons in the draw mode action bar). Next, again in the
‘Draw’ menu, select ‘Delete interior boundaries’.

3. Next we will initialize the mesh. In the Mesh menu, choose ‘Free Mesh
Parameters’. Set the maximum element size to 0.1 x 107%m and click
on the ‘Remesh’ button.

4. The parameters in the model (in this case the diffusion coefficients of
the different species) can be edited in the menu ‘Physics — Subdomain
Settings’. Choose subdomain one and check that the species all have
the diffusion constant v = 0.5 x 107¥m?/s.

5. We are now ready to export the FEM-structure to Comsol Script in
order to prepare for the simulation. In the ‘File’ menu, choose ‘Export
— FEM Structure...” and choose the name of the struct, e.g. ‘fem’. This
opens the Comsol Script window and you can display the contents in
‘fem’ by simply typing
C>> fem

6. We have now specified the geometry and will next create the input to

15

10.

rdme_solve. First, change the working directory to ‘/msrc’ and set the
paths by calling startup.

C>> cd /yourdir/urdme/msrc;
C>> startup;

In order to assemble the input to rdme_solve, call the interface routine
fem2rdme,

C>> fem2rdme(fem, ’bistab’);

This will generate the file ‘bistab.mat’ that contains the diffusion ma-
trix, the subvolume sizes as well as information regarding the different
subdomains (in this example there is only one).

Start Matlab, change the working directory to ‘/msrc’ and set the paths
as above. Then load the model file we just created

>> load bistab.mat;

and examine the variables. We will now specify the set of chemical re-
actions. There are two different ways of doing this; using inline propen-
sities or using compiled propensities, see Section 4. Here we will use
the compiled propensities specified in the model file ‘bistab.c’. Open
the file and look at the reaction definitions. Compile the code with
these propensities

>> make ../examples/bistab.c;

Before we can run the simulation, we need to specify the stoichiometry
matrix N and the dependency graph G. They are both defined in the
script ‘bistab.m’. Run it by invoking

>> bistab;

. We have yet to specify the initial conditions. Let the enzymes F, and

Ep be present in a total of 100 molecules, randomly distributed in the
whole domain. The other species are set to zero everywhere. Something
like this can be achieved by

>> indl = randperm(Ncells);
>> ind?2 randperm(Ncells);
>> u0(3,ind1(1:100))=1;
>> u0(4,ind2(1:100))=1;

At this point, we are ready to run the simulation by invoking rdme_solve
through rdme;
>> bistab_sol = rdme(0:5:1000,u0,D,N,G,vol,sd, [2 123]);

16

When the simulation has finished, save the solution and the volume
vector (it is needed for the postprocessing in order to scale the solution
to local concentrations).

>> save(’bistab_results’, ’bistab_sol’, ’vol’);

11. In Comsol Script, load the solution
C>> load bistab_results.mat
and add the solution to the FEM-struct using the interface routine
rdme2fem;
C>> fem = rdme2fem(bistab_sol, vol, 0:5:1000);

12. In the main Comsol window, import the FEM structure that now con-
tains the solution. This is done in the File menu; ‘File — Import - FEM
Structure...”. Change mode to ‘Plot mode’ and look at the solution.
You can change variables and the type of plot in the menu ‘Postpro-
cessing — Plot Parameters...”, where you also have the possibility to
make animations. This can also be done directly in Comsol Script
using the functions postplot and postmovie, see the documentation
for more details.

Figure 5.3 shows an example of the output from a simulation of the model.
For more details concerning the interpretation of the results, see [5, 10].

5.4 MinD/MinE oscillations in E. coli

In this section we will reproduce simulations of the MinD /MinE system stud-
ied in [12] in a model of an E. coli bacterium. It is rod shaped with length
3.5um and diameter 0.5um. The reactions and parameters of the model can
be found in Table 5.2.

MinD_c_atp 24 MinD.m MinD_c_atp + MinD_m %25 2MinD_m
Min_e4+MinD_m 2% MinDE MinDE 2% MinD _c_adp + Min_e
MinD_c_adp % MinD_c_atp

Table 5.2: The chemical reactions of the MinD/MinE model. The constants

take the values ky = 0.0125um " 's™!, kgp = 9 x 105M 1571, k4 = 5.56 x
10°M s ke =0.7s7! and k, = 0.5s7 1.

Two of the species, MinD_m and MinDE are bound to the membrane and
can not diffuse in the cytoplasm. In order to incorporate this in the model
we need to define two different subdomains, the membrane and the cytosol,

17

(¢) t = 900s (d) t = 900s

Figure 5.1: Snapshots of the system simulated with v = 0.5 x 1073m?/s.
The left column shows species A and the right species B. They are present
in different parts of the geometries, and the global behavior does not display
bistability.

18

and specify which reactions take place in each subdomain. We also need
to modify the diffusion matrix in order to inactivate diffusion events from
the membrane into the interior of the cell. This is achieved by using the
subdomain data vector sd.

Note that the subdomain data vector sd is a completely general piece of
information. In particular, it need not be explicitly related to the ‘subdomain’
numbers in Comsol.

One of the reactions taking place on the membrane has a scaling with a
local length scale. In this example, we will use inline propensities to which
we pass the average of the side length of the tetrahedra on the boundary.
If compiled propensities were used, it would instead be possible to pass the
actual length of each individual subvolume to the propensity functions using
the generalized data matrix data. All the files used in this example can be
found in the directory ‘/examples/Min’.

1. Open Comsol and select ‘Chemical engineering module — Mass trans-
port — Diffusion — Transient analysis’ (3D). In the ‘Dependent variables’
field write MinD_c_atp, MinD m, Min e, MinDE, MinD c_adp. These
are the names of the variables that we will use. Select Lagrange —
Linear elements and press ‘OK’.

2. Next we create the geometry. We will build the rod shaped domain
from two spheres and one cylinder. Press the ‘Cylinder’ button and in
the radius and height field enter 0.5e-6 and 3.5e-6 and press ‘OK’.
You should now see a cylinder in your workspace. In the ‘Draw mode’
action bar, press ‘Zoom extents’ in order to get a better view of the
domain. Press the ‘sphere’ button and enter 0.5e-6 in the radius field
and press ‘OK’. Create another identical sphere but enter 3.5e-6 as
the z-coordinate. Select all three figures and press the ‘union’ button
and then the ‘Delete interior boundaries’ button.

3. Having defined the geometry, the next step is to specify the parameters
in the model. In the menu ‘Physics — Subdomain settings’, choose sub-
domain 1 and set the diffusion constants to 2.5e-12 for MinD_c_adp,
MinD_c_atp and Min_e. For MinDE and MinD_m the diffusion constant
should be 1e-14.

4. We must also create two domains. One interior domain that represent
the cytoplasm and one boundary domain that represent the membrane.
This is done by defining rdme_sd as an expression with different value
in the different subdomains. It can then be used to find the nodes on

19

the boundary and in the interior. Select ‘Options — Subdomain expres-
sions’ and enter rdme_sd with value 1 and click ‘OK’. Select ‘Options
— Boundary expressions’ and select all boundaries (there should be 12
of them). Enter rdme_sd with value 2. Finally select ‘Options - Global
expressions’ and enter rdme_sdlevel with value 2 indicating that the
lowest dimension where rdme_sd is defined was on the surfaces.

. In the ‘Mesh’ menu, select ‘Mesh — Free mesh parameters’ and choose
‘Custom mesh size’. Set the maximum element size to 0.7e-7 and press
‘Initialize mesh’. Now select ‘Solve — Update model’ and export the
FEM structure from the ‘File — export’ menu. This will open Comsol
Script and the FEM structure will be available in the workspace.

. The information we need regarding the discretization of the geometry
is stored in the FEM structure (call it fem). At this point, we need to
transform the information in fem into the input format of rdme_solve.
This is done by calling the interface routine fem2rdme. First, initialize
URDME by calling startup (from the ’/msrc’ directory). Then, as-
semble the input and store it in the file ‘min.mat’ by

C>> fem2rdme(fem,’min’,1); This will save the variables u0, D, vol,
data and sd to the file min.mat. In order to make sure that the diffu-
sion of the species MinD_m and MinDE are active only on the boundary,
type the following:

C>> load min;

C>> icells = find(sd==1);

C>> D = min_membrane(D,icells,[2 4],5);

C>> save(’min’,’tspan’,’u0’,’D’,’vol’,’data’,’sd’,’-mat’);

This will set the diffusion rate constants to zero in the interior. The
first command loads the variables that fem2rdme saved. The second
command gives the indices to the cells in subdomain one, which we
defined to be the interior of the domain by the expression rdme_sd. The
third one calls the script min_membrane which turns off the diffusion
for species 2 and 4 (MinD_m and MinDE). Finally, we rewrite the file
min.mat with the modified matrix D.

. We are now ready to specify the part of the model related to the chemi-
cal reactions. Open Matlab and initialize URDME by calling startup.
Load the file min.mat. Next, in a new Matlab-script create the stoi-
chiometric matrix and the dependency graph which are used to update
the state due to chemical reactions and to minimize the calculation of

20

reaction rates respectively. If you want to skip this step, just use the
script Min.m, where they are already defined.

1 1 0 0 -1
1 -1 1 0 0

N=| 0 0o 1 -1 0],
0 0 -1 1 0

0 0 0 -1 1
1000011001
1100011101
G=|0110011110
000100071710
0000100011

We will use inline propensities so we also need to create K, I, and S

0 kap ke O 0O
K=|k 0 0 k k
0 0 0 0 0

Note the unit of ky; it involves the local length scale of the computa-
tional cells at the boundary. Using inline propensities, we cannot pass
this to the propensity functions. Instead, we use the average length
scale and modify k4 accordingly. The local length scale can be ob-
tained using the Comsol routine posteval and for this mesh size the
average at the boundary takes the value 0.041 x 1076,

I:

—_ = =
Ot = =

1
2
1
1

—_ — N W
—_ =~ = =

S=[1 0].

. We have now specified both the geometry, the chemical reactions and
the dependency graphs. Before we run the simulation, we need to
set the initial condition. Set the initial number of molecules to 2001
MinD_c_atp, 2001 MinD_c_adp and 1040 MinE, randomly distributed.

>> mind=[ceil (rand (2001,1)*Ncells)];
>> mind2=[ceil (rand (2001, 1)*Ncells)];
>> mine=[ceil (rand(1040,1)*Ncells)];
>> a=sparse(mind,1,1,Ncells,1);

21

>> b=sparse(mine,1,1,Ncells,1);

>> c=sparse(mind2,1,1,Ncells,1);

>> ul0=[a zeros(Ncells,1) b zeros(Ncells,1) c]’;
>> u0=full(u0l);

9. Set tspan=[0:30] and start the simulation by:
>> U = rdme(tspan,u0,D,N,G,vol,data,sd, [2 123], K, I, S);
After the simulation has finished, save the solution on a .mat file, e.g.
>> save(’min_results’,’U’);

10. To visualize the trajectory, load the result in the same Comsol Script
window used before. Make sure that the variable vol is in your workspace
and convert the result to Comsol’s internal representation using the in-
terface routine rdme2fem;
>> fem = rdme2fem(fem,U,vol, [0:30]);

11. Import the FEM structure into the Comsol GUI from the ‘File - Import’
menu and plot the solution in the postprocessing mode. For example of
output generated by this model, see Figure 5.2, where we have plotted
the variable MinD_m on the membrane using 'Boundary Plot’ from the
"Plot Parameters’ menu.

6 Performance

The purpose of this section is to give an indication of the performance of the
code by simulating the model in Section 5.3 on increasingly fine meshes. The
time required to simulate a particular model will obviously depend on the
parameters since the average timestep is the inverse of the sum of all reaction-
and diffusion rates. For example, the fraction of diffusion to reaction events
increases with the resolution and the number of events increase linearly with
the diffusion constant. Consequently, it is hard to tell in advance how many
events that are required to reach a given final time. In Table 6.1 we show for
fixed parameters in the model how the number of events simulated per hour
depends on the number of subvolumes.

The geometry was taken to be a cube with side length 6 x 107%m. At
t = 0s, there were 300 molecules each of F4 and Epg, randomly distributed
and all other species were set to zero. The final time was chosen to be
T = 300s, and the state was saved every three seconds. The timings in
Table 6.1 does not include the time taken to generate the mesh and the
input to URDME, which was much less than the simulation time.

22

(a) t = 10s (b) t = 40s

(¢) t = 50s (d) t = 56s

(e) t = 65s (f) t = 70s

Figure 5.2: Simulation of the MinD model in E. coli. At t = 0s, no MinD
is present on the membrane. After an initial period when the number of
molecules are increasing over the whole membrane in (a)-(b), the membrane
bound MinD oscillates from pole to pole in (c¢)—(f).

23

Ncells 11,107 25,608 83,843

CPU time [155 230 667
% diffusion events 55.7 69.1 83.3
events/h [x10] 204 195 124

Table 6.1: Performance when the spatial resolution is increased. Note that
the fraction of diffusion events increases with the resolution of the mesh.

The simulations were made on a Macbook Core Duo 2.0 Ghz with 2GB
RAM, using compiled propensities and compiled using gcc 4.3.2 with op-
timization flags -03 -ftree-vectorize.

Acknowledgment

JC was supported by a grant from the Swedish Foundation for Strategic
Research held by Per Lotstedt. SE and AH were supported by the Swedish
National Graduate School of Mathematics and Computing.

24

References

1]

2]

[10]

[11]

[12]

Naama Barkai and Stanislav Leibler. Circadian clocks limited my noise.
Nature, 403:267-268, 2000.

Yang Cao, Dan T. Gillespie, and Linda Petzold. Multiscale stochastic
simulation algorithm with partial equilibrium assumption for chemically
reacting systems. J. Comput. Phys., 206:395-411, 2005.

Comsol Inc., Stockholm, Sweden. Comsol Multiphysics Reference Guide
Version 3.4, 2008. http://www.comsol.com.

Weinan E, Di Liu, and Eric Vanden-Eijnden. Nested stochastic simu-

lation algorithm for chemical kinetic systems with disparate rates. J.
Chem. Phys., 123, 194107, 2005.

Johan Elf and Mans Ehrenberg. Spontaneous separation of bi—stable

biochemical systems into spatial domains of opposite phases. Syst. Biol.,
1(2), 2004.

Michael B. Elowitz, Arnold J. Levine, Eric D. Siggia, and Peter S. Swain.
Stochastic gene expression in a single cell. Science, 297(5584):1183-1186,
2002.

Stefan Engblom. Numerical Solution Methods in Stochastic Chemical
Kinetics. PhD thesis, Uppsala University, 2008.

Stefan Engblom. Spectral approximation of solutions to the chemical
master equation. J. Comput. Appl. Math., 2008 (to appear).

Stefan Engblom. Galerkin spectral method applied to the chemical mas-
ter equation. Commun. Comput. Phys., 5(5):871-896, 2009 (to appear).

Stefan Engblom, Lars Ferm, Andreas Hellander, and Per Lotstedt. Simu-

lation of stochastic reaction—diffusion processes on unstructured meshes.
SIAM J. Scientific. Comp., 2008 (to appear).

Stewart N. Ethier and Thomas G. Kurtz. Markov Processes: Character-
1zation and Convergence. Wiley series in Probability and Mathematical
Statistics. John Wiley & Sons, New York, 1986.

David Fange and Johan Elf. Noise-induced Min phenotypes in E. coli.
PLOSB, 2(6):0637-0647, 2006.

25

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

Lars Ferm and Per Lotstedt. Adaptive solution of the master equation
in low dimensions. Appl. Numer. Math., 59(1):265-284, 2009.

Michael A. Gibson and Jehoshua Bruck. Efficient exact stochastic sim-
ulation of chemical systems with many species and many channels. J.
Phys. Chem., 104:1876-1889, 2000.

Daniel T. Gillespie. A general method for numerically simulating the
stochastic time evolution of coupled chemical reacting systems. J. Com-
put. Phys., 22:403-434, 1976.

Daniel T. Gillespie. Approximate accelerated stochastic simulation of
chemically reacting systems. J. Chem. Phys., 115(4):1716-1733, 2001.

Eric L. Haseltine and James B. Rawlings. Approximate simulation of
coupled fast and slow reactions for stochastic chemical kinetics. J. Chem.
Phys., 117(15):6959-6969, 2002.

Johan Hattne, David Fange, and Johan EIf. Stochastic reaction—
diffusion simulation with MesoRD. Bioinformatics, 21(12):2923-2924,
2005.

Markus Hegland, Conrad Burden, Lucia Santoso, Shev MacNamara,
and Hilary Booth. A solver for the stochastic master equation applied
to gene regulatory networks. J. Comput. Appl. Math., 205(2):708-724,
2007.

Andreas Hellander. Numerical simulation of well stirred biochemical
reaction networks governed by the master equation. Licentiate thesis,
Department of Information Technology, Uppsala University, 2008.

Andreas Hellander and Per Lotstedt. Hybrid method for the chemical
master equation. J. Comput. Phys., 227(1):127-151, 2008.

Shev F. MacNamara. Krylov and Finite State Projection Methods for
Stmulating Stochastic Biochemical Kinetics via the Chemical Master
Equation. PhD thesis, The University of Queensland, Australia, 2008.

Harley H. McAdams and Adam Arkin. It’s a noisy business! Genetic
regulation at the nanomolar scale. Trends in Genetics, 15(2):65-69,
1999.

Johan Paulsson, Otto G. Berg, and Mans Ehrenberg. Stochastic focus-
ing: Fluctuation-enhanced sensitivity of intracellular regulation. Proc.
Nat. Acad. Sci. USA, 97(13):7148-7153, 2000.

26

[25] Christopher V. Rao and Adam P. Arkin. Stochastic chemical kinet-
ics and the quasi-steady-state assumption: Application to the Gillespie
algorithm. J. Chem. Phys., 118(11):4999-5010, 2003.

[26] Paul Sjoberg. Numerical Methods for Stochastic Modeling of Genes and
Proteins. PhD thesis, Uppsala University, 2007.

[27] Mukund Thattai and Alexander van Oudenaarden. Intrinsic noise in
gene regulatory networks. Proc. Nat. Acad. Sci. USA, 98:8614-8619,
2001.

27

A Algorithms

One of the most popular algorithms to generate realizations of the CTMC in
the well-stirred case is Gillespie’s direct method (DM) [15]. Several algorith-
mic improvements of this method exist, one of them being the next reaction
method (NRM) due to Gibson and Bruck [14].

The underlying algorithm in URDME is the next subvolume method
(NSM) [5]. The NSM essentially combines ideas from NRM and DM in
order to tailor the algorithm to reaction-diffusion processes.

For reference, we first state below both DM and NRM and then outline
NSM.

Algorithm 1 Gillespie’s direct method (DM)

Initialize: Set the initial state x and compute all propensities w,(x),r =
1,..., Mieactions- Also set t = 0.
while ¢ < T do
Compute the sum A\ of all the propensities.
Sample the next reaction time (by inversion), 7 = — log(rand)/\. Here
and in what follows, ‘rand’ conveniently denotes a uniformly distributed
random number in (0, 1) which is different for each occurrence.
Sample the next reaction event (by inversion); find n such that
Do) wi(x) < Arand < 377 w;i(x)
Update the state vector, x =x — N, and set t =t + 7.
end while

28

Algorithm 2 Gibson and Bruck’s next reaction method (NRM)
Initialize: Set t = 0 and assign the initial number of molecules. Generate
the dependency graph G. Compute the propensities w,(x) and generate
the corresponding absolute waiting times 7, for all reactions r. Store those
values in a heap H.
while ¢ < T do
Remove the smallest time 7, = Hy from the top of H, execute the nth
reaction x := x — NN,, and set t := 7,,.
for all edges n — j in GG do
if 7 #n then
Recompute the propensity w; and update the corresponding waiting
time according to

wad

new __ old J

= t+ (Tj t) wnew
J

else {j =n}
Recompute the propensity w, and generate a new absolute time
TheW. Adjust the contents of H by replacing the old value of 7, with
the new one.
end if
end for
end while

29

Algorithm 3 The next subvolume method (NSM)

Initialize: Compute the sum o7 of all reaction rates w,; and the sum o¢ of
all diffusion rates a;;x, in all subvolumes ¢ = 1,..., Ngqs. Compute the
time until the next event in each subvolume, 7; = —log(rand)/(co} + o¢),
and store all times in a heap H.
while ¢t <T" do
Select the next subvolume (,, where an event takes place by extracting
the minimum 7,, from the top of H.
Set t = 7,,.
Determine if the event in (, is a reaction or a diffusion event. Let it be
a reaction if (67 + o) rand < o7, otherwise it is a diffusion event.
if Reaction event then
Determine the reaction channel that fires. This is done by inversion
of the distribution for the next reaction given 7, in the same manner
as in Gillespie’s direct method in Algorithm 1.
Update the state matrix using the (sparse) stoichiometry matrix N.
Update o7 and o¢ using the dependency graph G to recalculate only
affected reaction- and diffusion rates.
else {Diffusion event}
Determine which species S, diffuses and subsequently, determine to
which neighboring subvolume (,,. This is again done by inversion
using a linear search in the corresponding column of D.
Update the state: S,; = S — 1, Spy = S + 1.
Update the reaction- and diffusion rates of subvolumes ¢, and (,,» using
G.
end if
Compute a new waiting time 7,, by drawing a new random number and
add it to the heap H.
end while

30

