
Dynamic Budgeting for Settling DRAM Contention
of Co-running Hard and Soft Real-time Tasks

Jonas Flodin, Kai Lampka, Wang Yi
Department of Information Technology, Uppsala University

Email: {jonas.flodin, kai.lampka, yi}@it.uu.se

Abstract—In modern non-customized multicore architectures,
computing cores commonly share large parts of the memory
hierarchy. This paper presents a scheme for controlling the shar-
ing of main memory among cores, respectively the concurrently
executing real-time tasks. This is important for the following:
concurrent memory accesses are served sequentially by the
memory controller. As task execution stalls until memory fetches
are served, the latter significantly contributes to the execution
time of the tasks. With multiple real-time tasks concurrently
competing for the access to the memory, the main memory can
easily become the Achilles heel for the timing correctness of
the tasks. To provide hard timing guarantees, release of access
requests issued to the main memory has therefore to be controlled.
Run-time budgeting is a well accepted technique for controlling
and coordinating the use of a shared resource, particularly when
the underlying hardware cannot be altered. Whilst guaranteeing
timing correctness of the hard real-time applications, worst-
case based resource budgeting commonly leads to performance
degradations of the co-running (so called soft real-time) appli-
cations. In this paper we propose to combine worst-case based
resource budgeting with run-time monitoring for dynamically re-
configuring the budget schemes. Thereby we aim at increasing the
responsiveness of the soft real-time applications, while satisfying
the strict timing constraints of the co-running hard real-time
tasks. We have implemented the proposed scheme in a microker-
nel and present its empirical evaluation for which an industrial
benchmark suite has been employed.

I. INTRODUCTION

A. Motivation

Advances in chip- and networking technology driven by
the high volume and high performance consumer electronics
industry, opens up the road for building cost-effective embed-
ded control systems. However, the use of “Commercial Off-
The-Shelf” (COTS) components, originally designed for the
consumer-electronic market, is still beyond today’s engineering
practice, at least when it comes to the design and implementa-
tion of integrated embedded systems which have to meet real-
time requirements. The reason for this is as follows: integration
of multiple (hard and soft time) applications into a single
multicore device brings the sharing of hardware infrastructure
among the logically independent applications. The sharing
might yield hidden dependencies, respectively interferences
between the applications, even with applications executing on
different cores. As a result, one may experience unwanted
timing effects, which are extremely difficult to detect, and have
the potential to corrupt the timing correctness of the system.

As a concrete example, one may think of a dual core system
with a shared L2 data-cache. The concurrently executing
software will mutually evict each other’s cache entries. This

in turn will significantly add to their execution times as data
items must be re-fetched from the main memory. However,
this interference, which can only be pessimistically bounded
by today’s analysis techniques [16], is not the only source of
trouble. In a synchronous setting, each time when fetching
an item from the main memory, task execution is suspended
until the actual request is served. The resulting waiting time
depends on the number of pending memory access requests
from the tasks executing on the other cores and the complex
memory access arbitration scheme implemented by the DRAM
controller. The challenge inherent to such a setting is to
find a strategy which on one hand guarantees that real-time
tasks do not miss their deadlines due to excessive waiting
for the main memory. On the other hand, such a strategy
must not drastically block non-real-time tasks from accessing
the memory and thereby eliminate their responsiveness. This
paper introduces a scheme which aims to achieve both timing
correctness and good responsiveness of soft real-time tasks.
The approach is based on budgeting and slack reclamation for
coordinating the access to the main memory of concurrently
executing hard and soft real-time tasks.

B. Contribution: memory bandwidth control with slack shift-
ing from hard to soft-real-time tasks

The cores in common multicore architectures typically
share parts of the memory hierarchy. This include caches,
memory controller and DRAM modules. In this paper we
consider sets of hard and soft real-time tasks executing con-
currently on different cores and sharing parts of the memory
hierarchy. When a core access memory, respectively fetches
data from the main memory, the bounding of the completion
time of the access requires the following questions to be
answered:

1) Level-n Caching: does the requested data reside in
one of the caches or not?

2) Main memory utilization: how many requests are
currently buffered in the memory controller or arrive
before the request under consideration is served?

3) Caching in the main memory: does the fetch opera-
tion address a memory location which resides in an
open row in the DRAM?

This paper focuses on item 2 and presents a technique which
controls the number of main memory access requests emitted
by the soft real-time tasks. This is needed as the memory
controller may reorder accesses for higher throughput of the
memory system and the re-ordering can lead to unexpected
waiting times experienced by access requests sent from a co-
running hard real-time task [13]. To bound the interference



of co-running soft real-time tasks, past works have proposed
server-based resource reservation mechanisms, not only for
organizing the sharing of computing resources, but also for
addressing the shared use of DRAM [2], [17], [18]. However,
the computed budgets are extremely pessimistic, and reflect
the worst-case rather than the normal resource use. Hence,
tasks under memory access budgeting experience a severe
degradation of their average response time. For the hard real-
time tasks, commonly implementing system control functions,
this degradation is irrelevant, what matters is the guarantee
that all deadlines are met. However, for user-centric soft-real
time applications performance degradation should be reduced
which is the aim of the proposed approach.

We assume that the tasks with hard real-time constraints are
mapped to a specific core(s) and that their scheduling ensures
timing correctness under a fixed number of memory accesses
to the memory performed by the remaining cores. Access to
the main memory of the soft real-time tasks is dynamically
throttled by a budgeting mechanism, put together with a
memory access reclamation scheme to utilize unused memory
access bandwidth. Our approach shifts unused memory access
bandwidth from hard real-time tasks to the co-running soft
real-time tasks in the form of lifting memory bandwidth
restrictions. Whilst the budgeting ensures timing correctness
of the co-running hard real-time tasks, slack reclamation of
unused memory access bandwidth intends to increase the
throughput of the co-running soft real-time tasks.

Finding optimal mappings of hard real-time tasks to cores
together with the computation of budgets such that some
objective is maximized, e. g., memory utilization, is extremely
challenging and an open research field. But, finding answers
to this problem, is not the target in this paper. Here, we
focus on the reclamation of unused memory access bandwidth.
Shifting access capacity from hard-real time tasks to off-core
co-running soft real-time applications will increase reactivity
of the latter. However, reclamation must be done in such a
way, that the timing correctness of the hard real-time tasks
executing on the bandwidth donating core are no corrupted.
To the best of our knowledge, such a scheme has not been
proposed yet; see the next section for the body of work in this
direction.

C. Organization

The remainder of the paper is organized as follows: In
the next section we review related work. Sec. III presents
the system model. Sec. IV describes our proposed budgeting
mechanism. In Sec. V we detail our implementation and our
experimental setup and provide some data on how well our
method works. Sec. VI concludes the paper.

II. RELATED WORK

The proposed work is based on the concept of resource
servers. Resource servers are a standard mechanism to coor-
dinate the access to a shared resource. The basic mechanism
works as follows: the budget of the server is a function over the
time-line, where a resource access decreases the budget of the
server accordingly and the budget is replenished at fixed points
in time. Whenever the budget is used up, the server is not
eligible to access the resource. Typically each resource server

is equipped with some budget, where the dynamic assignments
of priorities determine which server is given the priority to
access the resource.
Example of resource servers are the Constant Bandwidth
Server [1], Deferrable Server (DS) [15], Constant Utilization
Server (CUS) [3], Hierarchical Resource Reservation, e. g., for
bounded delay resource partitioning [5] and Online Reconfig-
urable CBS [12], to name only few of them.

In case of hard real-time tasks, it is assumed that its WCRT
assumed in the scheduling analysis reflects the worst-case
interference of DRAM accesses of co-running hard real-time
tasks. The interference resulting from the co-running soft real-
time tasks is bounded by the currently active budget of their
resource server. We assume that the budgets for the soft real-
time tasks are set in such a way that the resulting WCRT of the
co-running hard real-time tasks meets the bounds employed in
the scheduling analysis.

In such a setting, it appears now, that slack reclamation
in case of DRAM access is, contrary to the standard setting
of resource servers, not side effect free. Shifting unused
bandwidth to co-runners located on other cores may inject
additional delays into the execution time of tasks of the core,
the additional bandwidth was donated by.
In case of lower priority tasks of the donating core, injection
of unaccounted delays is safe if the availability of the donated
bandwidth is limited to the worst-case execution time window
of the donating task. With higher priority tasks this is different.
In case execution of a task with a higher priority than the donor
task is scheduled into the worst-case execution time window
of the already terminated task, donation of bandwidth has to
be cancelled. Otherwise, the unaccounted memory accesses
may inject additional delays which have not been considered
upon scheduling analysis time (i.e., a high priority task is
delayed by the reclaimed slack from low priority task) and can
therefore corrupt the timing correctness of the system. It is this
observation which distinguishes this work from the existing
body on resource servers and the works on resource servers
for controlling memory access bandwidths as reported next.

The authors of [2] propose a 2-dimensional budgeting
scheme, were budgeting of CPU time and access numbers to
the main memory is controlled. The paper does, however, not
consider reclamation, respectively donation of bandwidth.

In [17], Yun et al. present a way of guaranteeing memory
bus bandwidth to one hard real-time core through memory
access throttling on soft real-time interfering cores while
minimizing the performance impact of throttling on the soft
real-time cores. Periodically replenished memory bus budgets
are given to interfering soft real-time cores. The bus usage, in
the form of last level cache (LLC) misses, is measured every
1ms or every task switch, whichever comes first. If the budget
is depleted, all ready soft real-time tasks on that core are moved
away from the ready-queue, until the next replenishment point.
The authors do also not consider slack reclamation of unused
memory bandwidth. Implementation of a similar technique was
presented in [9], the proposed slack reclamation was, however,
not safe w. r. t. timing correctness.
In [18] Yun et al. present a bandwidth reservation and re-
claiming scheme denoted as MemGuard. MemGuard utilizes a
predicted bandwidth usage to assign budgets each period. The
difference between a statically assigned budget and prediction

2



is added to a global budget, which tasks may then reclaim
from if they have depleted their own budget. This makes it
possible to distribute bandwidth to tasks which currently need
more bandwidth than they are assigned. One drawback of
MemGuard is that budget reclaiming only works for soft real-
time task sets, since it gives no guaranteed bandwidth each
period.

The above works are based on static analysis for determin-
ing the budgets of tasks. The worst case path w. r. t. memory
accesses of tasks may be traversed rarely in practice. As
a consequence, the memory access bandwidths assigned to
the soft real-time tasks are unnecessarily low, yielding low
response times of the soft real-time tasks and severely under
utilized cores. Particularly as none of the aforementioned
works considered re-distribution of un-needed bandwidth from
hard to soft real-time task. Bandwidth shifting among soft real-
time tasks as proposed in [18], will help to increase the average
response time of a specific task. However, it does not solve
performance degradation of all soft real-time tasks, as [18]
kept the overall budget distributed among the soft real-time
tasks constant with a periodic replenishment. Consequently,
the average case response of all soft real-time tasks does not
change.

In our work we specifically address this problem by dy-
namically changing sizes of budgets or simply ignoring them
once a hard real-time task has terminated before its set WCRT
and there is no job release of some other hard real-time task.

With respect to the above works we make the following
contribution:

1) In contrast to [17] we allow more than one core with
hard real-time tasks to execute.

2) We shift slack from hard real-time tasks to soft real-
time tasks. Slack reclamation is absent in the work
[17], [2]. Yun et al. [18] propose slack shifting among
soft real-time tasks only.

3) Budget replenishment in the above works takes place
periodically, yielding presumably low access rates
to the main memory by soft real-time tasks. In our
approach, we have hard real-time co-runner specific
budgets. This should already yield better response
times of co-running soft real-time tasks, not to men-
tion the slack reclamation which is implemented in
addition to that.

Adding structure to the run-time system for guaranteeing
deadlines under main memory contention is one way of coping
with the unpredictability inherent to the behaviour of modern
multicore architectures. Another way for achieving this, is
enforcement of TDMA (time division multiple access) based
resource arbitration, where such schemes are often already
implemented in hardware.

TDMA provides more predictable access times for memory
requests, but is by its design inflexible and cannot adapt to in-
formation available at runtime, which leads to underutilization
of bandwidth. Another downside with TDMA is that it nullifies
an open-page policy if time slots are small while worst case
latencies increase if time slots are large.

Goosens et al. [8] present a conservative open-page policy
that can exploit some locality among memory requests without

sacrificing predictability of worst case response times. It is
shown that for parallel applications some speedup can be
achieved, if for each application two consecutive time slots
in the memory access are schedule.

Rosén et al. present a way of combining WCET-analysis
and system scheduling for bus scheduling optimization [14].
Four different bus access policies are evaluated and it is shown
how the length of a task schedule can be reduced as a trade-off
with how much memory is needed to store the bus schedule.

An alternative approach to analysing the duration of ac-
cesses to a TDMA-arbitrated resource is presented by Kelter
et al. in [10]. Based on abstract interpretation and integer linear
programming (ILP) to analyse statically all possible offsets of
a new access request within the TDMA arbitration cycle, the
proposed method is claimed to achieve high precision in rea-
sonable analysis time. However, the analyzed scenarios refer
to dual-core systems and the proposed TDMA scheme does
not reflect the capabilities of contemporary COTS memory
components.

Typically, strict ordering (e. g., TDMA) versus non-strict
ordering (e. g., prioritizing accesses that hit in an open row)
of memory accesses can be seen as a trade-off between maxi-
mizing worst case performance and average case performance.
Our method is a compromise between these by making use of
the average case improvements by non-strict memory access
scheduling as long as safe execution of hard real-time tasks can
be guaranteed. Additionally, our method can be implemented
on top of COTS components where TDMA memory arbitration
might not be available and synchronizing memory access
phases between cores requires considerable overhead.

The authors of [11] present techniques to bound delay
caused by interference on the DRAM level for COTS-based
multicore architectures with First-Ready First-Come-First-
Served (FR-FCFS) memory access arbitration. Considering the
different instructions executed by the memory controller of a
typical COTS platform when fetching a data item from the
memory, inter- and intra-bank accesses times are bounded.
With this precise information, it is possible to get tighter
bounds on interference through the use of bank partitioning,
where cores gets exclusive access to a memory bank or share
it with a subset of the other cores. Memory partitioning is
orthogonal to the proposed budgeting scheme. As a result it
could be integrated into our scheme. The upper bounding of
memory access is of great value for us, as it allows us to bound
memory access times and safely over-approximate the budgets
of the soft real-time tasks such that hard real-time tasks meet
their deadlines. Analysing or finding suitable budgets is sensed
by us as highly relevant, however, for now it is out of the scope
of the research presented in this paper.

III. SYSTEM MODEL

We consider a system deployed on a typical COTS multi-
core architecture.

• There are M CPU-cores, K of which are executing
hard real-time software and M −K are executing set
of soft real-time tasks.

• There are N sporadic hard real-time tasks T =
{τ1, τ2, ..., τN}, each defined by the quadruple τi =

3



(Ci, Pi, Di, Hi), with
Ci as the WCET for the task when running

alone on one hard real-time core,
Pi as the minimum inter arrival time of the

task,
Di ≤ Pi as the task’s relative deadline and with
Hi as the largest number of memory access

requests produced by τi during one task
instance.

• Each core has its own fixed priority scheduler and each
task τi is mapped to one specific core out of the K
hard real-time cores.

• Hard real-time tasks are ordered by their priority such
that τj has higher priority than τi if j < i.

• hi(τi) denotes the set of tasks mapped to the same
core and having a higher priority than τi.

• cr(τi) is the set of hard real-time tasks which are
assigned to other hard real-time cores and potentially
co-run, i. e., execute in parallel, with task τi.

• The other cores we collectively call soft real-time
cores and they execute soft real-time or best-effort
tasks, we do not make any assumptions about the soft
real-time tasks.

All cores share a single memory controller which acts as
an arbiter for serving requests to DRAM. Since memory
controllers and DRAM are complex and have a hard-to-analyze
temporal behaviour, we over-approximate the time it takes to
serve a single request in the worst case as a constant1 L, which
can be computed with methods described in [11]. This constant
also bounds the worst case delay a memory access request
might suffer from a single interfering request by another core.

The maximum increased delay for hard real-time tasks as
a consequence of interfering requests by a set G of hard real-
time tasks mapped to other cores during a time interval t is
upper bounded by the function

F (G, t) =
∑
τi∈G

⌈
t

Pi
+ 1

⌉
·Hi · L

Let Bi be the worst case number of requests sent by all soft
real-time cores to the memory controller upon the execution of
τi. It is important to note that in contrast to other approaches,
we map Bi to the execution of τi and not to a time interval.
This allows us to adjust the WCET of task τi by the delay
caused by interfering requests from the soft real-time cores as
follows:

Ai = Ci +Bi · L
Based on this, the worst case response time (WCRT) of a hard
real-time task τi is a solution to the recurrence relation

Ri = Ai +
∑

τj∈hi(τi)

⌈
Ri
Pj

⌉
·Aj + F (cr(τi), Ri), (1)

and a system is timing correct, respectively feasible if

∀τi ∈ T : Ri ≤ Di (2)

1Since we consider COTS hardware without modifications, i.e., FR-FCFS
scheduling of memory requests (see Sec. II), we cannot accurately predict
memory access times and must use a worst case constant.

holds.

The value selected for Bi is the budget that is assigned to
the soft real-time cores during the execution of τi. Selecting
values for Bi can be seen as tuning the WCET of individ-
ual tasks by sacrificing performance on soft real-time cores.
Computation of optimal values and their distribution among
soft real-time cores is out of this scope for this paper, so we
assume safe values for all budgets Bi are known. An adaptation
of the framework presented in [7] could be exploited to assure
timing correctness of hard real-time tasks for given budgets.
We enforce that the soft real-time cores do not exceed the
budgets through the use of a budgeting mechanism introduced
next.

IV. RESOURCE BUDGETING MECHANISM

For simplicity we begin with the case when all hard real-
time tasks are mapped to a single core which is the setting
presented in [17]. The extension of our basic scheme to the
case of multiple cores with hard real-time tasks assigned to
them, denoted as hard real-time cores, follows thereafter.

A. Hard real-time tasks mapped to a single core

The proposed budgeting mechanism and reclamation
scheme works as described below.

• When a task τi starts executing at time si, a message is
sent to the soft real-time cores that they must activate
memory access budgeting using Bi as a budget. The
budget expires at time ei = si+Ai. Each core receives
a precomputed fraction of the budget such that the
total sum is no more than Bi. (lines 3, 10-14 in
Algo. 1)2

• The number of memory accesses on the soft real-time
cores are monitored using appropriate performance
monitor counter (PMC) events (e.g. cache misses).
(line 37 in Algo. 1)

• If the budget on a soft real-time core is depleted, it
may no longer continue executing until the expiration
time. (lines 19, 35 in Algo. 1)

• If τi finishes early at time fi, another message is sent
to the soft real-time cores that the budget Bi may
be exchanged for a budget Ui, which has the same
priority and expiration time as Bi, but has unlimited
accesses to main memory. (lines 5, 16, 32 Algo. 1)

• In the case of a higher priority task τj starting to
execute at time sj > si, the soft real-time cores switch
budgets such that they use the budget of the highest
priority task. During the time when the higher priority
budget is in use, we do not count the time towards
expiration for lower priority budgets. (lines 11, 24 in
Algo. 1)

• When a higher priority budget expires, the soft real-
time cores fall back to using the budget of the second
highest priority budget. If there are no more budgets,
the soft real-time cores continue executing with unre-
stricted access to memory. (lines 22, 24 in Algo. 1)

2The MemGuard approach of [18] can be incorporated, a long as each Bi

is an upper bound on all memory access requests of the soft real-time cores,
timing correctness is preserved regardless of budget distribution among the
soft real-time cores.

4



Algorithm 1 Budgeting and reclamation scheme
1: activeBudgets := ∅ // Priority sorted list of budgets.
2: procedure STARTTASK(task τi) // Hard RT task is

started.
3: SignalTaskStart(τi)
4: DoWork(τi)
5: SignalTaskF inished(τi)
6: end procedure
7: procedure BUDGETING3(event e)
8: // Event is received on one of the soft real-time cores.
9: B := LookupBudget(e)

10: if e = task started then
11: Insert(activeBudgets,B)
12: MarkFinished(B,FALSE)
13: Replenish(B)
14: end if
15: if e = task finished then
16: MarkFinished(B, TRUE)
17: end if
18: if e = budget depleted then
19: SleepUntilNextEvent()
20: end if
21: if e = budget expired then
22: Remove(activeBudgets,B)
23: end if
24: ActivateBudget(Head(activeBudgets))
25: end procedure
26: procedure ACTIVATEBUDGET(budget B)
27: if B = NULL then
28: DisablePMC()
29: else
30: SetExpirationT imeout(B)
31: if HasFinished(B) then
32: DisablePMC()
33: else
34: if IsDepleted(B) then
35: SleepUntilNextEvent()
36: else
37: EnablePMC(B)
38: end if
39: end if
40: end if
41: end procedure

Consider an example execution as shown in Fig. 1. The
upper part depicts the interleavings of two tasks on the hard
real-time core and the lower part shows which budget is in
effect on the soft real-time cores. The hard real-time core starts
executing τ2 and signals the soft-real time cores to use budget
B2 at time s2. The hard real-time core continues executing
τ2 until time s1, when it is preempted by the arrival of τ1,
which also triggers the soft real-time cores to switch budget
to B1. When τ1 finishes early at f1, the soft real-time cores
are signaled to exchange the budget B1 for U1, which means
that they have unlimited access to main memory until e1. At
the same time, the hard real-time core switches to executing
τ2. When U1 expires at time e1 the soft real-time cores fall

3The procedure Budgeting is called on soft real-time cores whenever one
of the following events occur: SignalTaskStart or SignalTaskF inish
is called on a hard real-time core, a budget times out or a budget is depleted.

ts
2

s
1

f
1

f
2

e
1

e
2

τ
1

τ
2

budget

B
2

B
1

U
2

B
2

slack

U
1

WCET

WCET

slack

τ
1

τ
2

Fig. 1. Budgeting example with two tasks. Arrows pointing up denote job
releases and dashed vertical lines denote the point in time when a job would
have finished if it needed the entirety of its WCET.

back to use budget B2 until τ2 finishes at f2. The budget B2

is then switched for U2 until it expires at e2.

Correctness of scheme: Slack reclaiming using Ui as
budget instead of Bi once task τi finishes early does not
increase the worst-case response times and therefore (2) still
holds.

To justify our claim, we offer the following argumentation.
One instance of a task τi may cause a delay of at most
the WCET Ai for lower priority tasks when we do not
employ slack reclaiming techniques. We show that this amount
of delay, and therefore response time, is not increased by
introducing our slack reclaiming scheme.

Suppose a task starts executing at time si, finishes at fi
and could have ended at latest possible time ei = si + Ai,
not counting the time it is delayed by preemption of higher
priority tasks. This results in the use of unlimited budget Ui
during the time interval [fi, ei]. A safe upper bound of the
delay introduced by all the main memory contention during
this interval in time is d = ei − fi, which would be the case
when all lower priority hard real-time tasks simply stall due
to memory contention. The total delay would then be the sum
of the actual execution time of τi and d,

exec time+ d = fi − si + ei − fi = −si + si +Ai = Ai,

which is what we want to show.

In case the time window associated with the WCRT of
task τi is filled with the execution of a higher priority task
τj ∈ hi(τi), budget Ui is replaced with budget Bj . This
eliminates all side effects of budget lifting w. r. t. preemptive
higher priority tasks. Moreover, as task preemption has already
been considered upon scheduling analysis time, the system
remains timing correct.

Lastly, switching from Bi to Ui does not increase response
time of τi as it has already finished.

B. Hard real-time tasks mapped to multiple cores

With multiple cores and their hard real-time tasks being
executed at the same time, the base scheme is extended with
the following:

• The scheme is extended by letting the soft real-time
cores have several lists of active budgets as the one

5



used in Algo. 1, where each of these lists are mapped
to a single hard real-time core.

• To account for additional delay caused by interference
from hard real-time tasks running on the other cores,
calculation of expiration time of a budget is updated
to ei = si +Ai + F (cr(τi), Ri).

• When a soft real-time core is to pick a budget to
program the performance monitor counter (PMC), it
always picks smallest remaining budget among the
heads. Similarly, when the timer is to be programmed,
the smallest remaining time until timeout among the
heads of the budget lists is used.

• Whenever budget is consumed, all heads decreases
their remaining budget value.

• Time progression towards budget timeout is counted
for all budget list heads.

• If one or more head budgets are depleted, the core
may no longer execute.

• For soft real-time cores to set an unlimited budget, all
budget lists must either have no active budgets or have
a head set to unlimited by a finish signal.

As an example where hard real-time tasks are mapped to
multiple cores, consider a system where we have two tasks
τ1 = (1, 2, 2, H1), τ2 = (2, 3, 3, H2). These tasks cannot
execute on the same core with our method, as they require too
much computation time. We therefore allocate one core to each
of the tasks. Suppose that H1 and H2 are small enough for the
system to be feasible when executing the tasks concurrently.
B1 and B2 are chosen such that R1 = D1 and R2 = D2

respectively.

An example execution of these tasks and the corresponding
budgeting on a soft real-time core are shown in Fig. 2. The
uppermost part in the figure shows task releases and execution
times. In the middle part of the figure, we can see the
remaining part of the budget that the tasks enforce on one
of the soft real-time cores. These are set to infinity after the
task finishes early. In the bottommost part of the figure we see
which budget is in use on the same soft real-time core. The
duration of the core stall due to budget depletion is shown
with a box of diagonal lines.

Correctness of scheme: The behaviour regarding memory
accesses of hard real-time cores does not change by using
our reclamation scheme as budgets only apply to soft real-
time cores. The soft real-time cores always pick the smallest
budget allowed by any hard real-time task, which means that
any budget set by a hard real-time core is a safe upper bound
on the memory accesses by soft real-time cores. These two
facts allow us to look at the interference from the perspective
of a single hard real-time core in isolation. From there we
follow the same argumentation as in the single hard real-time
core case for each of the hard real-time cores to show the
correctness of our scheme.

V. IMPLEMENTATION AND EVALUATION

We implemented the proposed budgeting mechanism in the
Fiasco.OC microkernel, part of the L4 kernel family [6]. This

τ
1

τ
2

budget
in use

B
2

B
1

U
2

B
2

U
1

B
1

B
1

B
2

- unlimited - depleted budget/stall

Fig. 2. Budgeting example with two task executing on separate cores. The
upper part depicts the task execution, the middle part the budget level on one
soft real-time core and the bottom part which budget is used to program the
PMC on the same soft real-time core.

was motivated as this modern operating system has a small
code-base, is open-source, runs on common architectures and
due to its microkernel nature, already provides separation of
tasks. Additionally, Fiasco.OC has support for virtualization,
where a virtual machine executes as a special type of task. This
means that the isolation properties of our budgeting mechanism
naturally extend to virtual machines, which may run operating
systems and applications the memory usage of which are
impossible to analyze.

When a task starts executing on a hard real-time core, this
is signaled by an inter-processor interrupt (IPI) broadcast to
all soft real-time cores. The message associated with the IPI
tells the soft real-time cores which task is starting execution.
The soft real-time cores then do a look-up in a precomputed
table of tasks to find out which budget they should activate,
which priority it has and when it expires. The budget is added
to the priority-ordered list of budgets associated with the core
where the task is executing.

Whenever at least one list of budgets is non-empty, the
highest priority budget with the least remaining budget is
in use. When a budget is in use, a PMC is configured to
fire an overflow interrupt when the budget is depleted and a
timeout is set to fire when the one highest priority budget with
least time remaining expires. If the PMC overflow interrupt is
triggered, the core is halted, using a special instruction, until
the expiration timeout fires. When the expiration timeout fires,
the associated budget is removed from the list of active budgets
and the next budget in the list is eligible to be picked as the
budget in use.

After a task is done with its execution another IPI broadcast
signals the soft real-time cores that the budget for this task
instance is no longer needed. The soft real-time cores then,
upon receiving the IPI, marks the budget as unlimited, without
removing it from the list of active budgets. Then the next
highest priority budget with least budget remaining is selected.

Integration of the proposed budgeting mechanism has only
requested minor changes to the microkernel. We mainly had
to enable communication of budget policies to the kernel and

6



Hard real-time task Miss rate Worst slowdown Worst co-runner

a2time 1.408 32.3% aifftr

aifftr 1.767 20.9% bitmnp

aifirf 1.123 23.1% canrdr

aiifft 1.405 25.6% ttsprk

basefp 1.202 30.7% aifirf

bitmnp 1.454 36.5% aifirf

cacheb 1.179 17.0% matrix

canrdr 1 25.5% rspeed

idctrn 1.422 27.2% cacheb

iirflt 1.488 22.7% aiifft

matrix 1.981 30.9% a2time

pntrch 2.306 47.6% bitmnp

puwmod 1.62 28.6% idctrn

rspeed 1.387 25.1% idctrn

tblook 1.46 26.7% idctrn

ttsprk 1.384 35.5% bitmnp

TABLE I. NORMALIZED CACHE MISS RATE. WORST CASE SLOWDOWN
IS IN PERCENT OF EXECUTION TIME WHEN HARD REAL-TIME TASKS RUN
ALONE. WORST CO-RUNNER IS THE BENCHMARK RUNNING ON THE SOFT

REAL-TIME CORES WHEN THE WORST SLOWDOWN WAS MEASURED.

had to incorporate the signalling for indicating the start and
termination of tasks through IPIs.

Our experiments run on a Intel Xeon X5650 2.67GHz 6-
core CPU. There is only one execution thread per core. We
dedicate one of the cores to manage the other cores. This
manager-core is responsible for configuring what to run on
the other cores and setting up the PMC budgets. For the first
experiment, the second core is dedicated to run hard real-
time tasks. The remaining 4 cores run soft real-time tasks
with limited access to the main memory through our PMC
budgeting mechanism.

We use benchmark suite AutoBench from EEMBC [4]
to evaluate our budgeting mechanism. During the first ex-
periments with the benchmarks we noticed that there was
almost no slowdown due to contention for the shared main
memory. This was most probably due to the caches being so
large that all code and data fit into them. To simulate more
constrained system, we disable caching for data but not for
code. To show the effects of our budgeting mechanism and
reclamation scheme and to compare it to periodic budgeting
without slack reclamation like the one presented in [17], we
construct scenarios where a hard real-time periodic task would
miss its deadline due to interference on the memory bus. When
running a single periodic task with equal deadline, WCET
and period, our budgeting mechanism behaves like a periodic
resource server with replenishment points synchronized with
task invocations.

We run all benchmarks in the AutoBench suite by them-
selves and measure their execution time. Then we measure
the execution time of all benchmarks when co-running with
all other benchmarks. We then compute the slowdown for all
pairings and pick the pairing with the highest slowdown, which
in this case is when pntrch runs on the hard real-time core
and bitmnp runs on the soft real-time cores. The slowdown
was measured to be 47.6%.

Table I shows the worst slowdown due to memory con-
tention experienced by the different benchmarks. We can see
in the table that different benchmarks are represented in the
worst co-runner column, which leads to the conclusion that
it is not only the miss rate that determines how much delay

is introduced to the hard real-time core, it is also affected
by how the benchmarks are laid out in memory. The reason
for that is as follows: The bulk of the delay in DRAM is
caused by waiting for the bank to store and load (precharge
and activate) the row buffer. When memory accesses target
different banks, the precharge and activate commands can be
executed in parallel and interference is limited to waiting on
the shared channel.

A. Single hard real-time core

We construct scenarios where pntrch runs as a periodic
task with period, deadline and WCET (for budget expiration
purposes) all being 123.8% of the solo-run execution time and
bitmnp continuously runs on all soft real-time cores. To adjust
slack in the system, we chose budgets so the hard real-time task
has a safety margin towards its deadline. The safety margins
can be seen as a simulation of different levels of pessimism in
a WCET analysis, where a larger safety margin corresponds
to a more conservative and therefore pessimistic analysis. The
intuition behind is as follows: with shared caches among
concurrently executing tasks, formal analysis will become
extremely pessimistic, as worst-case co-runners need to be
considered. This we model by adjusting the safety margin of
our WCET estimate. The latter is in general to optimistic, as
it was obtained by us by measurement, i. e., empirically, rather
than bounding it by an exhaustive, formal WCET-analysis
method.
The budget is distributed evenly to the soft real-time cores.

In Fig. 3 we can see that for larger safety margins (or
more pessimistic analysis), the slack reclamation technique
yields a substantial performance improvement. Fig. 3 shows
the performance improvement of soft real-time tasks when
employing our method compared to the one presented in [17].
However, due to limitations of our implementation, the figures
of the approach of [17] are too positive. The picture would
be even more positive for our method, if we would have had
compared our method to non-synchronized periodic budgeting.
In this latter case, the budgets assigned under the approach
of [17] need to be halved in order to give the same timing
guarantees. This is because, if the budgets are not synchronized
with task executions, there may be two full budgets available

2.4% 4.8% 7.1% 9.5% 11.9% 14.3% 16.7% 19.0% 21.4%
0

5

10

15

20

25

30

35

40

45

50

Reclaim
No reclaim

Safety margin

N
or

m
al

iz
ed

 a
v e

ra
ge

 e
xe

cu
tio

n 
tim

e

Fig. 3. Comparison of normalized average execution times of bitmnp
running on a soft real-time cores when running budgeting with our slack
reclamation technique and without it. Safety margins are expressed as a
percentage of solo-run execution time.

7



Task-set C1 P1 D1 H1 · L C2 P2 D2 H2 · L
T1, T6 1 2 2 0.37 1 2 2 0.47
T2, T7 1 2 2 0.57 1 3 3 0.46
T3, T8 1 2 2 0.75 1 4 4 0.41
T4, T9 1 3 3 0.48 2 4 4 0.65
T5, T10 1 3 3 0.46 2 5 5 0.95

TABLE II. TASK SETS USED FOR PERFORMANCE MEASUREMENTS.
ALL TIMES ARE NORMALIZED.

for the soft real-time cores during the execution of a hard real-
time task with the same period as the budget replenishment.
In our experiments we have given the same budget to both
methods for simplicity, even though this is less advantageous
for our budgeting scheme.

B. Multiple hard real-time cores

To see the benefits from our method with multiple hard
real-time cores, we perform an experiment with two periodic
tasks behaving like the ones in the example in Sec. IV-B (T2
in Table II). Workloads for the tasks are picked from the
EEMBC benchmarks and we tune the number of iterations
through the benchmarks to fit the task descriptions. We know
the number of cache misses for both tasks and use these
together with L = Lconf to find the highest possible values
for B1 and B2, where Lconf is taken from [11]. Finding
budgets in this case is simple as there is only one budget
affecting response time for each task. We run the tasks on
separate cores and let the three remaining cores run best-
effort tasks. To have something to compare with, we run the
same tasks with unlimited budgets and add a dummy task that
simulates periodic budgeting without doing any computations.
The budget for the dummy task is chosen as high as possible
and such that timing correctness for our two tasks is not
violated. With this setup, normalized average execution time
for a best-effort task running on a soft real-time core is 4.6
when using our method and 56.7 when using static periodic
budgeting (T2 in Fig. 4).

We construct four additional task sets (see Table II) with
EEMBC benchmarks, calculate the largest tolerable budgets
and see how performance for co-running best-effort tasks is
affected. In Fig. 4 the average normalized execution times for
a best-effort task is shown. T6 through T10 use the same task
parameters as T1 through T5, but are instantiated with different
offsets and with task parameters and budgets scaled down by
a factor of 10. This has a noticeable impact when running T6
compared to T1, where normalized execution times of a best-
effort task is more than three times longer when using our
method. This difference can be explained by there being more
or less overlap of the time intervals when the hard real-time
cores allow unlimited access to the main memory.

C. Measured overheads of budgeting

Our technique adds some additional overhead in the form
of communicating task starts and finishes via IPIs. This was
also included in our comparisons for both methods though
the signalling is not necessary with periodic budgeting. We
measured the additional overhead to be between 2.5µs and
7.0µs per task invocation while the task executions are in the
order of hundreds of milliseconds, so the additional overhead
is negligible for this particular setup. The signalling overhead
is also experienced by the hard real-time cores. In the case of

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
0

10

20

30

40

50

60

70

80

90

100

Our
Periodic

Fig. 4. Measurements of average execution times for best effort tasks
under different budgeting strategies; our scheme with reclamation and periodic
budgeting. Measurements are normalized to the average execution time of all
benchmarks running solo.

high frequency tasks, the overhead can be halved by simply
removing the “task finished” signal. The budget will then be
discarded when it expires, but no reclaim can be performed.

VI. CONCLUSIONS

In this paper, we have introduced a dynamic budgeting
mechanism to provide upper bounds on delay caused by
contention on the memory system. The mechanism leverages
the insight that when a hard real-time task finishes early,
which it always will since execution times are often over-
approximations, slack can be used to speed up soft real-
time tasks by allowing them to access the memory in a non-
restricted manner during the slack.

We have implemented the mechanism in the Fiasco.OC
micro-kernel and evaluated it empirically. The dynamic bud-
geting mechanism significantly improves the performance for
soft real-time tasks at the cost of a small signalling overhead
compared to static periodic budgeting.

Our study demonstrates that this is an important step
towards timing-predictable use of multicore architectures in
real-time systems, without having to sacrifice too much of the
average case performance that modern architectures offer.

In the future work, we plan to develop techniques for
mapping both hard and soft real-time tasks onto processor
cores and for calculating budgets such that some objective is
maximized, e. g., memory utilization or processor utilization of
soft and hard real-time cores.

REFERENCES

[1] L. Abeni and G. Buttazzo. Integrating multimedia applications in
hard real-time systems. In Real-Time Systems Symposium, 1998.
Proceedings., The 19th IEEE, pages 4–13, 1998.

[2] M. Behnam, R. Inam, T. Nolte, and M. Sjödin. Multi-core composability
in the face of memory-bus contention. SIGBED Rev., 10(3):35–42, Oct.
2013.

[3] Z. Deng, J. W. S. Liu, and J. Sun. A scheme for scheduling hard real-
time applications in open system environment. In Real-Time Systems,
1997. Proceedings., Ninth Euromicro Workshop on, pages 191–199,
1997.

[4] EEMBC. http://www.eembc.org/.

8



[5] X. Feng and A. Mok. A model of hierarchical real-time virtual
resources. In Real-Time Systems Symposium, 2002. RTSS 2002. 23rd
IEEE, pages 26–35, 2002.

[6] Fiasco.OC. http://os.inf.tu-dresden.de/fiasco/.
[7] G. Giannopoulou, K. Lampka, N. Stoimenov, and L. Thiele. Timed

model checking with abstractions: Towards worst-case response time
analysis in resource-sharing manycore systems. In Proc. International
Conference on Embedded Software (EMSOFT), pages 63–72, Tampere,
Finland, Oct 2012. ACM.

[8] S. Goossens, B. Akesson, and K. Goossens. Conservative open-page
policy for mixed time-criticality memory controllers. In Proceedings of
the Conference on Design, Automation and Test in Europe, DATE ’13,
pages 525–530, San Jose, CA, USA, 2013. EDA Consortium.

[9] W. Jing. Performance isolation for mixed criticality real-time system
on multicore with xen hypervisor. Master’s thesis, Uppsala University,
Department of Information Technology, 2013.

[10] T. Kelter, H. Falk, P. Marwedel, S. Chattopadhyay, and A. Roychoud-
hury. Bus-aware multicore wcet analysis through tdma offset bounds.
In 23rd Euromicro Conference on Real-Time Systems (ECRTS), pages
3 –12, 2011.

[11] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. R.
Rajkumar. Bounding memory interference delay in cots-based multi-
core systems. Technical report.

[12] P. Kumar, N. Stoimenov, and L. Thiele. An algorithm for online
reconfiguration of resource reservations for hard real-time systems. In
Proc. of 24th Euromicro Conference on Real-Time Systems (ECRTS
2012), pages 245–254, Pisa, Italy, Jul 2012. IEEE.

[13] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens. Mem-
ory access scheduling. In Proceedings of the 27th annual international
symposium on Computer architecture, ISCA ’00, pages 128–138, New
York, NY, USA, 2000. ACM.

[14] J. Rosn, A. Andrei, P. Eles, and Z. Peng. Bus access optimization for
predictable implementation of real-time applications on multiprocessor
systems-on-chip. In Real-Time Systems Symposium, 2007. RTSS 2007.
28th IEEE International, pages 49–60, 2007.

[15] J. K. Strosnider, J. P. Lehoczky, and L. Sha. The deferrable server
algorithm for enhanced aperiodic responsiveness in hard real-time
environments. IEEE Trans. Comput., 44(1):73–91, Jan. 1995.

[16] R. Wilhelm and B. Wachter. Abstract interpretation with applications
to timing validation. In A. Gupta and S. Malik, editors, CAV, volume
5123 of LNCS, pages 22–36. Springer Verlag, 2008. Princeton, NJ,
USA.

[17] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory access
control in multiprocessor for real-time systems with mixed criticality.
In Real-Time Systems (ECRTS), 2012 24th Euromicro Conference on,
pages 299–308, 2012.

[18] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memguard:
Memory bandwidth reservation system for efficient performance isola-
tion in multi-core platforms. In Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2013 IEEE 19th, pages 55–64,
2013.

9


