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Abstract!

This paper presents an extended entity-relationship model
for structured musical databases. Both high-level items like
whole pieces of music, down to atomic musical events like
single notes, are modelled. The resulting schema has been
implemented in AMOS I, an object-relational multidata-
base system, with seven short pieces of music as examples.
The model supports analysis and search, rather than sound
applications or notational applications. There is an empha-
sis on harmonics (chords), without excluding monophonic
(melodic) and rhythmic analysis. The user aspect is focused
more on musical amateurs and performers than on musicol-
ogists or people who are buying music on the Web.

Keywords: musical database, musical search, musical anal-
ysis, object-relational

1 Introduction

With the introduction of the World Wide Web, the distribu-
tion and marketing of music have gained a tremendous
potential. The record companies and other distributors of
music can offer the customers a wider choice than before
and an easier way to search for music to purchase. The dis-
tribution of music is also easier, for example with mp3-
files. Not only audio files but also musical scores (i.e.
printed music) can be electronically distributed to profes-
sional and amateur performers of music around the world.

With the large amount of music that is offered in this
way, the need for efficient search methods also increases.
Many music purveyors let the customer search regular
databases for “descriptional” musical data like genre, title,
artist, record company, year of recording, and so on.

However, there are still not many possibilities offered
to do search and analysis among the musioaknrs itself.
When the music is included at all, it is often a8/aB

1. This work was partly sponsored Byamfab.

(Binary Large OBject); for example, as an mp3-file. An
established way to recognize musical pieces is to store the
few first bars of the music, called aincipit or theme (used

by, for example,Themefinder, [12]). This is “better than
nothing” but has two serious limitations. Firstly, it does not
allow general search and analysis on the whole musical
contents. Secondly, its usefulness is mostly limited to
classical music. In many genres th@rus (or refrain) is

what is most memorable about a tune, and it is more
common than not that the refrainvig in the beginning.

The purpose of this report is to define a model where
search andanalysis can be made down to the “lowest level”,
that is, single tones. Our frame of reference is the standard
Western musical notation (score) rather than an audio
representation like mp3. Thus, the aim is to be able to
represent and analyze all components that can occur in a
“standard” musical score, but not on signal processing level.

The main contribution presented here isoaceptual
model of music that is suited for an object-relational
database management system. Observe that it is the
conceptualevel that is presented; thaternal andinternal
views will be different (see section 7 for a discussion of
this). For the sake of brevity, the model will sometimes be
referred to asSMORMIA (short for “structured musical
object-relational model in AMOS II”).

Organization

In section 2, some similar projects and systems are refer-
enced. This is related work in a wide meaning since we
have been unable to find many other musical database mod-
els; to the best of our knowledge, this is the firgtect-
relational model. Section 3 describes assumptions and
restrictions we have set for this work. In section 4, the
object-relation database management system that is used it
shortly outlined. Section 5 presents the developed concep-
tual schema, and section 6 shows some pieces of music that
have been implemented using the schema. Section 7 dis-
cusses the important differences between the conceptual



level and the internal and externa levels, while section 8
gives examples of queries that can be put to amusical data-
base. Finaly, conclusions and future work are presented in
section 9.

2 Related work

The work we have found that is most closely related to our
own is the entity-relationship model for musical data
described in [17]. Asin our model, the concepts of recur-
sive hierarchies and hierarchical ordering are important,
but in [17] they are also used on a lower level, for groups
and subgroups of chords. (See section 5.1 for how the hier-
archical concept is used in our model). [17] is furthermore
much more concerned with the printing of musical scores.

Apart from entity-relationship models for database
systems, there is a large number of codes for musica
representation. Many of them are described in [18], where
they are divided into three code categories: sound
applications, notational applications, and analytical
applications. Examples of sound applications described
there are MIDI and Csound, examples of notationa
applications are DARMS and SCORE.

Our approach belongs to the analytical group but we
will also use the well-known MIDI format as a data source.

differ. A common approach seems to be methods based on
text-search, see for example [26]. Th&MRAS project
(Online Music Recognition and Searching, [16]) has defined
two different search strategies: one is text-based and the
other one is based @nore-matrices [2], [3].

The work presented in this paper has an emphasis on
three aspectsinalysis and search (as opposed to sound or
notation, see [18]),music performers (as opposed to
musicologists or music buyers) ahdrmonic analysis (as
opposed to melodic or rhythmic analysis, see again [18]).
These choices will be motivated in section 3. A common
factor, however, is that the respective choice has been only
moderately explored yet, compared to the others.

3 Restrictions and assumptions

The first and most important restriction is that we do not
think that the suggested schema is suitable and/or possible
to use forall types of musical genres. In concentrating on
the musical score, certain kinds of music that have invented
other types of representations exadiyause a score was

not suitable, may be impossible to represent. However, we
have included some very common representations, like lyr-
ics together with chord names. Incidentally, it is also possi-
ble to storeonly the lyrics as long as some type maéter

Both “classical” MIDI and several extensions are described(time signature, e.g. 3/4) is assigned to it.

in [18].

The musical examples in section 6 are all hand-coded.

Some musical codes are part of a system for musicalhis is of course only feasible for small amounts of data. To

obtain the larger data quantities that are necessary for

analysis. TheHumdrum Toolkit [11], [9] contains both a
large number of musical formats and operators defined tescalability tests, we plan on two strategies. The first is to
work on one or several formats. An extensive bibliographylegally obtain as many MIDI files as possible, and use the
of publications related to the Humdrum Toolkit is listed in Humdrum format **kern as an intermediate format. MIDI
[10]. The basic format i*kern [8]. files can be converted to **kern files, coded in a

There are search tools for music on the Web, some wititomprehensible ASCII format that looks rather similar to a
their own musical formatsMuseData [6], [14], has a musical score [8]. The second strategy is to use a simple
multipurpose representation and also includes a databaggogram that generates synthetic pieces of musigasse.
with several hundreds of classic musical works. From an aesthetic point of view, this “music” will not be of
Themefinder [12] has a couple of thousand incipits (themes) good quality, but it will be sufficient for benchmark tests.
that can be searched (it can be accessed from [14]). A larger
music database is tli&sen database of 10,00@onophonic Performers, analysis/search, harmonics: motivations
(melodic) transcriptions of folk songs, codedE C [18].

More systems and programs are mentioned in [7], andThe reasons to concentrate on musical amateurs and per-
many more codes are described in [18]. However, theformers are the following. Firstly, what efforts that have
Humdrum Toolkit and MuseData are among the few thatalready been made in this research area are mostly for the
include representations fpo/yphonic music (i.e., music for  benefit of musicologists; for example, to make advanced
several voices or instruments) which is necessary forand intricate analyses. These systems are also mostly han-
harmonic analysis (or chord analysis). dling classical (i.e., mostly old) music. Secondly, music

There are also markup and interchange languages fobuyers on the Web will require easy input methods (for
music; see for example chapter 30 and 31 in [18], and [15].example, direct input of song), and that is beyond the scope

Tools for advanced analysis of polyphonic music areof this work. Note that the “SQLish” syntax used for que-
not so common as tools and programs for monophoniaies in section 8 may be incomprehensible to most musi-
music. See [22] and [23] for examples of automatic analysicians, but at least the musical terms should be clear.
of polyphonic music. However, we hope that more groups than musical perform-

The low-level methods for content-based music searcters will benefit. For example, we got a spontaneous remark



from a dancer that this could be used to find good music
when learning to dance. Important aspects here are rhythm,
tempo, breaks, and the form schema (the maor building
blocks for a piece of music, see figure 4). Yet another appli-
cation is copyright infringement [1].

One reason to concentrate on anaysis and search is that
thereis anatural connection to musical performers, who are
often searching for suitable music to perform or arrange.
Furthermore, we regard this as the most interesting area
from a research perspective. This does not necessarily
exclude other applications totally. For example, some
features for score layout are very easy to add (like stem
directions and clefs). But no explicit efforts will be made to
include such features.

The reason for concentrating on harmonicsisthat it has
been less investigated than other aspects, but also because it
introduces n-dimensionality; a musical piece with several
parts (voices or instruments) can be regarded as having a
horizontal aspect (time) and a vertical aspect (the different
parts). This may be exploited in unforeseen ways, for
example with image processing (see suggestion in
section 7).

There are several requirements on the database system
that will be used for the musical database. For example, it
must be able to store and query vectors (sequences) in an
efficient way. Vectors are central since they (as opposed to
bags) can store data in a defined order, which is extremely
important for all types of music. If an image processing
approach is used, the database system must also be able to
store vectors of at least two dimensions.

4 The object-relational database: AMOS II

AMOS II (Active Mediators Object System [4]) is a data
integration system based on the wrapper-mediator
approach [25]. AMOS Il consists of a mediator database
engine that can process and execute queries over data stored
locally and in several external data sources, and object-ori-

because it can handle both distributed and heterogeneous
data. The former is important because wide-world search
should be a major application. The latter is important
because of the large number of different musical
representations that can act as data sources.

For an overview of object-relational databases in
general, see[21].

5 Conceptual schema

In this section, the most important features of the extended
entity-relationship model (SMORMIA) are described. As
far as possible, the standard symbols for EER-models are
used (see figure 1). To describe all features in detail is
beyond the scope of this report. Except or the central con-
cept called Piece, other concepts will mostly be described
with examples when this is necessary for the context. How-
ever, al types and relations in the schema are shown in the
figures.

Except for a few derived functions for harmonic
relations, the whole schema has been implemented in
AMOSII.

5.1 Pieces and Parts

A Piece (see figure 2) is any self-contained musical piece,
and can itself contain a number of sub-Pieces (called sec-
tions) represented in a vector. For example, a song (top-
level Piece) can contain a vector [Versel, Verse?, Chorus,
Verse3, Chorus, Versed] where each element (= section) is
itself a Piece. Each section can itself contain its own nested
sections (figure 3 illustrates this).

The Piece concept takes care of the “horizontal” aspect
of music (i.e., progress in time). To take care of the
“vertical” aspect (several instruments or voices sounding at

the same time stamp) there is a corresponding coieept

Each Part represents not primarily a single voice or

instrument, but rather a singkgelody line. Thus, some

instruments (like Piano) may have to be represented by
several parallel Parts. This is simple to achieve because the
Part is constructed exactly as the Piece in that it may itself
contain vectors of Parts to an unspecified depth. See for
example “Viola” in the last section of the Mozart Trio
(figure 9 in section 6.1) or the Mozart Piano Sonata’s right
hand (figure 10 in section 6.2).

Each leaf-node level Piece has a vector of Parts
associated with it (called//Parts). The Part vector that can
be included in another Part is calleg@ices. Finally, each
leaf-node level Part has the actual musical material
associated with it, as a vector of tones and tesafled
tones. In figure 2, the most important relationships of Piece

ented multidatabase views for reconciliation of data and
schema heterogeneities among data sources.

The data stored in different types of data sources are
translated and integrated using object-oriented mediation
primitives, providing the user with a consistent view of data
in all the sources. Through its multidatabase facilities, many
distributed AMOS |l systems can inter-operate in a
federation. Since most data reside in the data sources, and to
achieve high performance, the core of the system isamain-
memory database management system. AMOS Il is
extensible so that new data types and query operators can be
added in some external programming language.

The query language of AMOS II, AMOSQL [24], is
based on the functional data model DAPLEX [20] and
OSQL [13].

AMOS Il is well suited to store musical databases

1. Other types of entities are also allowed here; see
section 5.3.



and Part are shown in an entity-relationship diagram, and a
musical example is given in figure 3. Note that some
properties and relationships are duplicated in Piece and Part.
For example, it is possible but not mandatory to assign meter
and key signaturesto individual Parts aswell asto Pieces.

5.2 High-level musical contents of a Piece

Some high-level concepts in SMORMIA are shown in fig-
ure 4 (see also figure 2).

Note that a formSchema can be attached to a Piece if
desired. The formSchema does not have to correspond
exactly to the structure of Pieces, although thiswill often be
the case for simple music. An example of a case when the
correspondenceis not one-to-one is shown in figure 11.

In Genre, features specific to certain musical genres
can be stored (but see also section 5.7). Properties regarded
common to “all” music is stored iMusic but can be
overrided by Genre.

<type>

<attribute,;> <type;>
<attribute,> <type,>

<scalar>

A scdar type
(for example,

A definition of atype <type> with attributes
<attribute;> of type <type;>, <attribute,>
<type,>, ..., <attribute,> of type <type,>

“..” indicates that there are more attributes
that are not shown in the figure

Direction of relationship (points to
result type)

type)

* : bag of objects (with undefined order)
v : vector of objects (with defined order)

tionship (omitted when only one object)

Symbols for extended entity-relationship diagrams

integer, boolean)

> —-

Inheritance relationship between
two types, “is-a” (points to super-

<n> : the number of objects of the same type participating in arela-

<data
<relation> source>
A relationship between An external

two types, a function data source
Sflinput, input; ...) ->

result

Dotted arrows and other symbols:
some participant(s) in a relation-
ship are shown in another figure

<Piece> A Piece object

Symbols for instantiated pieces of music

A Part object

Figure 1: Symbols used in EER diagrams and implementations



5.3 Metric and duration information for a Piece

Types and relations for metric information are shown in fig-
ure 5. An important concept is the DurationUnit, whose

main feature is that it has a duration in time!. Both tones
and rests are subclasses of DurationUnit. However, it is pos-

1. Insome cases, the duration is allowed to be zero;
see section 6.2.

sible to use the DurationUnit directly for instantiation of
objects. For example, when you want only /yrics but no
tones (as in rap and text declamations) this is the natural

choice. Each DurationUnit then contains one text syllable?.

2. Sometimes syllables have to be “divided” among
several DurationUnits, but this is a relatively
trivial problem (see section 6.4).

- -
v
sections
Part
Pi v
sectionName charstring lece
interpretation charstring _ _
instrument\Voice charstring| v ;ectmnName charstn.ng
mainMelodyLine boolean interpretation charstring
keyDesig-
nation
Figure 2: Piece, Part and their relation to each other
Messiah
Part One
Part Two Part Three
No. 1 No. 13-18 No. 21
Sinfonia Tt “Pastoral part’| *°° | Hisyokeiseasy
s ! |
| [ Vo |
| 4 1 \ \ |
No. 14
Recitative
No. 14a No. 14b
There were shep- And lo, the
herds... angel...
I
I
Soprano !
< solo
/ AN

Figure 3: Examples of Pieces and Parts from Handel’s Messiah



Part

- meterDesig-
nation
sections
\%

sectionName charstring
interpretation charstring - -
instrumentVoice charstring| v $Ctl onNar_ne charstrl_ng
mainMelodyLine boolean interpretation charstring

KeySignature

keyL etters charstring \Y
keyScale charstring

FormUnit

formName charstring

v FormType

Genre

standard-
FormType

harmonic-
Role

frequenc
frequencyForNormalA equency

integer

)

Figure 4: High-level musical contents of a Piece

AbsoluteDuration is the “real” note value (e.g., a ure 6. Observe that it is &ngle melody line that is
quarter note)RelativeDuration is introduced so that the user described here.
does not have to know the exact meter designation for a AbsoluteTone is the “real” pitch, andSolfaTone (the
Piece (e.g., 3/4 versus 3/8). It can be automatically relative position of a tone in a scale) is introduced for key-
calculated. independence. Like RelativeDuration, SolfaTone can be
automatically calculated.
5.4 Tonal information for a Piece

Types and relations for tonal information are shown in fig-



accompani-

tones
-+ — ment AbsoluteDuration
v
DurationUnit
lyrics charstring duration _ _
- > ’ RelativeDuration
tie boolean

accent charstring

percentage
Rest offset

Meter

numerator integer | RhythmicMeter

denominator integer «

PartialBar
leadingBar
traillingBar Piece 0
| |
_sec%nN_amEhaErirE _|
| interpretation charstring |
Tempo |

noteDenominator integer
duringMinute integer

tempolndi-
cation

Figure 5: Metric and duration information for a Piece

5.5 Harmonic information for a Piece with two G tones).

Harmonic information is shown in figure 7. Some of this To allow other combinations than the traditional

information is predefined, according to classical Western chords, ToneCombination can contain any possible
harmonic theory. For example, TheoreticChord instantia- combination of tones. This may or may not be an
tions are all types of “named” chords: C, Cm, C+, C6, C7, AbsoluteChord. Note that an AbsoluteChord can be
Cdim... but are stored as key-independefinedChord automatically derived from one time stamp of several
are all variants that is allowed of a specific TheoreticChord Parallel Parts. , _

(for example, a C7 either without the tone C or the tone G).  1"€ User is free to add his/her own TheoreticChords
AbsoluteChord is the “real” chord, and heréuplicates of and DefinedChords. For example, if there is a common tone

named tones may be included (for example, a Cm chorgcombination C-D-E-F-G that is used, this can be defined as
' a TheoreticChord named (for example) “DoReMiFaSo”.



| lyrics charstring
| tie boolean
accent charstring

c —

candiate-
ChordTones

SolfaTone

theoretic-
ChordTones

positionOf Tone charstring

NamedTone

findLead-
ingNote

nameOfTone charstring

AbsoluteTone

chordTones

absolutePitch integer
mainMelodyL ine boolean

frequency

orderOf-
Chord 4 — -
\%
2

Interval

intervalName charstring
intervalNumber integer

tonelninter-

val

Figure 6: Tonal information for a Piece
accompaniment is chord designations that can be used
for any DurationUnit: tones, rests, or lyrics. Thus, it is for
exampl e possible to store the very common combination of
lyrics + chords, or lyrics + melody + chords.

5.6 Descriptive, audio, and source data for a Piece

Lastly, high-level descriptions and other information is
shown in figure 8. This includes composer data, different
versions of a Piece, indication of copyright for composers,
performed versions of a Piece, data sources for the struc-
tured musical contents (for example MIDI files) and audio
data (for example, mp3-files).

It isperfectly possibleto store OriginalPieces that have

never been performed, and thus contain no audio data or
performed versions (PerformedPiece). Likewise, it is
possible to store pieces that have no structured musica
contents at all, as in the Web sites that let you listen to or
load down mp3-files.
Source data (PieceDataSource) deserves some more expla-
nation. To obtain large quantities of data for volume tests,
MIDI files with **kern as an intermediate format can be
used (as mentioned in section 3). Note that several data
sources may be required for one Piece. For example, **kern
itself does not include representation of lyrics, but another
Humdrum format, **zext, does (see also section 6.4).



TheoreticChord ChordType
< theoretic- shortName charstring chordDesignation
ChordTones theoreticChordTones # charstring _
vector of charstring keyScale charstring
orderOf-
-+ Chord
DefinedChord
definedChordType
charstring
alCandi- ChordN
dates or ame
absolute-
v ChordName
>
CandidateChord
candidateChordTones AbsolnteChord
vector of charstring soluteChor
accompani-
ment -
2 2
detailed-
Chord harmonic-
Role -
harmonic-
ToneCombination Relation
findLead-
ingNote
/
/
chordTones / FunctionalRelation
-
/ relationName charstring FunctionalRole
/ roleName charstring
Figure 7: Harmonic information for a Piece
5.7 Genre-specific data SongPart as a subtype of Part, or SongDurationUnit as a
It is not possible to code all types of music without genre- subtype of DurationUnit. But in the implementation
specific information; thus, the type Genre mentioned in described in section 6, no such subtypes have been used.

section 5.2. However, thisis probably not enough; you may
have to create genre-specific subtypes of some too-genera
entities, for example SongPiece as a subtype of Piece,
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VersionPiece

recordings targetOf

*

PerformedPiece

artist bag of charstring

Piece
]
| sectionName charstring |

musical- | interpretation charstring |
Contents | |
Lo _|

OriginalPiece Composer
composerOf *

title charstring —

written date

firstPerformed date

*
*

PieceDataSource
sourceOf
* A

composerName charstring
composerBirthDate date
composerDeathDate date
composerOfMelody boolean
composerOfLyrics boolean
composerOf Arrangement
boolean

original-
Composer

secondary-
ComposerOf

reviews bag of charstring MIDI
recorded date (example)
company charstring
recordTitle charstring audial Of
*
AudioDataSource MP3

(example)

Figure 8: Descriptive, audio, and source data for a Piece

6 Implemented pieces of music

The entity-relationship model shown in section5
(SMORMIA) has been used to implement seven small
pieces of music, to exemplify how the model handles some
difficulties that are common to music representations.
Thefirst six piecesaretakenfrom[19]. In[18], they are
used as ak.a. benchmark for the different types of musical

codes that are described there. Each code is challenged to
implement the example pieces of music as completely as
possible, with respect to the code category of each
representation (sound, musical notation, or analysis).

The seventh piece is an arrangement of the well-known
“Amazing Grace”; this has been included to cover some
aspects not inherent in the pieces from [19].



In section 6.1 - section 6.7, it is shortly described how
each musical piece has been treated. For afull description of
the first six pieces with scores, see[19].

Types and relations not used in the implementation

Not al model elements described in section 5 have been
used for implementation. Foremost, no attempt has been
made to include the descriptive and audio information from
section 5.6. As for source data, all the seven pieces have
been hand-coded. Thisis of course only possible with small
data quantities.

TheformSchemaand itsrelated entities have only been
used very superficially, since the coded pieces are too short
to need them.

Generally, information that can be derived - like most
of the harmonics - has not been coded explicitly.

6.1 Mozart Trio
This example is taken from the second trio section of

afterthought. They only need to be instantiated for these
specific instances and will be undefined for the rest. This is
also true for similar entities defined in subsequent sections.
For convenience, they will henceforth be calteceptional
properties.

The 3-tuplet was handled in the following way. First
the absolute values (AbsoluteDuration) of the tuplet was
coded as quarter notes, as in the score. However,
RelativeDuration was set to the “true” duration, for each
note, 1/9. Furthermore, an exceptional propefiyplet was
added to AbsoluteTone, and set to 3 for the three quarter
notes in the tuplet. This is not strictly necessary since the
same information can be derived from RelativeDuration, but
it is a quicker way to find n-tuplets.

The two repetitions in the first part are exactly
identical. Thus theones vector for the Piece representing
the first repetition was first coded, and was then copied-by-
reference to the tone vector of the second repetition. This
saves some space, but more importantly it ensures that the
two tone segments are identical. Note that this is only

Mozart's Clarinet Quintet K 581 in A major (for Clarinet, feasible when there aweacr matches (as opposed to the

Violin I, Violin II, Viola, and Violincello). It is 16 bars long. ~ Saltarello, see section 6.3). S

In [18], the respondents were only asked to set the first 12 Incidentally, bar numbers are not coded explicitly in

bars (up to a repeat sign). SMORMIA, but are calculated by affser present in each
The piece is rather simple. The main difficulties in the Piece, together with the meter designation. Thus, the tone

first 12 bars is that the Clarinet part is notated in C major,vectors themselves are independent of their relative

while the piece itself is in A major. There are also the Placementin a top-level Piece.

following interesting features that must be handled: The double notes in the Violin Il and Viola parts were
1. There is a 3-tuplet of quarter notes in the 8th bar. handled by introducing several Parts for these instruments.

2. There are two repetitions of the first part. Two variants were coded: in the first, all new Parts (Violin

3. There are double notes in the Violin Il and Viola parts ! A, Violin Il B, Viola A, and Viola B) were put at the same
(this is in the section that was not required to be coded)!evel as the other instruments in a “flat” way. In the second
variant, a meta-level was introduced for these instruments.In
SMORMIA can represent all the features important to anal-figure 9, the Pieces and Parts for this second variant are
yses, including the last four bars. Features connected to layghoWn- o _
out, like directions of stems, was not included. However, it The tone vectors for Violin Il B and Viola B are as long

is perfectly possibly to add such information as a property2S the vectors for Violin Il A and Viola A, and have rests
of DurationUnit if desired. where there are only single notes. Observe that for external

Except for tones and restses were included (as Presentation, the tone vectors can easily be “flattened” to

properties of AbsoluteTone; tie = true means a tie (at leastpPtain a more natural look.

to the next note). A propertyccent of AbsoluteTone was .

used to code things like staccatos. The dynamics (here onI?-2 Mozart Piano Sonata

piano,p) was instead stored on Part level since it was theThis example is an excerpt from the Mozart Piano Sonata

same for all notes. Clarinet Quintet K 331 in A major; it is only five bars long.
The difficulty with Clarinet in C major was solved by The main difficulty is a lot ofrace notes that have no

explicitly settingkeyDesignation to C major for that specific  “formal” duration but are noted as 1/32. Another problem is

Part (while the whole Piece has A major as keyDesignation)an arpeggio in the first bar (right hand), consisting of four

However, a propertyriginalKey was introduced for Part, parallel notes.

and set to C major for the Clarinet part. If it is later desirable A problem inherent to all keyboard pieces is that the

to transpose the Clarinet part to A major (using a function number of parallel “vertical” notes is irregular. However,

namediranspose), the original key can be restored later. this was solved in the same way as for Violin and Viola in
Observe that items like originalKey, which are only the Mozart Trio’s last section (see section 6.1).

applicable for a few instances, can be added as an



Trio

First section

1st repetition 2nd repetition

Clarinet

Violin Il

Violin Il

Violin-
cello

Violin-
cello

Last section

Clarinet

Violin Il

Violin-
cello

Viola A

Violinll
A
Violinll
B

Figure 9: Pieces and Pa

Alternative solutions were given to the problem of
grace notes. Common to the solutions were that the grace
notes were given AbsoluteDuration = zero (0). In the first
solution nothing more was done, and the RelativeDurations
were aso set to zero. In the second solution, the
RelativeDurations were divided between all the notesin one
bar. However, no attempt was made to make an exact match,
sincethe notation of 1/32 for grace notes should not be taken
literally, and the result would be ametrics rather hard to read
and comprehend. Instead, natural approximations were
used. For example, in a bar with three grace notes of 1/32
duration each and four regular notes of 1/8 duration each, the
RelativeMeter was set to 1/15 for each grace note, and to 1/

5 for each 1/8 note.

Preferable, approximations like these should be made
automatically, but this would require a rather intelligent
routine.

The property accent was set to “grace note” for the
concerned notes (not strictly necessary since the duration o
length zero provides enough information).

The arpeggio was also coded in two alternate ways. In
the first and most simple approach, the real-time durations

rts of Mozart Trio

quarter notes, rests were added for consistency. The
property accent was set to “arpeggio” for the concerned
notes.

In the more complicated solution, the arpeggio notes
were converted to a “real” arpeggio in the following way:
the tones were spread out regularly throughout the bar, again
not as an exact match. There were three quarter notes and
one half note. The half note got duration 7/16, while each
guarter note got duration 3/16. The relative duration was set
to 1/5 for each quarter note and 2/5 for the half note.

Exact representations of these features were not
attempted by any of the contributors in [18].

Since the right-hand chords consist of at most four
parallel notes, four Parts were used to represent them: see
figure 10. The left hand consists of a single melody line.

f

were disregarded; instead, they were coded as presented in

the score. Since the arpeggio consists mainly of parallel



Sonata

Left
hand

Right
hand

First (upper- Second Third Fourth
most)

Figure 10: Piece and Parts of Mozart Piano Sonata

6.3 Saltarello

This is an anonymous piece from the early Renaissance. It
consists of a single melody line divided into two sections,
each of which isrepeated. The only difficulty with the piece
is that the repetitions have different endings. Thisis shown
in figure 11. Observe that the first ending in the first repeti-
tion for both sections are exactly the same, and the same
holds for the second ending. The multiple endings make the
Saltarello quite complicated at ahigh level, even if it is oth-
erwise very simple. However, the identical parts can be
copied-by-reference, just as was done for the Mozart Trioin
section 6.1.

Saltarello
Section A Section B
Verse Al Verse A2 Verse B1 Verse B2
Common Ending 1 Common Ending 1
Part A Part B
Common Ending 2 Common Ending 2
Part A Part B
Common
Part A
- Common
Ending 1 Common Ending 2
Part B
Part B
( Ending 1 >
Common 9
Part A
Ending 2

Figure 11: Pieces and Parts of the Saltarello




6.4 Telemann Aria may be enough when the correspondence between notes
This is the first 35 bars of the Telemann Aria “Liebe! Liebe! (PurationUnits) and syllables are one-to-one. In other cases,

Was ist schoner als die Liebe?” (D major, 3/8 meter). The the lyrics must be coded as above, in order not to lose

score is for \Voice, Oboe, Violin, Viola, Violincello, and  information. , , ,
Cembalo. A difficulty mentioned in [19] is the&diacritics (for

Like in the Mozart Trio and Piano Sonata. there are G€rman letters, like ‘0" and ‘U’). However, this has more to
irregular numbers of parallel “vertical” notes (here only for do with text representation in general than with music in

Viola) but this is solved as before: three separate Viola partsParticular. _ _ ,
are required. See figure 12. This piece is the most extensive of the hitherto

The Aria is represented in two Pieces: a wholly Presented examples, but presents no new principal

instrumental section (the first eleven bars) and a section with difficulties for SMORMIA.

Voice and instruments. It could as well has been representec  ncidentally, themain melody line of a Piece can be
as one single section, as it is in the score; then, the first'epresented either in a Part or in a DurationUnit, as a boolean

eleven bars for the Voice part would have been representec’@!ue. Mostly the main melody line is held by the same Part,
with rests, as is also done in the score. Praxis for this variesPUt in the first wholly instrumental section in the Telemann
widely in printed music. Sometimes it is very impractical to Ai@ it wanders between Oboe and Violin. In this case, it
represent all parts in parallel from the beginning (for makes sense to represent the main melody line in individual
example, when the piece starts with one single voice or DurationUnits. In the second section (with both Voice and

instrument, and suddenly “grows” to 12 - 16 instruments). instruments) thg main melody line is held by the Vo.ice
Lyries is introduced here; as mentioned before, lyrics is aimost” all the time, except for a few bars when there is a

represented with a syllable for each duration unit, but for an /0nd rest in the Voice part; the main melody line then goes
aria like this, one syllable often spans over several back to the Oboe. If it is not considered very important to

DurationUnits (i.e., notes). This is indicated by placing ‘-’ ha\‘{e a Io:\g unbroken main melody line, it should be alright
before and/or after the text, for example “scho-", “-6-" to “cheat” and only represent the main melody line in the

5 “ner” Part for the Voice. Otherwise, it must be represented in

In many cases, such text fragments can be collapsed toPurationUnits all through the current Piece. The latter
a regular text. However, the text can also be directly @PProachwas chosen inthe SMORMIA implementation.

represented as a sepanai@or of charstrings in a Part. This

Aria

Instruments Instruments and Soprano
voice

ViolaB

Figure 12: Pieces and Parts of the Telemann Aria




There is a drill in the tenth bar; the corresponding
AbsoluteTone’'siccent is set to “drill”. There are a lot @fie
notes in the Aria; they are marked as “cue note” indheent
property. If a note had been both a drill and a grace note, an
exceptional property would have been defined for the drill.

Lastly, there is an alternative variation for the Voice in
the 30th bar; it has been stored in a specific Part (“Soprano
alternative”). This is an example when it is clearly
inconvenient to allow only one single melody line for each
Part. Likewise, the third Viola part contains only a few notes.

6.5 Unmeasured Chant

Two unmeasured chants are given as examples. The first,
“Alma Redemptoris Mater”, is written ineumes. The sec-
ond, “Quem queritis”, is written in modern notation.

Common to both chants is that no metric information
has been given (which is the essence of “unmeasured”). In
“Quem queritis”, all notes have the same duration (1/4).

It is not possible to convey amgact notation to
unmeasured music. However, it is very practical to have
some kind of metric notation, even if it is somewhat
artificial.

Four different implementations were made for “Quem
queritis™
1. Use of aglobal default meter (here set to 4/4) that is
automatically inserted when no meter designation is
supplied.

A metern/4 is automatically calculated so that
mod(numberOfTones, n) = 0 (here resulting in 3/4

meter).

The whole chant is consideredoas single bar and the
meter designation is set according to that (here 27/4
meter).

4. The meter is hand-coded according to suitable passages

in the text. For example, word limits, syllable limits, and
breath marks can be used, here resulting in six bars with
the following meters: 2/4, 7/4, 6/4, 4/4, 2/4, and 6/4.

With the fourth choice, it is necessary to divide the piece
into six sub-pieces. This is shown in figure 13.

An exceptional property is also created to store the
single breath mark in the piece, and the property
interpretation in the top-level Piece is set to “Unmeasured”,
to indicated that the durations should not be taken too
literally.

Unmeasured
Chant

T

4th bar || 5th bar || 6th bar

1st bar || 2nd bar || 3rd bar

Figure 13: Pieces of the Unmeasured Chant

6.6 Gilles Binchois’ Magnificat

This is an excerpt from a Renaissance piece for three
voices. The first section is an unmeasured incipit for a sin-
gle voice. The next part (with 3/4 meter) is for three voices,
Cantus, Cantus 2, and Tenor. The last part also contain
these three voices, but here Cantus 2 and Tenor are speci-
fied as “instrumental”.

The difficulties in this piece is mostly in the editorial
makeup and interpretation (i.e., notation) so they present no
new problems for SMORMIA.

—

Incipit

Magnificat

First section

< Cantus )
<Cantus> Gantusé <Tenor>

Second section

¢

Tenor
instr

) (i)

Figure 14: Pieces and Parts of Binchois’ Magnificat



There are some brackets, which are represented in a
similar way as ties, and there is one fermata, which is
represented as an exceptional property. Verse 1 Solo

The Pieces and Parts are shown in figure 14. voice

6.7 Amazing Grace with accompaniment

This is the well-known tune “Amazing Grace”. It has four || Amazing
verses. In this specific arrangement, the first verse is a sif{ "¢
gle solo voice (can be Soprano or Contralto) with no
accompaniment (i.e., sungecapella). The second verse is a

solo voice and three more voices (Alto, Tenor, Basso) thg erse .

—

function as accompaniment to the solo voice (who is the
only one that is singing the lyrics). In the third verse there
are four voices (Soprano, Alto, Tenor, Basso); only Alto

and Tenor are singing the lyrics, and the main melody ling preno

is in Alto.The fourth verse has the same voices as in verse|4 Alto
but a different arrangement, all voices are singing the lyrics, Verse 3

and there is @hange of key (from C major to D major).
This verse haexplicit accompaniment (chord analysis), but

. o - B
the instrument that should perform this is unspecified.
Explicit accompaniment has not been used in thg
previous examples. It was shortly described in section 5.5.

Observe that whenever there are several parts sounding at

the same time stamp, it should always be possible t Verse 4

automatically deduce the accompanying chofis/icit

accompaniment) and represent them as AbsoluteChords. Basso
In verse 4, the main melody line is sometimes share -

between several voices. As in the Telemann Aria, foT

consistency reasons only one voice is marked as having the

main melody line (here, Soprano). The Pieces and Parts are
shown in figure 15.

=4

Figure 15: Pieces and Parts of Amazing Grace

A related approach, although working on bitmaps instead of
pixmaps, is described in [2] and [3].

Regarding the deep nestling of the Pieces-and-Parts
As mentioned in section 1, it is tlzrenceplual schema that trees shown in section 6, [21] points out that deep_nested
has been presented in this paper. Both the internal angpllections are normally a bad idea, and results in
external schemas will reasonably look very different from jnefficiency. Despite of this, we have allowed a theoretically

7 Conceptual, internal, and external views

this, for the following reasons. unlimited level of nesting in the conceptual schema. The
_ _ o reason is that this is a very natural representation for music,
1. Internal view: the conceptual model is not efficient especially as music is extremely dependent of order. For a

enough to process and compare huge melodic material.flattened internal representation, however, the nesting can
The tone vectors on the leaf-node levels in the Parts can bge replaced byidentifiers that indicates how the items
processed in different ways for efficiency. Above all, the should be grouped. For example, the Pieces and Parts in the

music material that is hierarchically structured needs to besa|tarello shown in figure 11 should then have the following
flattened so that a lot of tree traversals are avoided. An|ps:

interesting target representation for this is a two-dimen-

sional matrix, where image processing operators can work IDs:

directly on a pattern of polyphonic music, where the tones

are represented as integers (as givaap). This represen- 1 Saltarello
tation is quite natural since a musical score itself resembles 1.1 Section A

such a matrix. Furthermore, the tones in the conceptual 1.1.1 Verse Al
model are already included in parallel vectors, so the trans-  1.1.1.1  Common Part A (Piece)

formation is relatively straight-forward. 1.1.1.1.1 Common Part A (Part)



1.1.1.2 Ending 1 (Piece) directly from the musical contents (which is a Piece, see

1.1.1.2.1 Ending 1 (Part) figure 8). For faster processing, they can be stored as
112 Verse A2 attributes instead.

It is also possible to ask real low-level queries about the
12 Section B musical contents. The following query returns the positions

in the fourth verse of “Amazing Grace” where the accom-
paniment is a G major chord:
Furthermore, techniques for indexing, compression, and

reduction must be investigated. set :verse4 =
vref (sections(:amazi ngG ace), 3);
2. External view: the conceptual model is not very suita- findAcconpani nent (: verse4, " G');

ble for an end user.

It would sometimes be rather tedious for an end user to The next query returns the positions in the first verse and
directly query the conceptual schema. As alow-level exam- first part (Soprano) in “Amazing Grace”, where the lyrics is
ple, a chordName is a type consisting of two scalars: the sung on the vowel ‘a’:
key (e.g., “C") and the harmonic function (e.g., “small sep-
tima”). Normally you write that as “C7”. It is very easy to set :partl =
transform a chordName to that compact form (a function vref(allParts(vref
compactChordName does this). The same goes for other (sections(:amazingGace), 0)),0);
non-scalar types, like AbsoluteDuration and AbsoluteTone. f i ndVowel (: part1,”a");

The reason for the more complicated representation on
the conceptual level is to presemdéinformation so that it These queries (and others of equal simplicity) are written in
is easy to extract. It is trivial to convert this representationAMOSQL [24] and are fully executable. For more interest-
into a text string, but not always the other way around. ing queries, see suggestions for future work in section 9.

Ideally, the user should be able to use a more “musical” .
interactive method than to give tones, chords and othe? ~ Conclusions and future work
musical entities in an “SQLish” format (see section 8). A conceptual schema for representing music in an object-
There should be a graphical and/or audio GUI, with inputrelational database has been described, and some examples
methods like a pseudo-keyboard, a musical score, or eveof representation of music have been shown. For these
direct voice or instrument input. However, these types ofexamples, the model seems to be sufficient for representing

interaction are beyond the scope of this work. different features present in musical scores, at least for anal-
ysis and search purposes.
8 Examples of queries However, for certain types of music, the model seems

Typical queries for current music databases includes itemd€Ss suitable. Consider the Aria (section 6.4) where three
like artist, composer, title, and so on. This is also possible iffe€Parate Parts had to be introduced for Viola, with just a few
SMORMIA (using the entities shown in figure 8). How- notes included in the second and third parts, and for the
ever, the real interesting queries are those where you confltérnative voice notes. This also applies for many piano
bine high-level data with the low-level musical contents. PIECES.

The query below does this; it asks for the length of the score A Possible solution to this would be to let a tone vector

(numberOfBars), the estimated playing time in minutes contain not only simple DurationUnits, but also vectors of

(lengthOfPiece), and if the copyright has expired yet (in DurationUnits. Then, a representation like

Sweden, the rule is that the copyright is protected 70 years

after the death of the originator/s). The aim of such a ques- Part A
tion can be to find music for teaching students to make a iar: B
harmonic arrangement. arte

tones[tone, tone, t one, t one, t one]j
tones[ rest, rest, rest, t one, t one]
tones[ rest,rest, rest, t one, rest]

. o . can instead look like
select title(o) fromOiginal Piece o

wher e nunber O Bar s( nusi cal Cont ents(0))
and | engt hOf Pi ece(nusi cal Contents(0))
and copyRi ght Expi red(o, year Now( ), 70)
= "true";

< 20
< Part =

1
tones[tone, tone, tone, [tone, tone, tone],
[tone, tone]]

Both numberOfBars and lengthOfPiece are calculatedThe. drawback of this approach is that it destroys the sim-
plicity of the model, but the advantages may be dominating



in specific cases. Recall that alternative SMORMIA imple-
mentations was made for several of the examplesin [19]. It
is natural that alternative representations like these are
allowed, due to the specific requirements of each genre.
Some interesting side effect can be obtained from the
irregularities of the piano/keyboard scores (compared to
other instruments). For example, you can choose to create
one Part for each finger, according to how you would teach
a piano novice to play, and thus obtain automatic finger
setting if you ever use the model for printing musical scores.

Future work

The next steps in developing the model and testing its feasi-
bility and robustness are the following:

1. Asmentioned in section 6, some elements of the model
remain to be tested. The formSchema will be utilized
when bigger pieces of music are implemented. Apart
from search and analysisissues, the formSchema can be
ahelp when the musicisinitially inserted into the data-
base.

2. A musica query language (MusiQL) will be designed
and developed. It will be based on AMOSQL [24] but
will otherwise confirm to SOL-99 ([5], also called
SQL3) asfar as possible. When constructing the opera-
tors of MusiQL, requirements for harmonic analysis
will be especially considered. (See examples of func-
tions, harmonicRole and harmonicRelation, in figure 7).

3. Alot of functions to facilitate queries, as the compact-
ChordName mentioned in section 7, will be developed.
Furthermore, enforcement of integrity constraints
should be introduced (for example, triggersthat are acti-
vated for insertions).

4. It should be possibleto ask moreinteresting queries. For
example, consider the following pseudo query:

Find some arias which fulfil the criteria that the genre is
opera or oratorium, it is written for a contralto, the range is
in (F3..E5), the style is dramatic, the language is either
Swedish, English, or Italian, the difficulty is medium, and it
is composed no later than 1750.

Since harmonics is our basic interest, there should be a lot

of operators that handles harmonic information. For exam-

ple, it should be possible to ask for music that has rich har-
monics (e.g., more than the basic chord, the dominant
septima chord, and the sub dominant chord)

5. A huge amount of music will be loaded into the data-
base to test scalability. Thiswill include as many differ-
ent types of music (genres) as possible, to see where the
model is underdeveloped or overdevel oped.

6. Theexternal and internal schemaswill be defined.
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Index structures will be constructed, and the feasibility
of compression and reduction of the music representa-
tion will be investigated.

Low-level methods for searching, e.g. text-based infor-
mation retrieval or image processing methods, will be
investigated.
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