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Abstract

Data integration on a large scale poses complexity and performance problems. To alleviate

the complexity problem we use a modular approach where many heterogeneous and distributed

data sources are integrated through composable mediators. Distributed mediators are de�ned

as object-oriented (OO) views de�ned in terms of views in other sub-mediators or data sources.

In order to minimize the performance penalty of the modular approach we have developed a

distributed expansion strategy for OO views where view de�nitions are selectively imported

from sub-mediators. The performance of the approach is analyzed showing signi�cant improve-

ments over a naive strategy without distributed view expansion. In the naive strategy the

sub-mediators do not export their view de�nitions but only execute queries and provide query

costing information. We analyze performance gains with respect to network overhead, intra-

mediator overhead, and utilization of data source query capabilities. The analysis shows that

the distributed view expansion can support modularity through distributed and composable

mediators with little overhead.

1 Introduction

There has been substantial interest in using the mediator/wrapper approach for integrat-

ing heterogeneous data [15, 32, 13, 27, 8]. Most mediator systems integrate data through

a single mediator server accessing one or several data sources through a number of 'wrap-

per' interfaces that translate data to a common data model (CDM). However, one of the

original goals for mediator architectures [33] was that each mediator should be a relatively

simple modular abstraction of the integration of some particular kind of data. Larger sys-

tems of mediators would then be de�ned through these primitive mediators by composing
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new mediators in terms of other mediators and data sources. Di�erent mediator servers

distributed on the network would de�ne di�erent logical views of data. Such a modular

logical composition of mediators allows to overcome complexity problems of data integra-

tion on a large scale with many data sources and mediators involved. However, very few

projects have used a distributed mediator architecture, e.g. [22], and there is little work

on implementation issues of distributed mediators.

This paper investigates some query processing issues in a distributed mediator system,

AMOS II [28]. Distributed mediators are composed as object-oriented (OO) views in

terms of views in other sub-mediators or data sources. The views make the distributed

mediators appear to the user as a single virtual database consisting of a number of types

(classes) and functions (methods, attributes). However, unlike regular OO systems the

extents of these types and functions are not explicitly stored in a database but are derived,

through an OO multi-database query language, from data in the underlying data sources

and other OO mediators [9, 17, 19]. Even though such an architecture addresses the

complexity problems of data integration it also has some performance problems which we

have addressed:

� In an architecture with many layers of intermediate mediator servers there might

be performance problems because of overhead in the communication between, and

computation inside, the distributed mediator servers. We minimize some of this

overhead through distributed query optimization [16, 18].

� The mediators are autonomously maintained units having their own schemas and

local databases. Unlike distributed databases, the distributed mediators therefore

do not have any central schema and each mediator server has only limited knowledge

about the structure of other mediators. This makes it diÆcult to �nd an optimal

distributed query execution plan. In our approach the distributed mediator servers

communicate with other known mediator servers to import some of the schema infor-

mation, such as some OO view de�nitions. It will be shown that this can signi�cantly

improve query performance.

� We use an OO common data model (CDM) which involves query processing over ob-

jects, types and functions rather than just relational tables. The OO query language

has mediating primitives to de�ne the virtual database layers. We have developed

several query optimization methods for eÆcient processing of such OO queries and

views [21, 11, 9, 17, 19] which will not be elaborated here.

In [18] we described how to decompose distributed queries and then re-balance the

decomposed query execution plans to minimize the communication overhead by generating
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an optimized data ow pattern between the distributed mediator servers. In that strategy

the sub-mediators did not export their view de�nitions but only executed queries and

provided query costing information. Such a strategy can be suboptimal when there are

more than two mediator layers. In this paper the importance is analyzed of a method

based on distributed view expansion (DVE) to minimize the penalty of several mediator

server levels. The combination of DVE, query decomposition and rebalancing is shown

to signi�cantly improve query performance. Compared to a black box treatment of data

sources, as in, e.g., CORBA based systems [31], our approach improves the performance

by importing some (but not all) information from other mediators and data sources; we

treat the data sources as grey rather than black boxes. Often this completely eliminates

the access to intermediate mediator layers. The method can drastically reduce query

execution time when information from several hidden sub-mediators can be combined.

The performance improvements are due to more selective queries, smaller data ows

between the servers, and fewer servers involved in the data exchange.

For the analysis we have implemented a simple scenario of distributed mediators us-

ing our AMOS II research prototype and DB2 based data sources. We show signi�cant

performance gains over the non-DVE approach in [18] and that DVE is necessary when

integrating data from large databases. The performance gains are analyzed with respect

to network overhead, intra-mediator overhead, and utilization of data source query capa-

bilities. The analysis shows that the distributed view expansion can support modularity

through distributed and composable mediators with little overhead.

We conclude this section with an overview of AMOS II's data model and query pro-

cessing steps. Section 2 introduces the scenario based on the AMOS II data model that

is used throughout the paper. Section 3 describes the principles of DVE and Section 4

investigates its performance. Section 5 investigates related work followed by summary

and future work in Section 6.

1.1 AMOS II query processing

As our research platform we use the AMOS II mediator database system [28]. The core

of AMOS II is an OO DBMS which is extensible and distributed. The mediators are

implemented as fully functional AMOS II servers, communicating through TCP/IP. For

good performance, and since most the data reside in the data sources, each AMOS II

server is designed as a main-memory DBMS.

Some of the AMOS II mediators can contain interfaces that wrap di�erent kinds of

data sources, e.g. ODBC compliant relational databases [3] or XML �les. The term
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translators is used for mediators containing such wrappers. They translate data from one

or several data sources to the CDM through the extensible OO query language AMOSQL

[9].

Other mediators are used to intersect data and to reconcile conicts and overlaps

between similar real-world entities modeled di�erently in di�erent sub-mediators [17, 19].

Users and applications can pose OO queries to any AMOS II server. We call the

servers to which some queries are posed the client mediators for those queries.

The data model of AMOS II [28] is an OO extension of the DAPLEX functional

data model [29]. The query language AMOSQL [12, 28] has its roots in OSQL [24]. It

is similar the object part of SQL99 with extensions of multiple inheritance, multi-way

foreign functions [21], multi-database queries [17, 19], foreign data source translators [9],

late binding [12], etc.

The CDM is based on the three basic concepts of objects, types, and functions. Data

is represented as objects which can be classi�ed into one or more types. The extent of a

type is the set of objects classi�ed into that type. The types are organized in a multiple

inheritance type hierarchy. The types can either be explicitly stored in the database or

implicitly derived from the database schema and contents through the query language.

Derived types are important for data integration [17, 19]. The functions de�ne properties

of objects, computations on objects, and relationships between objects. The extent of a

stored function is explicitly stored in the mediator (c.f. object methods, tables); derived

functions are implemented by AMOSQL queries (c.f. object methods, views); and foreign

functions are implemented in some programming language, e.g. C or Java c.f. methods).

For example the following schema de�nes a type part having the attributes (stored

functions) pnum, name, and price:

create type part;

create function pnum(part)->integer as stored;

create function name(part)->string as stored;

create function price(part)->string as stored;

The following AMOSQL query retrieves the name of the part being cheaper than 500:

select name(p)

from part p

where price(p)<500;

Queries in AMOS II are parsed and translated into a typed predicate calculus based rep-

resentation, ObjectLog [21], which is then rewritten through a number of transformation
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rules [21, 9, 17, 19]. The calculus representation of the above simple query after the

transformations is:

f V 1 j

V 1 = namepart!string(p) ^

V 2 = pricepart!integer(p) ^

V 2 < 500g
The optimized calculus expressions are transformed by a cost-based query optimizer

into an optimized object algebra expression [21, 9] which is �nally interpreted to produce

the query result.

For multi-database queries, before the query optimization phase, the calculus expres-

sions operating over data outside the mediator are decomposed into distributed sub-

queries. The decomposition uses a combination of heuristic and dynamic programming

strategies [16]. At each site the cost-based optimizer generates optimized execution plans

for the subqueries. The decomposition is performed in four stages:

� Subquery generation: the query is broken into several subqueries.

� Subquery placement: In this phase subqueries are assigned sites where they will be

further processed. While some of the subqueries are executable at only one data

source, others can be executed in more than one data source or AMOS II server (e.g.

comparison operators can be executed in any AMOS II server or relational database).

The second type of subqueries are named multiple implementation functions, MIFs,

(queries are also functions) and this phase assigns such subqueries to one or more

sites.

� Subquery scheduling: the queries are scheduled for execution in the di�erent AMOS II

servers and the inter-site data ow between the servers is determined. Only left deep

query execution schedules are explored during this stage.

� Rebalancing: a distributed re-compilation is applied to re-balance the subquery exe-

cution schedule. The generated schedules can contain \sidewise" data ows between

servers that are on the same level in the mediator hierarchy [18].

An interested reader is referred to [28, 12] for a more detailed description of the

AMOS II system and to [21, 9, 11, 16, 17, 18, 19] for more on its query processing.

2 Multi-layered mediators scenario

The rest of this paper is based on a simple multi-layered scenario where several mediators

share a common sub-mediator. While in our framework it is possible to compose much
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more complicated networks of mediators, we base our choice of example scenario on the

following:

� It uses a kind of logical composition we believe will appear when separate autonomous

entities compose mediators in order to share information.

� The third mediator level contains information that is hidden from the client mediator.

� The query posed to the client mediator combines overlapping information hidden in

the third level.

� The example allows us to vary the selectivity of subqueries to investigate the scala-

bility of the approach.

Let us consider the following data analysis scenario: an analyst wants to make a survey

of the price/quality distribution of car parts. S/he is using a client mediator C on her/his

notebook to integrate data from two mediators hosted by two independent entities: P

provides price information and Q provides information about quality of parts. Both Q

and P happen to integrate data from the same warehouse data source - a mediator T

hosted by a third entity which acts as a translator on top of a relational database R.

The logical composition of mediators is shown in Figure 1. Notice that the arrows

mean \de�ned in terms of", i.e. they de�ne the logical composition of the mediators.

C

P Q

T

R

Figure 1: Logical composition of mediators

All the actual data is stored in the RDBMS R in a PARTS table with the following

structure:

CREATE TABLE parts (

pnum INTEGER NOT NULL,

name CHAR(16) NOT NULL,

quantity INTEGER,

quality INTEGER,
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price REAL,

PRIMARY KEY(pnum))

In the translator T the PARTS table is automatically translated into a corresponding

type parts@R [9] with the derived functions pnum, name, quantity, quality, and price.

The two integrators P and Q import the parts@T type from the translator T and

use derived types [17] to de�ne Object-Oriented views over the schema exported by the

translator. Mediator P has the following de�nition:

create derived type part_price

subtype of part@T p;

create function pnum(part_price p) -> integer

as select part@T.pnum(p);

create function name(part_price p) -> charstring

as select part@T.name(p);

create function price(part_price p) -> real

as select part@T.price(p);

The @ notation is used for referencing types and functions in other mediators. The type

names in front of the function name is used to explicitly resolve the function name and

avoid ambiguity. The derived type part price has the derived functions (methods) pnum,

name, and price imported from T . The 'quality' mediator has the following analogous

de�nition:

create derived type part_quality

subtype of part@T p;

create function pnum(part_quality p) -> integer

as select part@T.pnum(p);

create function name(part_quality p) -> charstring

as select part@T.name(p);

create function quality(part_quality p) -> integer

as select part@T.quality(p);
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The client mediator C imports the two derived types part price and part quality

from P and Q, respectively. The analyst poses the following query, used as a running

example, to the client mediator C:

select name(p)

from part@P p, part@Q q

where price(p) >= :price_low and

price(p) < :price_high and

quality(q) >= :quality_low and

quality(q) < :quality_high and

pnum(p) = pnum(q);

The query retrieves the names of all parts in a certain price and quality range parame-

terized with the variables :price low, :price high, :quality low, and :quality high.

The objects representing the same part in the two integrated databases are matched using

their part numbers pnum.

3 Distributed View Expansion

This section describes the mechanism for view de�nition exchange and expansion in a

hierarchy of AMOS II servers using the mediator composition example in Figure 1. The

discussion is based on the example scenario from the previous section.

For the example client query the calculus generator generates the following ObjectLog

expression, where intermediate variables have been renamed for improved readability, as

the AMOS II system uses automatically generated names.

f p low p high q low q high namej

name = namepart@P!charstring(p part) ^

price1 = pricepart@P!real(p part) ^

price2 = pricepart@P!real(p part) ^

pn = pnumpart@P!integer(p part) ^

quality1 = qualitypart@Q!integer(q part) ^

quality2 = qualitypart@Q!integer(q part) ^

pn = pnumpart@Q!integer(q part) ^

price1 >= p low ^

price2 < p high ^

quality1 >= q low ^

quality2 < q highg
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This calculus expression is divided by the decomposer into two sub-expressions and a

set of MIFs. Each sub-expression represents a sub-query: one containing the predicates

representing functions from the \price" mediator P (sub-query P below) and a second

one from the \quality" mediator Q (sub-query Q below). The third group of predicates

contains predicates that can be executed in any of the mediators (MIFs below). They

are later placed by the decomposer in one of the two sub-queries. The expression head of

each of the subqueries contains all the variables that the subquery has in common with

the rest of the query, or that are part of the result of the whole query.

sub-query P :

f price1 price2 pn namej

name = namepart@P!charstring(p part) ^

price1 = pricepart@P!real(p part) ^

price2 = pricepart@P!real(p part) ^

pn = pnumpart@P!integer(p part)g

sub-query Q:

f quality1 quality2; pnj

quality1 = qualitypart@Q!integer(q part) ^

quality2 = qualitypart@Q!integer(q part) ^

pn = pnumpart@Q!integer(q part)g

MIFs:

price1 >= p low

price2 < p high

quality1 >= q low

quality2 < q high

This does not mean that the values of all these variables will be calculated in this

subquery. The variables represent both the input and the result of the subquery. The

input variables are bound during execution to the intermediate results generated by the

other two expressions. Which variables in the subquery expressions head are bound and

which are free is determined by the order of the subquery execution generated by the

query decomposer.

To allow modeling of the mediator hierarchies only with concern to the logical model

of the enterprise relieving the user from performance considerations, intermediate servers

must share information with the client mediator.

In the example above, this implies that the derived type de�nitions in the price and

quality mediators P and Q should be sent to the client mediator. Note that if any of P or

Q decides to change the source of their data or add more data sources to their integrated
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view, no logical changes have to be made at the client mediator. Although this is a simple

example, it illustrates how modularity of change is achieved in an environment without a

global meta-data repository.

Subquery
generation Scheduling

Schedule
Rebalancing

Distr. view
expansion

Subquery
generation

Distr. view
expansion

Subquery
generation

Distr. view
expansion

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
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xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Network

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
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xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Network

. . . . . . .

top level (client)

level 1

level k

......

Query decomposition  

Figure 2: Distributed query expansion process

The view de�nitions are internally represented as calculus expressions. Figure 2 il-

lustrates the extended query processing with distributed view expansion. The view ex-

pansion is placed after the subquery generation in order to avoid processing of individual

predicates. Furthermore the grouped predicates are compiled and processed together at

the receiving mediator, allowing optimizations through query rewrites. In the distributed

view expansion phase (Figure 2), the client mediator sends an expansion request to each

server where a subquery is to be executed and an expanded de�nition of the subquery

is retrieved. The subqueries are communicated between the servers in form of calculus

expressions. At the server accepting the subquery expansion request, the subquery pro-

cessing starts with calculus optimization and continues in the same manner as with other

queries until the distributed view expansion phase. In this phase, if the subquery where

all the derived functions and types have been substituted with their de�nitions/extent
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functions contains itself subqueries in other AMOS II mediators, it recursively expands

the subqueries. The process might span several levels, and, assuming acyclic type im-

portation, it terminates when no expansions are performed (the next subsection discusses

strategies for selective view expansion).

After collecting the expanded de�nitions of all the subqueries executed in other AMOS II

servers, the next phase in the view expansion combines again all these expressions into

one in order to be regrouped by the subsequent optimization phases. The bene�ts from

this \one step back" in the query processing are the following:

1. Calculus based rewrites can be performed at the client to eliminate overlap in the

calculation among the di�erent servers.

2. Each subquery to be executed at another AMOS II server could be expanded into

an expression containing functions de�ned in multiple AMOS II servers. These

expressions might in turn have sub-expressions that are executed at a same AMOS II

server. Putting them together in a single predicate allows for optimizations that

eliminate overlap or achieve a better execution strategy.

3. The expanded expressions returned from the DVE may contain MIF predicates that

could be combined/replicated with predicates at di�erent data sources where they

can act as selections, reducing the query execution time and the intermediate result

sizes.

4. A richer space of data ow patterns will be considered by the query decomposer.

3.1 Selective view expansion

Having explained the extension of the query processor needed to perform the distributed

view expansion, we turn our attention to the problem of deciding when to perform expan-

sion of the views. The relative cost of the expanded and unexpanded execution schedules

of a query depend on several factors. While, as noted previously, the view expansion can

eliminate some spurious computation and data shipment, it could also introduce some

extra costs in the optimization.

An exhaustive algorithm determining which views to expand would need to fully com-

pile the query for each combination of the views at the intermediate nodes. To reduce the

complexity of this problem each node decides locally if the view is to be expanded. Only

locally available data is used in this process.

When a subquery is sent to an AMOS II server, is is expanded and compiled into

an executable plan by the local optimizer. As a part of the compilation process, if the
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subquery is expanded into a multi-database query, the query decomposer produces a series

of sub-subqueries. At this point a budget based decision procedure is used to control the

depth of view expansion as follows:

� The client starts with initial budget and sends view expansion requests to each server.

� The initial budget is distributed evenly between the servers and each server starts

query processing with it's share of the budget.

� Each time view expansion has to be performed, the corresponding mediator uses it's

budget to send view expansion requests to its sub-mediators.

� If the budget is not enough to request expansion of all external views, then the

sub-mediators are ordered by the number of participating sub-submediators in each

external view (this information is provided together with the view (function) signa-

tures, and is locally available), and the views with higher number of mediators are

given preference for expansion.

� No expansion requests are sent (correspondingly no budget is wasted) to mediators

without sub-mediators.

� View expansion stops when a server has exhausted its budget or no more view ex-

pansions can be done (a sub-query consists only of local predicates).

The main goal of this approach is to favor view expansion in cases of deep mediator hi-

erarchies, and prohibit view expansion explosion when the number of direct sub-mediators

is too large.

4 Experimental Evaluation

In order to analyze the performance of our approach we tested our distributed view

expansion strategy in our scenario by integrating data sources through three layers of

mediators, composed as follows:

1. The top layer is a client mediator C that accepts user queries to object views inte-

grating data from the next layer server mediators. The client mediator was running

on a Dell Inspiron 366 MHz notebook with 128 MB of RAM.

2. The middle layer runs the two mediators P and Q integrating views of data from the

third layer. The middle layer mediator servers are run on a Dell Gx1 workstation

with 600 MHz CPU and 512 MB RAM.
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3. The third layer runs the translator mediator T wrapping a DB2 database R. The

translator accesses the DB2 RDBMS through an ODBC wrapper [3]. The translators

and the DB2 database server run on a Dell Poweredge server with two 500 MHz CPUs

and 512 MB RAM.

All network communication used a fast 100 Mbit LAN. In order to simplify the experi-

mental setting, the second layer mediators were both executing on the same computer.

This does not inuence the measurements in our case, as our prototype system uses syn-

chronous communication (i.e. no two mediators execute at the same time) and it was

ensured that enough memory is allocated for each process so that no swapping occurred.

The PARTS table in the relational database is populated with synthetic data, where

the total number of rows is 50000, the price column ranges between 1 and 100 and the

quality column ranges between 1 and 10. Both price and quality are evenly distributed

and indexed.

For the evaluation we use the client mediator query which was executed with various

parameter choices to vary the selectivity of the subqueries in P and Q. The parameters

were chosen so that the selectivity of the subqueries over P and Q were symmetric in

all cases. The parameters were adjusted so that the resulting query had the selectivities

0.01, 0.25, 0.75 and 1 of all tuples in the table parts.

The test query was precompiled with and without view expansion and the dependency

of the query execution time on the query selectivity was measured in both cases. Figure 3

compares the execution times for the test query with varying selectivity with and without

DVE. (The 'Hash Join' curve is explained later). Distributed view expansion improves

the execution time between 144 times (selectivity 0.01) and 20 times (selectivity 1).
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Figure 3: Execution times with/without view expansion
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The data ow of the generated execution plan without distributed view expansion is

shown in Figure 4A. The main problem here is that the query decomposer was unable to

detect i) that the data in sub-mediators P and Q actually came from the same source T

and ii) that the mediators P and Q could be bypassed as in the optimal query plan in

Figure 4B, generated with view expansion. The arrows in the �gures indicate function

calls and transmission of query parameters in the forward direction and ow of tuples in

the backward direction. The function parameters are shipped in bulks to minimize the

transmission overhead [16]. The number next to each arrow shows the order in which

mediators and the data source communicate. The dotted circles depict those mediators

that were eliminated by the DVE.
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Figure 4: Data ow patterns

Without distributed view expansion the system sends two separate subqueries to the

translator T which are in turn translated into the queries shown in Figure 5 and executed

in the relational database. The queries are parameterized and precompiled (prepared)

by the RDBMS. The �rst query in Figure 5, selecting parts in a price range, is �rst

executed in the RDBMS as the values of the :price low and :price high parameters

are transported from C to T (steps 1, 2) into R (step 3). The result is transported back

to C in an upward data ow from the relational database through mediator T (step 4)

and P to C (steps 5,6). Its result tuples are then transported from C down through Q

to T together with the :quality low, and :quality high parameters (steps 7,8). The

translator T will probe, through the second query in Figure 5, which tuples in the selected

price range are also in the quality range1 (steps 9,10). A bitmap of the tuples passing this

test is then sent back to C to indicate what selected tuples passed the quality test (steps

1We probe by testing if the query returns -1 and then immediately closing the scan
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SELECT P.NAME, P.PNUM

FROM PART P

WHERE P.PRICE >= ? AND P.PRICE < ?

SELECT -1

FROM PART P

WHERE P.QUALITY >= ? AND

P.QUALITY < ? AND

P.PNUM = ?

Figure 5: Translated SQL queries, no DVE

SELECT P.NAME, P.PNUM

FROM PART P

WHERE P.QUALITY >= ? AND P.QUALITY < ?

Figure 6: Translated SQL query, Hash-join

11,12). This kind of rather ineÆcient strategy generates a fully streamed plan requiring

limited memory in each mediator and no sorting.

The naive strategy without DVE can be improved if we assume that C is large enough

to hold all selected tuples. Then a ship-in strategy can be used to perform a hash join

in C. Figure 3 also compares a hash join without DVE with the naive streamed non-

DVE algorithm, and the optimal algorithm above using DVE. The optimal algorithm is

between 27 times (selectivity 0.01) and 4 times (selectivity 1) faster than the hash join.

The resulting data ow pattern is the same as on Figure 4A, but query execution proceeds

in the same way as in the previous example only from steps 1 to 6. After the �rst sub-

query is executed its temporary result is stored in a hash-index in C. Execution continues

with steps 7 and 8 where only the :quality low, and :quality high parameters are sent

to T , which in turn executes the translated query in Figure 6. This query retrieves all

parts within a certain quality range (steps 9,10), and sends them to C (steps 11,12) to be

joined with the temporary result of the �rst sub-query.

A third alternative is to use merge sort in the mediator, but this could involve sorting

in the RDBMS. That strategy would in any case have similar performance �gures to the

hash join.

By contrast query optimization with distributed view expansion will only submit a

single query to the translator T translated to the query in Figure 7 to the relational

database. The query decomposer combined with a distributed query plan rebalancing

algorithm [18] has eliminated all accesses to mediators P and Q and the data ow will
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SELECT P.NAME

FROM PART P1, PART P2

WHERE P1.QUALITY >= ? AND P1.QUALITY < ? AND

P2.PRICE >= ? AND P2.PRICE < ? AND

P1.PNUM = P2.PNUM

Figure 7: Translated SQL queries, with DVE

pass directly from T to C as illustrated in Figure 4B.

Without view expansion the execution plan in Figure 4A follows the paths of the

logical decomposition shown in Figure 1 which is shown to be very ineÆcient in this case.

By contrast, distributed view expansion removes all intermediate mediator layers in

the distributed execution plan, thus reducing signi�cantly the number of messages and

processing time in the mediator servers. The main gain from DVE is when a client

accesses more than one middle layers which in turn share a common sub-mediator, as in

the example. The view expansion creates then a subquery that combines all sub-queries

(compare Figures 5 and 7) from the middle layer mediators. This leads to two major

gains:

� Selections can be pushed down to the data sources. In the example, the selections

over both P and Q are combined and pushed to R.

� The total selectivity of the query is reduced. In the example, if the selections over

P and Q are not combined with DVE, the selectivity of each sub-query through P

and Q, respectively, is an order of magnitude larger than the combined query.

The disadvantage with distributed view expansion is that query optimization is slower.

If there are many mediator layers involved in a query this means that the expanded

query will be large and distributed over many mediators. Though optimizing such a large

expanded query would create an optimal execution plan, it would be very slow to optimize

incurring much CPU and communication time. An interesting future work would be to

investigate strategies for an adaptive DVE.

In order to gain deeper understanding where most of the time was spent during query

processing, we measured execution time distribution between time spent in the media-

tors, time spent in network transmission, and time spent in executing ODBC calls. As

a typical example Table 1 shows execution time distribution for the example query with

selectivity 1%. Executing the same query with other selectivities showed similar distribu-

tion patterns. One may observe that savings in time are achieved in every component of

the mediator composition (mediators, network, data source). The relatively high network
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time in the streamed plan without DVE is due to the fact that resulting tuples from

the �rst subquery in Figure 5 are probed one by one by the mediator Q (because of the

streamed nature of the algorithm), thus incurring a number of messages corresponding

to the number of tuples. The high number here reects the high network setup cost per

message. The number of ODBC calls is one for the �rst sub-query plus an execution of

the probing query for each tuple.

If we consider the hash-join variant, it executes only 2 ODBC calls each of them

retrieving 10% of the database. As far as communication in AMOS II is bulk-oriented,

the network cost of shipping approximately 20% of the database is very low. Notice that

the hash-join variant requires that one of the subqueries is materialized in the client,

which may require large amounts of memory.

Executing the query with DVE combines the bene�ts of both streamed execution and

hash-join in the client mediator, while at the same time providing considerably better

performance with small memory requirements.

Execution times for 1% selectivity

Time, sec. no DVE, streamed no DVE, Hash join with DVE

Total 29.95 5.36 0.24
Mediator 3.77 1.20 0.11
Network 19.69 0.86 0.03
ODBC 6.50 (4964 calls) 3.29 (2 calls) 0.10 (1 call)

Table 1: Execution times and time distributions for 1% selectivity

5 Related Work

This work is related to work on query optimization in distributed databases and mediators.

Distributed databases [26, 6, 14, 1] have complete global schemas describing on what sites

di�erent (fractions of) tables are located, while distributed mediators do not have complete

knowledge of meta-data from all mediators and data sources. Full opening of all possible

views in a distributed system with many nodes may be very costly. System R* [6]uses

such an exhaustive, centrally performed query optimization to �nd the optimal plan while

SDD-1 [14] uses hill-climbing heuristics. In [23] a restricted view opening strategy for the

System R* distributed database is briey mentioned but not evaluated. Furthermore,

modern computer architectures with fast computers, large main memories, and widely

varying network speeds makes our results di�erent from those of classical distributed

databases.
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Mediator systems are usually not distributed (e.g. [15, 32, 25]) and thus do not

use our strategies. In [8] it is indicated that a distributed mediation framework is a

promising research direction without reporting any results. The DIOM system [27] is also a

distributed mediator system using distributed query scheduling similar to our decomposer.

However, no evaluation of distributed view opening is reported.

6 Summary and Future Work

We described and evaluated a distributed view opening technique in composable medi-

ators. We have shown that even in a simple mediator composition this approach leads

to signi�cant performance improvements, compared to a \black-box" approach to dis-

tributed query optimization. The main contribution of this work is that it shows that

mediators may be logically composed to solve integration problems with very little exe-

cution overhead.

Though not addressed in this paper, we have also investigated performance problems

in more complex composition scenarios. Preliminary results show that DVO will be

bene�cial to use to discover optimal data ow in a non-homogeneous network with di�erent

communication speeds between the mediator nodes, even though the query optimization

time increases. In order to deal with communication speeds that vary over time more

research needs to be done on adaptive decision procedures for DVE.

Another direction of our research is to expand the results of this paper to asynchronous

communication model and explore parallel execution plans.

An issue not addressed in our current work is compilation time of large distributed

queries. Our current experience shows that while mediator compositions of less than 10

mediators works reasonable with our framework, larger systems of distributed mediators

require scalable and distributed compilation techniques.
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