
Management of Product Data Using an
Extensible Object-Oriented Query Language

Kjell Orsborn

Linköping University
Department of Computer and Information Science
Engineering Databases and Systems Laboratory

S-581 83 Linköping, Sweden

(Presented at the Sixth International Conference on
Data and Knowledge Systems for Manufacturing and Engineering, DKSME ’96)

Abstract. The concepts of product models and data management systems for engineer-
ing data are becoming increasingly important in industry to support rational product
development and manufacturing. Considerable reductions in production costs and de-
velopment time are possible, and efficient information management is becoming a stra-
tegic issue. This work shows how a state-of-the-art object-oriented and extensible (also
referred to as object-relational) query language, AMOSQL, can be used for product
data management. AMOSQL is part of a main-memory object-relational database sys-
tem, AMOS, which combines high-level modelling with high execution efficiency.
The AMOS architecture incorporates database functionality and conforms to the me-
diator approach forming an intermediate level between applications and data sources.
By relying on general DBMS technology for product data management, it is possible
to take advantage of built in database facilities for client-server communication, data
sharing and distribution, concurrency control, etc.

An example presents an outline of a product model for single sheet-metal parts, how
the query language can be used to model, retrieve and update the product model, and
further how the query language can be extended with additional domain functionality.
Declarative models are more compact and (de)composable than procedural models
making the system more transparent and flexible. An application and data-independent
representation further facilitate reuse and evolution of the design. Queries are automat-
ically optimized by the DBMS and the query language also support advanced ad hoc
queries concerning the contents of the database.

1 Introduction

This report treats product modelling using a state-of-the-art extensible and
object-oriented (OO), also termed object-relational (OR) (Stonebraker and

Moore 1996), query language. The query language, AMOSQL, is part of
the OR database management system (DBMS) AMOS, (Fahl et al. 1993).
The idea is to show how next generation database techniques can be used
in product data management. By using a DBMS as an intermediate level
between applications and data sources, built in database facilities can be
used to control data sharing and distribution, concurrency, etc. An exam-
ple of a product data model for sheet-metal parts is modelled and imple-
mented (Orsborn 1993). This model describes a subclass of the product
models for mechanical designs that for instance are valid within the air-
craft industry. The work has been carried out in cooperation with Saab
Military Aircraft AB.

The concepts of product models and data management systems for engi-
neering data are becoming increasingly important in industry and has also
been paid a lot of attention in the research community as exemplified in
(Meerkamm 1995) and (Mäntylä 1995). The goal is a rational product de-
velopment and manufacturing and efficient information management is
becoming a strategic issue. It is for instance possible to make considerable
reductions in production costs and development time (Johansson and Wik-
ström 1992).

A product model should be able to represent a sufficient level of structure
and behaviour of the real product to make fair judgements of its character-
istics in the real world and to be able to provide the product with these
characteristics. In addition, it might be necessary to use several different
types of product models for different parts or phases in the production
process. To provide a general base for product data representation an in-
ternational standard, the STEP standard (ISO 1992), is emerging. This
standard is primarily a specification standard for data exchange and do not
currently cover the implementation of product models. Object database
technology can provide key technology for this task.

OO techniques are well suited to reduce system complexity and their evo-
lution into OO DBMS, have further extended their applicability. Their
abilities of representing and managing complex data and relationships
make them especially suitable to engineering applications (Cattell 1991).
The next generation of OO database technology, also referred to as OR da-
tabase technology, integrates OO and relational database technology. It
combines OO modelling capabilities with query language facilities.

Hence, OR presumes the existence of a relationally complete OO query
language. In addition, it is expected that the DBMS can treat extensibility
at both the query and storage management level. The AMOS OR DBMS
is further a main-memory DBMS that combines high-level modelling with
high execution efficiency. Declarative OO queries, as provided by
AMOSQL, offers several advantages over conventional programming. A
declarative description of product data is more transparent and flexible
than a procedural and thus can increase the efficiency of modelling and
managing domain models and their corresponding applications. Declara-
tive modelling provides a compact and (de)composable description sup-
porting a natural mapping of the problem domain. Query optimization
techniques provided by the DBMS leaves execution strategy considera-
tions to the system. Ad hoc queries can be used to access not predefined
selections of product information. Specific modelling requirements from
the problem domain can efficiently be taken care of by an extensible query
language.

2 Product Models for Mechanical Engineering Design

2.1 Basic Description of the Product Model Concept

A product model is a conceptual model of a physical or abstract product,
preferably implemented in a computing system. It provides an appropriate
description of the characteristics and functionality of the product. For me-
chanical engineering products this includes a description of structure,
form, content and behaviour. This description should be kept during the
complete or parts of the life-cycle of the product, depending on the nature
of the specific product.

The field of mechanical engineering contains a very broad spectrum of
products, ranging from nuts and bolts to cars and aircraft. These products
should be specified, designed, manufactured, maintained and possibly re-
cycled. Besides technical issues there are other functions, such as market-
ing, selling etc., involved in the product process. During this process, i.e.
the complete life-cycle of the product, the product model can be used as
an information source to support different activities. The information
needed for different purposes and in different phases varies a great deal
and the product model is continuously evolving during this process.

2.2 Structure and Complexity of Product Models

Apparently a complete product model relatively soon becomes quite com-
plex and includes a large amount of data. To reduce complexity of the de-
scription, it is necessary to divide the description into several subdescrip-
tions which supports certain technology domains, life-cycle phases and
representation levels of the product. Within mechanical engineering, there
is production planning that needs manufacturing data whereas strength
analysis needs data for loading and material conditions. However, there
might also be shared data, such as geometrical data. Likewise, different
product models might be required for different stages in the product proc-
ess. Furthermore, a complete product can consist of a single part or be con-
figured by many parts into subsystems that forms the whole. Even at the
part level, several different product models might be required for different
types of products. For example, (Johansson and Wikström 1992), reports

on about 25 part types at Saab1, such as sheet-metal parts, machined parts,
composite parts, etc.

If we restrict the discussion to product models for single parts, there are
still several aspects that have to be modelled. It might be convenient to re-
fer to different substructures of the part by specific concepts (also known
as features), such as holes, flanges, segments, etc. Further, the part has
properties and relations to other parts that need to be modelled. There are
also more abstract relations such as presentation and analysis models for a
specific part.

2.3 Using Query Languages for Managing Product Models

To provide access to the information of the product model there must be
some kind of access system. It is possible to use both programmed proce-
dures and high-level query languages for this purpose. A query language
is used to define, manipulate and retrieve information in a database. For
instance, for retrieving some specific property of a product, you need not
write dedicated program procedures for retrieving the expected informa-
tion. Instead, a query can be formed in a high-level and data-independent
query language which returns the information that fulfils the conditions of
the query. Combining general query-language constructs with domain-re-

1. Saab is an abbreviation for SAAB-SCANIA AB, Saab Military Aircraft, Linköping,
Sweden.

lated concepts provides a more problem-oriented communication. This ap-
proach to data management is more efficient compared to the use of con-
ventional programming languages (Takizawa 1983). The combination of
programming and query languages and their pros and cons for data man-
agement are further discussed in (Cattell 1991).

The technique of using OR query languages, like AMOSQL, is not only
useful for usage of product modelling systems, but also the development,
maintenance and evolution phases will gain in efficiency. Declarative OR
queries offers several advantages over conventional programming for
product data management.

• Declarative models become easier to describe, inspect and understand
and thus become more transparent. Declarative modelling with an OO
query-language is compact and (de)composable and makes the domain
modelling very flexible and powerful.

• The query processor in a DBMS provides automatic optimization of
queries. This leaves the problem of finding an efficient execution plan
to the system.

• Query languages also make it possible to make advanced ad hoc que-
ries concerning the contents of the database. This might be demanded
by advanced users and is quite useful since it is impossible to foresee
the complete information need.

• Advanced OO query-languages also provide object views capabilities.
In AMOSQL, views are supported through derived functions, where a
function is uniformly invoked independent of whether it represents
stored or derived data. This makes it possible to change the underlying
physical object representation without altering the access queries.
Thus, data independence and evolution are supported.

• Extensible query languages provides powerful means for flexible do-
main modelling. This include support for user defined types and oper-
ators. Further issues in extensibility include the ability to define new
data structures and operators, and the ability of the query processor to
handle optimizations of these new constructs.

• The query language can also support active behaviour that can be used
for advanced consistency checking of product models. An active rule
system can monitor and react to predefined database events. Integration

of active rules in the AMOS DBMS is treated in (Risch and Sköld
1992).

The advantages of these features are, of course, varying for different phas-
es in the system or application life-cycle and for different types of appli-
cation users and system developers. Declarative modelling, using an OR
query language, will however support an incremental and iterative devel-
opment, maintenance and evolution of product models as well as product
modelling systems. It will also facilitate a reuse and evolution of design in
its ability of application and data independent representation.

2.4 Standards for Product Modelling

An ongoing work is specifying an international standard for management
of product information. The International Standard ISO 10303 “Industrial
Automation Systems and Integration - Product Data Representation and
Exchange” (ISO 1992) that is usually referred to as STEP, has the objec-
tive to

“provide a neutral mechanism capable of describing product
data throughout the life cycle of a product, independent from
any particular system”.

STEP should provide a uniform language for management of product in-
formation independent of the discipline involved and where different lev-
els of usage could be ranging from the application specific to the inter-en-
terprise level. ISO 10303 is organized in a series of parts, where the series
involves: overview, description methods, implementation methods, con-
formance testing methodology and framework, integrated generic re-
sources, integrated application resources, application protocols, and ab-
stract test suites. The overview series describes the structure and contents
of the standard and the description methods series includes the description
of the formal data description language EXPRESS, on which the STEP
standard is based, and also graphical representation notations, e.g. by
means of EXPRESS-G. Further, the implementation methods series intend
to specify different implementation techniques for realizing the data shar-
ing, including physical file exchange, application programming interfaces
- the STEP data access interface (SDAI), and database implementations.
The conformance testing methodology and framework together with the
abstract test suites should define the requirements and testing procedures

to apply to an implementation to judge if it is in conformance with the ISO
10 303 application protocol. The integrated generic resources, integrated
application resources, and application protocols include the actual concep-
tual schema’s for product information. These ingredients make it possible
to specify, represent, and exchange product information in a formalized
and standardized way, independent of the system, software or discipline
involved. However, two different systems must be able to represent the
same types of product data that they would like to exchange.

The idea of a standard for representing and communicating product infor-
mation is of great importance for the development and efficiency of enter-
prise and engineering information management. It simplifies the manage-
ment and communication of product information in an inter-enterprise or
-organization situation as well as within enterprises. A standard will also
make industry less dependant of certain software or hardware vendors and
thus stimulate further evolution of product management systems. The
STEP standard was originally designed to provide a uniform and file-
based exchange format for product data. However, there is ongoing work
that addresses data exchange based on database technology that might re-
sult in query language-based part of the SDAI data access interface. A
query language can simplify the representation of application protocols
that might be defined as views of the product model. There is also impor-
tant to complement the specification and access standardisation with re-
search on how to implement product models. This initial work is intended
to show how general database techniques can support this task. There is
also ongoing work that studies the representation of STEP schemas within
the AMOS DBMS.

3 The AMOS DBMS and the AMOSQL Query
Language

AMOS (Fahl et al. 1993), is a research prototype of an OR DBMS and a
descendant of the WS-IRiS DBMS (Litwin and Risch 1992). WS-IRiS is
further a derivative of Iris (Fishman et al. 1989). AMOS is a main-memory
DBMS, i.e. it assumes that the entire database is contained in main-mem-
ory. It includes the AMOSQL OR (i.e. OO and extensible) query language
that is used to model and interface the database. AMOSQL is a derivative
of OSQL (Lyngbaek et al. 1991). Furthermore, AMOSQL is a functional
language, originating from DAPLEX (Shipman 1981).

AMOS provides DBMS facilities including a local database, a data dic-
tionary, a query processor, transaction processing, and remote access to
data sources. It conforms to the mediator approach (Risch and Wiederhold
1991) that introduces an intermediate level of software between databases
and their use in applications and by users. The purpose of a mediator is to
query, monitor, transform, combine, and locate desired information be-
tween applications and data sources. A data source can be data stored in
conventional DBMSs, other mediators, as well as data obtained by execut-
ing some program. Since mediators “understand” application terminology
as well as database terminology they can combine, and take advantage of,
both high-level domain-specific data interaction and efficient data man-
agement. The AMOS architecture permits that the DBMS is embedded
within applications or configured as a client-server system. Hence, appli-
cations can take advantage of the DBMS facilities for storing, retrieving,
or exchanging data. There is currently ongoing work that uses AMOS as
an embedded database (Orsborn 1994), for integration of heterogeneous
data sources (Fahl 1994), and as a distributed DBMS (Werner 1996).

The data model of AMOS consists of the three basic constructs: objects,
types, and functions. Concepts in an application domain are represented as
objects. There are two types of objects in AMOS. Literal objects, such as
boolean, character string, integer, real, etc., is self identifying. The other
type, called surrogate objects, has unique object identifiers. Surrogate ob-
jects represent physical, abstract, external, or internal concepts. Examples
of surrogate objects might be mechanical components and assemblies such
as skin panel or wing in an aircraft design, engineering elements such as
flange and web, geometrical elements, etc. Also system-specific objects,
e.g. types and functions, are treated as surrogate objects.

Types are used to structure objects according to their functional character-
istics and types are in themselves related in a type hierarchy of subtypes
and supertypes. Subtypes inherit functions from supertypes and both sub-
types and objects can have multiple supertypes.

Functions are defined on types, and are used to represent attributes of, re-
lations among, and operations on objects. Examples of functions for these
different categories might be length, distance, and rotate_object. It is pos-
sible to define functions as stored, derived, procedure or foreign. A stored
function has its extension explicitly stored in its data structure, whereas a

derived, procedure, or a foreign function has its extension defined in an
AMOSQL query, a general AMOSQL procedure, or a foreign program
procedure, respectively. Functions can be overloaded on different sub-
types (i.e. having different implementation for different types), defined as
one- or many-valued, and are automatically supporting invertibility and
late binding (Flodin 1995). Stored functions can be explicitly updated us-
ing update semantics, but other functions need special treatment for up-
date. The AMOSQL language supports aggregate and recursive functions
and can be seamlessly extended with new foreign functions by calling ex-
ternal programming languages like C or LISP.

AMOSQL provides constructs for typical database tasks, including data
definition, population, updates, querying, flow control, and session and
transaction control. Data schemas can be defined, modified, and deleted
by means of AMOSQL statements both statically and dynamically. The
following example creates a type engineering_element, a function name,
an instance of engineering_element named "eng-el_1". The first select
statement then queries the database for all engineering_elements, the sec-
ond extracts a specific engineering_element, and the third extracts the
name of a specific object.

create type engineering_element;

create function name(engineering_element el) ->

charstring as stored;

create engineering_element(name) instances

:e1 ("eng-el_1");

select e for each engineering_element e;

select e for each engineering_element e

where name(e) = "eng-el_1";

select name(:e1);

A more thorough presentation of data management capabilities in AMOS
and AMOSQL is presented in (Karlsson et al.1994).

4 A Product Model for Sheet-Metal Parts

This section presents a conceptual model of a simple product model for
sheet-metal parts and its implementation in AMOS. It is shown how prod-
uct information could be accessed by using an OR query-language,
AMOSQL. Typical product information modelled and used in the exam-
ples is extracted in cooperation with Saab mainly from (Johansson and
Wikström 1992) and (Wall 1990), with some completions and adaptions
to suit this representation. It is not our intention to provide a complete
product model for sheet-metal parts. It has rather been an aim to include
the concepts and interrelations necessary to describe the logical structure
of a typical part and to show how this information can be modelled and ac-
cessed by the query-language.

4.1 A Conceptualization of Sheet-Metal Parts

In the Saab specification of product models for sheet-metal parts, (Johans-
son and Wikström 1992), a product model has been divided into a technol-
ogy model and a geometrical model. The geometrical model is thought to
include mainly CAD information describing a product’s physical form.
This geometry information was not intended to be stored in the product da-
tabase but to be referenced through “pointers” in the database to geomet-
rical CAD objects. Form might be viewed as a type of physical structure
as opposed to logical structure covered by the technology model. This
work mainly concerns the representation of the technology model and the
representation of the physical geometry is therefore left out in the rest of
this section. However, it would also be possible to integrate the geometri-
cal information in the product database, if the hardware and software con-
figuration could provide sufficient processing efficiency. In (Orsborn
1994) is shown that this constraint can be released by the emerging field
of main-memory databases.

The modelling and implementation have been centred around a specific
example presented in Figure 1. There was a basic set of concepts suggest-
ed by Saab including: part, web, flange, joggle, segment, face, bottom,
edge, border, hole, etc. Along with these concepts there were typical rela-
tions and queries that were interesting to model in this context. The com-
plete implementation is provided in (Orsborn 1993).

Figure 1. The conceptual structure of the modelled sheet-metal part.

Concept Structure and Modelling. A few definitions from (Johansson
and Wikström 1992) need to be reproduced to facilitate the interpretation
of this description. These include:

Web A Lightning Hole / Edge

Edge

Tool line

Part A

Flange A

Segment

Segment A

Segment B

Joggle A
Face

Bottom

Hole/Edge

Segment Joggle

Edge
Border

Edge
Border

Edge

Border

Hole/Edge

• Engineering element (EE): A concept that has an engineering meaning,
a form, and a position. An EE has a technological and a geometrical
part. Further, an EE may be composed of subordinate EE’s.

• Relation (R): Expresses a connection between EE’s.

A graphical view of the engineering concepts used for describing an in-
stance of the sheet-metal part is presented in Figure 1. All concepts in this
picture are classified as engineering elements. This set of concepts can be
classified further into specialized subsets where each subset shares a com-
mon set of properties. This hierarchical specialization can be modelled by
means of is-a relations as in Figure 2, where a subset is a specialization of
a superset. In AMOSQL this relationship is implemented as a type struc-
ture with supertypes and subtypes, exemplified by:

create type composite_engineering_element subtype of
engineering_element;

create type part subtype of
composite_engineering_element;

The is-a relation has a semantic direction from subtype to supertype. Im-
plemented as a type function in AMOS it works as an undirected relation
and can be used in both directions.

Figure 2. Classification of concepts for sheet-metal parts. The grey arrows represent
is-a relations.

Properties, such as name, diameter, and length, of objects are defined as
attributes on a certain class. These are implemented by means of stored
functions in AMOSQL and can be exemplified by:

create function diameter(hole h key)-> real r as stored;

Updates are made by set, add, or remove statements, such as:

set diameter(:hole_1) = 20.0;

Domain Relations and Modelling. As for the engineering concepts in
the previous section it might be convenient to define a few domain rela-
tions according to (Johansson and Wikström 1992). These are:

• Consists of (CO): This relation identifies those elements that together
form the originating element.

Segment Bottom

Simple
E.E.

Face Hole

Diameter

Edge

Length

Own edge Common edge

Outer edge
Hole edge

Tool line
Border

Lightning hole
Rivet hole

Part Web
Flange Joggle

Composite
E.E.

Engineering E.

Name

• Modifies (MF): This relation is used when the creation of an element
implies that an existing element will be changed. It identifies the added
(modifying) element, the elements that are modified and the borders
between the added and the modifying elements. A removal of the added
element should imply a removal of the MF relation. Compare with the
Replaces relation.

• Borders upon (BU): The BU relation is identical to the MF relation ex-
cept that the elements concerned, are not modified.

• Replaces (RP): A RP relation is used in conjunction with the MF rela-
tion to connect the added element with the (part of the) original element
it replaces.

• Surrounded by (SB): SB relations are used to connect an element to sur-
rounding elements. For example, a flange segment is surrounded by
edges and borders.

• Lies in (LI): This relation is used to associate an element to an existing
element. The existing element is, strictly speaking, modified by the as-
sociated elements but it is usually not necessary to consider the change.
Rivet holes and lightning holes are typical examples of such elements.

Relations are usually modelled by functions in AMOSQL. They are by de-
fault multi-valued and invertible. By introducing cardinality constraints,
they can be restricted to single-valued or combined variants. The relations
described above are presented in Figure 3. As for the is-a relation de-
scribed earlier, these also include a semantic direction but they can be used
in both directions in their implementation. A relation is expressed by a
polyline with a triangle that shows the semantic direction with its top. The
cardinality is expressed by a “fork” for a multi-valued relation and the
plain line for single-valued.

Figure 3. Additional relations modelled for the sheet-metal part. These are consists-
of (CO), surrounded-by (SB), modifies (MF), borders-upon (BU), replaces (RP), and
lies-in (LI).

The application scope of relations is automatically maintained by the sys-
tem since functions are defined over types. Modelling of relations as func-
tions in AMOSQL will, along with conceptual classification, reduce com-
plexity of the resulting (product) model. In comparison to, for instance, a
relational-oriented modelling technique this OO technique will result in a
less complex, and a more flexible, model.

4.2 Querying the Product Model

There were several examples of typical queries for accessing a sheet-metal
product model in (Johansson and Wikström 1992). Some examples of are
listed below in plain english followed by the corresponding AMOSQL
query and the query result. It should be noted that it is not necessary to use
the name function to access the objects below. It is only used to simplify
the interpretation of the examples.

Named
object

CO

Composite
eng. el.

SB

Simple
eng. el.

SB

MF
SB

BU
RP

Engineering

element

Hole

LI

1. Which name has the engineering element that Joggle A consists of?
This query exemplifies how several functions (the name and consists_of
functions) can be composed in queries. The second application of the
name function illustrates how functions can be applied in the inverse di-
rection.

select name(consists_of(j)) for each joggle j
where name(j) = 'Joggle A';

<“Face A”> <“Face B”> <“Bottom A”>

Figure 4. Illustration for facilitating the interpretation of queries 1, 2, 3, 4, 5, and 7.
Edge and border names are not provided since they are evident.

2. Which engineering element is modified by Joggle A? Here, the where
clause is combined by two conditions.

select name(e) for each engineering_element e,
 border g, joggle j

where name(j) = 'Joggle A' and modifies(j) = <e,g>;

<“Segment A”> <“Segment B”>

3. Which engineering element modifies Segment A and Segment B?
Here, the where clause involves conditions on several objects.

select name(e) for each engineering_element e, border
g1, border g2, segment s1, segment s2

where name(s1) = 'Segment A' and

Flange A

Segment A

Segment B

Joggle A

Face A
Face B

Bottom A

Joggle A

 name(s2) = 'Segment B' and
 modifies(e) = <s1,g1> and
 modifies(e) = <s2,g2>;

<“Joggle A”>

4. Which is the border that modifies Segment A or Joggle A? This
where clause includes a disjunction.

select name(g) for each border g, segment s, joggle j
where name(s) = 'Segment A' and

 name(j) = 'Joggle A' and
 modifies(j) = <s,g> or
 modifies(s) = <j,g>;

<“Segment A/Face A border”>

5. How many rivet holes lie in Segment A? This query exemplifies the
use of the count aggregation operator and nested queries, where the re-
sult of a subquery is counted.

select count((select name(h) for each rivet_hole h,
 segment s

where name(s) = 'Segment A' and lies_in(h) = s));

<3>

6. What is the total length of the edges surrounding Segment A in
Flange A? Another aggregation that makes a sum calculation of the re-
sults of a subquery. Arithmetic operations can also be included within
the where clause.

select sum((select length(k) for each edge k, segment s,
 flange f

where name(f) = 'Flange A' and
 name(s) = 'Segment A' and
 consists_of(f) = s and
 surrounded_by(s) = k));

<1400.>

7. Which edges surrounds Flange A? See text below.

select name(surrounded_by(e)) for each
engineering_element e

where name(e) = 'Flange A';

<“Face edge A”>
<“Bottom_edge A”>
<“Face edge B”>
<“Segment_edge A1”>
<“Segment_edge A2”>
<“Segment_edge B1”>
<“Segment_edge B2”>
<“Bottom A/Segment C tool_line”>
<“Segment A/Segment C tool_line”>
<“Segment B/Segment C tool_line”>
<“Face A/Segment C tool_line”>
<“Face B/Segment C tool_line”>

8. Which object id (OID) has the engineering element type that
Segment_edge B1 belongs to? This is an example of querying the da-
tabase schema.

select parent(e) for each engineering_element e
where name(e) = 'Segment_edge B1';

<OID[“OUTER_EDGE”:152] >

The seventh query applies the surrounded_by function on Flange A which
is a composite engineering element. This means that the query must apply
the surrounded_by function recursively on subsequent levels and filter out
appropriate surrounding elements at each level. If the query would have
been applied on a simple engineering element, the surrounded elements
could have been extracted immediately. Hence, the function
surrounded_by acts differently on simple and composite engineering ele-
ments respectively. This is implemented by overloading the
surrounded_by on both types, which looks like:

create function surrounded_by(
simple_engineering_element ee1) ->
engineering_element ee2 as stored;

create function surrounded_by(
composite_engineering_element ee1) ->
engineering_element as

 select exclusive((select ee2 for each
engineering_element ee2,
engineering_element ee3

where consists_of(ee1) = ee3 and
 surrounded_by(ee3) = ee2));

The definition of the surrounded_by relationship on the composite engi-
neering element type include an exclusive operator that filters out ele-
ments appearing only once in a multiset. This operator is implemented by
a foreign function as an extension to AMOSQL. It shows how convenient-
ly and seamlessly the query language can be extended to meet domain re-
quirements. Additional examples are provided, together with the complete
implementation code in (Orsborn 1993).

5 Summary

The present work has shown how an OR query language, AMOSQL, can
be used for management of product data. An example presents an outline
of a product model for single sheet-metal parts. It include several exam-
ples on how the query language can be used to model, retrieve and update
the product model. Query examples show specific facilities of the
AMOSQL language, like function composition, invertibility, and over-
loaded late bound functions. It is further shown how the extensibility of
the query language facilitates modelling of domain-oriented additional
functionality, such as the incorporation of the exclusive operator. Ongoing
work aims at representing STEP schemas in the AMOS DBMS.

The advantages of the product model concept for managing engineering
data are reported on in (Johansson and Wikström 1992), and include high-
er efficiency (reduced costs, lead times, etc.) in the production process.
Some subprocesses for generation of operation lists are expected to be re-
duced by as much as 70-80%. Besides these explicit advantages in using
such a system for product modelling, it is important to point out the ex-
pected increase in efficiency for development and maintenance of product
information. Additionally, these considerations are also valid for develop-
ment and maintenance of the supporting product modelling system.

The use of an OR query language for product data management offers sev-
eral advantages over conventional programming including declarative
modelling, query optimization, ad hoc queries, data independence and ev-
olution, and extensibility. This high-level and declarative modelling and
manipulation of product data will also facilitate a reuse and evolution of
design due to application and data independent representations. It is ar-
gued the this will increase the transparency, flexibility and overall effi-
ciency of product modelling systems.

The AMOS architecture incorporates database functionality and conforms
to the mediator approach that forms an intermediate level between appli-
cations and data sources. It is argued that by relying on general DBMS
technology for product data management, it is possible to take advantage
of built in database facilities like client-server communication, data shar-
ing and distribution, concurrency control, etc.

Finally, it is the author’s opinion that OR query languages and DBMS
technology, together with emerging standards for product modelling, will
play an important role in future product data management.

6 References

Stonebraker, M., and Moore, D. 1996, Object-relational DBMSs: the next great wave,
Morgan Kaufmann Publishers, Inc.

Cattell, R. G. G. 1991 (reprinted with corrections 1992), Object data management: ob-
ject-oriented and extended relational database systems, Addison-Wesley Publishing
Company, Inc.

Fahl, G., Risch, T. and Sköld, M. 1993, AMOS - an architecture for active mediators.
Presented at the Workshop on Next Generation Information Technologies and Systems
(NGITS’ 93), Haifa, Israel, June 28-30.

Fahl, G. 1994, Object views of relational data in multidatabase systems”, Licentiate
Thesis LiU-Tek-Lic 1994:32, Linköping University, Linköping.

Fishman, D. H., Annevelink, J., Chow, E. Connors, T., Davis, J. W., Hasan, W. Hoch,
C. G., Kent, W., Leichner, S., Lyngbaek, P., Mahbod, B., Neimat, M.A., Risch, T.,
Shan, M. C. and Wilkinson, W. K. 1989, Overview of the Iris DBMS. In Kim, W. and
Lochovsky, F. H. (eds.): Object-Oriented Concepts, Databases, and Applications
(ACM Press, Addison-Wesley).

Flodin, S. 1995, Processing object-oriented queries with invertible late bound func-
tions, Proceedings of the 1995 Conference of Very Large Databases.

ISO 10303-1, 1992, Product data representation and exchange - part 1: overview and
fundamental principles. ISO CD 10303-1, International Organization for Standardiza-
tion.

Johansson, J. and Wikström, R. 1992, The future product development process for air-
craft of the future at Saab Military Aircraft. Technical Report TUNJ 91:072E, SAAB-
SCANIA AB, Linköping, Sweden.

Karlsson, J., Larsson, S., Risch, T., Sköld, M., Werner, M. 1994, AMOS users’s guide.
CAELAB Memo 94-01, Linköping University.

Litwin, W. and Risch, T. 1992, Main memory oriented optimization of OO queries us-
ing typed Datalog with foreign predicates. IEEE Transactions on Knowledge and Data
Engineering, 4.

Lyngbaek, P., et al. 1991, OSQL: a language for object databases. Technical Report
HPL-DTD-91-4, Hewlett-Packard Company.

Meerkamm, H. 1995, Product modelling: a prerequisite for effective product develop-
ment. Proceedings of Product models -95, SIG-PM, ISBN 91-7871-541-5.

Mäntylä, M. 1995, Utilization of product models in product preparation. Proceedings
of Product models -95, SIG-PM, ISBN 91-7871-541-5.

Orsborn, K. 1993, Modelling of Product Data Using an Extensible O-O Query Lan-
guage. Technical Report LiTH-IDA-R-93-15, Department of Computer and Informa-
tion Science, Linköping University, Linköping Sweden.

Orsborn, K. 1994, Applying Next Generation Object-Oriented DBMS to Finite Ele-
ment Analysis. In Witold Litwin, Tore Risch (eds.): Application of Databases, 1st Int.
Conf., ADB-94, Vadstena, Sweden, June 21-23, 1994 (Proceedings), Lecture Notes in
Computer Science, Springer Verlag, ISBN 3-540-58183-9.

Risch, T. and Sköld, M. 1992, Active rules based on object-oriented queries. LiTH-
IDA-R-92-35, Linköping University. Also in a special issue on Active Databases of
IEEE Data Engineering, 1992.

Risch, T. and Wiederhold, G. 1991, Building adaptive applications using active medi-
ators, Proceedings of Database and Expert Systems Applications (DEXA‘91).

Shipman, D. W. 1981, The functional data model and the data language DAPLEX.
ACM Transactions on Database Systems, 6, 140-173.

Takizawa, M. 1983, Distributed database system JDDBS. In JARECT Computer Sci-
ence & Technologies, 7, (OHMSHA & North Holland), 262-283.

Wall, H. 1990, Product modelling at Saab Aircraft, results and experiences. Technical
Report TULB 90-23, SAAB-SCANIA AB, Linköping Sweden.

Werner, M. 1996, Multidatabase integration using polymorphic queries and views. Li-
centiate Thesis LiU-Tek-Lic 1996:11, Department of Computer and Information Sci-
ence, Linköping University.

