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Abstract— We define an extended version of the Semantic Web 
query language SPARQL called Scientific SPARQL, 
SciSPARQL. It is targeted mainly at scientific computing and 
laboratory data management. SciSPARQL includes expressions, 
numeric multi-dimensional array operations, user-defined 
functions, aggregate functions, and function views.  A prototype 
system translates SciSPARQL to a Datalog dialect which is 
extensible by external functions implemented in a regular 
programming language. The system automatically recognizes 
collections in RDF Turtle statements that represent numerical 
multi-dimensional arrays in order to represent them with a 
special native data type. A back-end relational database provides 
persistent storage. 

I. INTRODUCTION 

Historically, results from scientific experiments were 
stored in ASCII or binary files. The experimental results 
stored in the files are typically large multi-dimensional arrays 
with spatial and/or temporal semantics. Often meta-data 
describing classes, relationships, properties, domain 
constraints, keys is implicit and built into the software 
developed to process the results. With these traditional 
solutions meta-data becomes separated from the experimental 
results proper.  

As the original goal of the Semantic Web  [2] was to 
support semantic interoperability between applications 
exchanging data on the web, its technical standards, most 
prominently, RDF  [22], RDF Schema  [23], and the SPARQL 
query language  [24] are now widely used by researchers 
worldwide for schema-independent storage and processing of 
experimental data. The RDF Data Cube vocabulary  [29] 
provides an ontology for mapping statistical data to RDF. 

The Semantic Web is based on the RDF data 
representation where all kinds of data and meta-data are 
represented as 'triples of knowledge'. The SPARQL query 
language provides a general way to search such triples. By 
using RDF to represent both data and meta-data uniformly it 
is possible to make semantics-aware queries that combine all 
kinds of data.  

Scientific data processing often involves complex 
numerical data, such as multi-dimensional arrays and 
functions over such numerical data. However, SPARQL does 
not provide a general way of representing multi-dimensional 
arrays. They have to be broken down into triples, which is 
both unnatural and slow. Furthermore, scientific applications 

also require a rich set of functions operating over numerical 
data, which are not part of SPARQL.  

In this work we propose extensions to SPARQL to support 
scientific applications. The extended language is called 
Scientific SPARQL, SciSPARQL. It is enriched with array 
semantics, numeric expressions, aggregate functions, function 
views, and external functions.  

The Scientific SPARQL Database Manager, SSDM, 
implements SciSPARQL and provides an efficient 
representation of numerical arrays and functions. In SSDM 
arrays are represented by a dedicated data type. Basic array 
operators are implemented as functions over this data type. 
These functions can be used in SciSPARQL queries. 
Functions provide array transformations, like slicing, 
transposition, and projection avoid copying the data, which 
saves memory and opens to array-specific query optimization. 

As the notation for numerical arrays we transparently use 
the Turtle notation for collections  [25] by identifying 
rectangular (cubical etc.) collections of numbers as multi-
dimensional arrays. This makes the array notation fully 
compatible with SPARQL’s notation for collections. 

Other highly wanted functionality for scientific 
applications includes aggregate functions integrated into 
queries, and extensibility of the query language with external 
functions written in some programming language to 
implement numerical algorithms and operators. We provide 
both of these. We implement aggregate functions following 
the latest W3C SPARQL 1.1. recommendations  [26]. We also 
make SciSPARQL extensible by providing a general way to 
define external functions in Python, Java, or C. 

SSDM adds numerical array representations and SPARQL 
processing to an extensible DBMS Amos II  [13]. Amos II can 
access other data managers, such as relational databases, RDF 
stores, and files though its wrapper interfaces. In particular, 
existing relational databases can be queried  [5] in terms of 
RDF resources and triples  [15] [18]. 

This paper is organized as follows. Section II describes the 
query language SciSPARQL, explaining its major extensions 
with regard W3C SPARQL 1.1 recommendations. Section III 
provides an overview of the SSDM architecture and Section 
IV describes the array storage techniques and implementation 
of array operations. Section V presents a real-life usage 
scenario, Section VI gives an overview of related work, and 
Section VII summarizes our contributions and future work.  



II. SCIENTIFIC SPARQL 

Scientific SPARQL extends SPARQL with the following 
functionality to support scientific applications: 

 Certain Turtle collections are recognized as multi-
dimensional numerical arrays and internally represented 
as a dedicated data structure called numeric multi-
dimensional arrays (NMAs) to enable efficient storage 
of such collections and queries involving array 
operations. 

 SciSPARQL provides extended syntax in the SELECT 
class for expressions, in particular numerical 
expressions. 

 User defined external functions enable arbitrary 
computations to be implemented in some external 
programming language, e.g. Python. This provides 
access to Python’s numerical packages. 

 User defined aggregate functions enable 
implementation of summary values over collections. 

 User defined functions implemented as SPARQL 
queries enable to define common expressions and 
queries as function views.  

A. Multi-dimensional Arrays and Numerical Expressions 

SciSPARQL allows the use of arbitrary expressions in the 
SELECT clause, including numerical expressions, named by 
variables, e.g.:  
SELECT (f(2*?x+3) AS ?y) ... 

Numerical expressions in SciSPARQL are infix 
expressions where basic terms are variables, numeric 
constants, function calls, or array dereferences.  

Slices are specified as in NymPy  [20] using the notation 
lo:hi or lo:hi:stride for each dimension where lo denotes the 
lower bound of a slice and hi is the upper one. Subscripts are 
0-based and therefore the element hi is never part of the array 
defined by the slice. lo defaults to 0 and hi to the dimension, 
while stride defaults to 1, for example:  
SELECT (?a[:,0:5] AS ?firstFiveColumns) 
       (?b[::2] AS ?everySecondRow) 

Array elements and slices can be passed to functions or 
returned like any other values. 

The SciSPARQL syntax for projections is similar to array 
slicing with a colon (:) indicating a projected dimension, for 
example A[:,1], B[1,:,2:3:5].  

Regular array dereferencing is specified by supplying all 
subscripts, for example  A[1,2]. 

B. External functions 

SciSPARQL functionality can be extended by defining 
external functions implemented in, e.g., Python. For example, 
a plus function can be defined in SciSPARQL as: 
DEFINE FUNCTION plus(?a) AS PYTHON 'plus'; 

The implementation in Python of plus would be: 
def plus(a, b): return a+b; 

Notice that the arrays themselves are stored and managed 
by SSDM, not by Python; only an external function’s logic is 
implemented in Python. 

C. Aggregate Functions 

Aggregate functions differ from normal functions in that 
they produce one result value for a bag of input values. In 
SciSPARQL, they are defined as external functions: 
DEFINE AGGREGATE sum(?a) AS PYTHON 'mysum'; 

The corresponding Python implementation code is: 
def mysum(b): return sum(b); 

Actually, in this case user function 'mysum' is not required 
- the built-in Python sum function can be used directly. 

D. Function Views 

A SciSPARQL function can also be implemented entirely 
in terms of SciSPARQL, thus defining a function view by a 
subquery. Function views cannot be recursive. For example, 
the following function will calculate the sum of  the :x and :y 
properties of a given subject ?s: 
DEFINE FUNCTION sumxy(?s) AS SELECT (?x+?y AS ?res) 
                              WHERE { ?s :x ?x ; 
                                         :y ?y } 

III. THE SCISPARQL DATABASE MANAGER 

We have developed a prototype system to process 
SciSPARQL queries, called the SciSPARQL Database 
Manager (SSDM). SSDM utilizes the extensible DBMS Amos 
II  [16], for its in-memory data storage and interfaces to 
relational databases. Fig. 1 shows the overall architecture. 

 
Fig. 1 Overview of SSDM architecture  

The RDF loader is used to load both instances of 
experiments (parameter values, measurements), and meta-data 
describing classes, relationships, and attributes in experiment 
data. The latter can be designed by the user with help of 
ontology design tools like Protégé  [7]. Both kinds of data are 
loaded from RDF files, and stored in the relational database 
back-end RDB as RDF(S) triples.  

A main memory local database inside SSDM represents 
temporary data required for processing SciSPARQL queries 
over RDF, such as cached triples and numeric arrays. 

Numeric arrays are automatically recognized when Turtle 
collections are imported or in SPARQL queries. They are 
represented as numeric multi-dimensional arrays (NMAs) in 
the local database and are converted to a corresponding BLOB 
representation when stored in the RDBMS back-end. 



A storage object represents a one-dimensional array of 
either integer, double, or complex numbers. It contains a small 
header and is therefore self-descriptive. A descriptor object 
stores a pointer to a storage object,  the number of dimensions 
dims of the array, the index offset of the first element in the 
storage object referenced in a derived array, and a sequence of 
dimension access descriptors (DADs), each describing one 
dimension of a derived array enumerated form 0 and up. 

SciSPARQL is an extensible language where functions can 
be implemented in a foreign language and used in queries. 
The SSDM is integrated with the Python engine, which is 
used as run-time system for SciSPARQL external functions. 

 

 
Fig. 2 SciSPARQL query processing 

The query processing, as shown in Fig. 2, involves several 
steps. First, the SciSPARQL query is parsed and translated 
into ObjectLog  [13], a Datalog dialect allowing external 
predicates.  

The rewriter then transforms ObjectLog expressions into 
more efficient equivalents. For example, function views are 
expanded, common subexpressions eliminated, and numerical 
expressions simplified.  

The cost-based optimizer constructs an execution plan, 
minimizing the overall processing cost. The execution plan is 
an algebra expression, enhanced with array operations. This 
expression is then evaluated in an iterative fashion, and each 
valid result - a mapping of query variables to values, is 
emitted as soon as it is found. External functions defined in, 
e.g., Python can be called from execution plans. Cost hints 
can be associated with external functions. If no cost hint is 
specified for some external function the system uses an 
approximate cost based on function signatures. Built-in 
external functions are used for accessing the back-end 
relational database. 

IV. ARRAY FUNCTIONALITY 

All RDF datatypes  [22], including URIs and Unicode 
Strings, are natively supported in SSDM, its query processor, 
and its storage system. Distinctive SciSPARQL features such 
as NMAs are integrated into the core of our system. Detailed 
explanation of in-memory array storage and operations to 
produce derived arrays is given below. As a relational back-
end storage system we interface Chelonia  [19], which has a 
capacity to handle large multi-dimensional arrays. 

A. In-memory Representation 

In our native main-memory data storage, NMAs are 
represented as descriptor objects referring to storage objects, 
as shown on Fig. 3a. The storage objects compactly stores the 
elements of an array in continuous memory, while the 
descriptor objects provide very space efficient representations 
of derived arrays. This allows us to compute derived arrays 
without copying data. 

A given storage object can have many descriptors 
corresponding to different derived arrays. When a new array 
is created, both the descriptor and storage objects are allocated 
in main memory. When a derived array is produced, a new 
descriptor object is created linking to the storage object of the 
original array. Descriptor objects are automatically freed by a 
garbage collector whenever no variable or object refers to it. 
When the last descriptor object is freed, the garbage collector 
frees the storage object as well. 

 
Fig. 3 In-memory array representation 

For each array, its dimension sizes are stored in 
corresponding dim fields of its DADs. The storage order (so) 
values enumerate the dimensions from outmost to inmost 
dimension. The lower bounds (lo) are initialized to 0, and the 
iteration strides (stride) are initialized to 1. In this simple case, 

the access function  10 ,..., niia  that maps the array 

subscripts to the storage index takes the form: 
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This expression is simplified by pre-computing the access 
multipliers (am), representing invariant parts of the formula 
per array dimension:  
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B. Array Operations 

In the most general case, an array access involves a 
physical offset, some iteration strides, and some lower bounds 
of each logical index. The complete form of an access 
function aA for accessing one element i0,…,in-1 of the array A 
is: 
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The function  projects a logical subscript ik of the 

derived array A to the logical subscript of the basic array. 

 k
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1) Permutation of dimensions is a multi-dimensional 
generalization of the matrix transposition operation. Given an  
n-dimensional numeric array A, the order of logical subscripts 
used to access its elements can be changed without affecting 
the physical order. This involves swapping the DADs, while 
retaining their access multipliers (am) intact, Fig. 3b. 

The operation Permute(A, h0,…,hn-1) takes an array A  and 
a vector of distinct permutation indices h0,…,hn-1, 0≤hk<n and 
returns a derived array B such that the access functions map to 
the same elements as pointed to by the permuted subscripts: 
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Permute is a SciSPARQL function that can be used in the 
SELECT clause or FILTER expressions. Matrix transposition 
is defined by the function view: 
DEFINE FUNCTION Transpose(?matrix) 
   AS SELECT Permute(?matrix,1,0); 

2) Slicing is an operation that can be applied to each array 
dimension independently, resulting in a subset of array slices 
specified by subscripts and stride, as shown on Fig. 3c. Given 
an n-dimensional numeric array A, the operation 
Subk(A,lok,hik,stridek) results in an derived array B of the same 
dimensionality, where the first element is defined by lok: 

   0,...,00,...,,...,0 BkA aloa   
so that, effectively, the lo value in the k-th DAD of the 
resulting array B is: 

 k
A
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Analogously, the iteration stride of B is multiplied by the 
stridek argument: 
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The dimensions of B are defined as: 
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When applied to different dimensions, slicing operations 
are completely orthogonal and commutative. 

3) Projection involves reducing the dimensionality of an 
array by selecting one subscript value in a specified dimension 
- either row (Figure 3d) or column (Figure 3e) of a matrix, 
slice of a cube, etc. Projection removes one of the DADs, 
while retaining the access multipliers for the other dimensions 
untouched. The operation Prk(A,ik) results in a derived array  
B where the offset references the first element of B: 

 0,...,,...,0 kAB iaoffset   

C. Data input 

When a Turtle file is imported by the RDF loader, 
collections that can be converted to numeric arrays are 

identified and represented as NMAs. For example, the RDF 
object of the Turtle statement 
:x :a ((1 2 3) (4 5 6)) . 

is in SSDM represented as a single NMA literal with 
dimensions two and three. The conventional naïve 
representation as RDF triples would require 16 triples and 
eight blank nodes. In contrast, the object of Turtle statement 
:y :a ( 1 (2 3) 4) . 

cannot be represented as an NMA, since it is not rectangular. 
Therefore it is represented as a regular RDF sequence where 
the 2nd element is represented as a one-dimensional NMA. 
This saves the storage of four triples and two blank nodes.  

In practice, the numeric sequences are expected to be very 
large, so NMA vastly outperforms the standard RDF triple 
representation. 

V. EXAMPLE 

For evaluation of our system we use the following real-life 
scenario from the field of computational biology. In the 
scenario experimental data about yeast polarization 
experiments are represented in RDF. Fig. 4 shows the schema.  

Trajectory

inExperiment

YeastPolarizationExperiment

N

1

Km kon TrajNo

Width

ModelName

ModelVersion

SimulationAlgorithm

Diffusion
Timestep

FloatNMA

instanceOf

InputType

 
Fig 4 Yeast Polarization Experiment: EER diagram 

@prefix : <http://udbl.uu.se/YeastPolarization#> . 
 
:Experiment001 a :YeastPolarizationExperiment ; 
               :ModelName "ALL_Alt" ; 
               :ModelVersion 1 ; 
               :SimulationAlgorithm “ISSA” ; 
               :InputType 
                "GradientWithSwitching_Input” ; 
               :Diffusion 0.01 ; 
               :TimeStep 30 . 
[] a :TrajectoryData ; 
   :inExperiment :Experiment001 ; 
   :Km 10 ; 
   :kon 0.01 ; 
   :TrajNo 1 ; 
   :Width (0 17.82 10.8 34.1 ) #typically longer! 
[] a :TrajectoryData ; 
   :inExperiment :Experiment001 ; 
   :Km 10 ; 
   :kon 0.01 ; 
   :TrajNo 1 ; 
   :Width (0 3.56 12.4 22.41 )  

Fig 5 RDF data file in Turtle format  

The class YeastPolarizationExperiment represents 
properties of experiments about yeast polarizations. Each 
experiment is recorded as a number of trajectories represented 
by the class Trajectory. Each trajectory has a property Width 
that contains the measured values of the trajectory as a time 
series array of floating point numbers (class FloatNMA). The 
trajectories are computed using some SimulationAlgorithm 
and InputType. Each trajectory has an associated trajectory ID 



TrajNo and the simulation parameters Km and kon. A 
collection of such time series is associated with an instance of 
a simulation experiment through the property inExperiment. 
The attribute TimeStep of an experiment represents the time 
step of the trajectory in seconds.  

Fig. 5 contains an example of an RDF data file in Turtle 
format compliant with the above schema. Empty brackets 
denote blank nodes – the RDF equivalent of surrogate keys. 

Different experiment instances might have different 
attributes, and multi-parameter search can be implemented 
across different parameter sets. If we would store the data in a 
relational database, this could effectively mean a separate 
schema for each instance of an experiment. The RDF data 
model is more flexible, as we do not require all instances of a 
class to have the same attributes and relationships, which, in 
fact, we cannot foresee in a rapidly evolving laboratory 
information context. 

Examples of queries to the above schema: 
1) What is the mean and variance of the values of each 

trajectory, having kon parameter below 0.05? This is 
expressed in SciSPARQL as: 
PREFIX : <http://udbl.uu.se/YeastPolarization#> 
SELECT ?Km ?kon ?TrajNo 
       (mean(?Width) AS ?WidthMean) 
       (variance(?Width) AS ?WidthVariance) 
WHERE { ?trData a :TrajectoryData ; 
                :inExperiment :Experiment001 ; 
                :Km ?Km ; 
                :kon ?kon ; 
                :TrajNo ?trajNo ; 
                :Width ?Width . 
        FILTER (?kon < 0.05) } 

The functions mean and variance take a single array as 
argument and return a scalar. In the result we get a set of 
tuples for each trajectory containing bindings for the variables 
Km, kon, TrajNo, WidthMean, and WidthVariance. 

2) For each combination of the parameters km and kon,  
where kon is below 0.05, compute the mean trajectory where 
each value is the average of the stored trajectory values.  
PREFIX : <http://udbl.uu.se/YeastPolarization#>  
SELECT ?Km ?kon  
       (meanAgg(?Width) AS ?MeanTrajectory)  
WHERE { ?trData a :TrajectoryData ; 
                :inExperiment :Experiment001 ; 
                :Km ?Km ; 
                :kon ?kon ; 
                :Width ?Width  .  
        FILTER (?kon < 0.05) } 

The aggregate function meanAgg takes a bag of arrays as 
argument and computes a new array of the mean values 
element-wise of the input arrays. The query looks similar to 
the previous query, except that here the aggregate function 
meanAgg is applied on a bag of ?Width arrays. Here we 
effectively do grouping by Km and kon values as specified in 
 [26], and aggregate across different trajectories. 

3) What is the mean of the last five trajectory values in 
trajectories with time step of 2 minutes? 
PREFIX : <http://udbl.uu.se/YeastPolarization#>  
SELECT ?Km ?kon ?TrajNo        
(mean(?Width[adims(?Width)[0]-6: 
                    round(120/?timestep):]) 
        AS ?L5Mean)  

WHERE { ?trData a :TrajectoryData ; 
                :inExperiment :Experiment001 ; 
                :Km ?Km ; 
                :kon ?kon ; 
                :TrajNo ?trajNo ; 
                :Width ?Width . 
    :Experiment001 :TimeStep ?timestep } 
HAVING ?L5Mean > 100; 

Here we do a sub-sampling of each trajectory time series, 
apply array-to-scalar function mean, and use :TimeStep to 
select the experiment metadata.  

4) Define a function computing the final time of a given 
parameter ?trajectory: 
PREFIX : <http://udbl.uu.se/YeastPolarization#>  
DEFINE FUNCTION final_time(?trajectory)   
  AS SELECT ((adims(?width)[0]-1)*?timestep AS ?res) 
      WHERE {?trajectory :inExperiment ?experiment ; 
                         :Width ?width . 
             ?experiment :TimeStep ?timestep } 

Here we define a function view in SciSPARQL - the 
function final_time that takes a resource of class Trajectory as 
argument and returns a numeric value. The function uses a 
SciSPARQL query to find the corresponding experiment 
entity and its TimeStep value. It also accesses the first 
dimension size of the Width property of the trajectory, which 
is a one-dimensional array. 

VI. RELATED WORK 

Several other extensions to SPARQL were proposed to 
make the query language more useful for certain tasks. Lausen 
et. al.  [10] suggest specifying RDBMS-style data constraints 
(primary and foreign keys, domain ranges, subclasses and 
subpropeties) when mapping to RDF, and making use of this 
information during SPARQL query optimization. Kochut and 
Janik  [9] extend SPARQL with functionality of discovering 
semantic paths of possibly unknown length, specified as 
regular expressions over subjects and properties. Barbieri et. 
al.  [1] propose syntax extensions to define windows over 
streams of RDF triples. These proposals are orthogonal to 
ours. We are not aware of any extension of SPARQL with 
array functionality insofar.  

As SSDM Sesame  [27] and CORESE  [28] also allow 
extensibility of SPARQL with simple external functions in 
Java. In addition SSDM provides user defined aggregate 
functions and function views. Since our extensions are 
targeted at array processing, we choose Python with the 
NumPy library  [20] as the primary imperative-language to 
implement external functions in SciSPARQL operating over 
array data stored in SSDM.  

There have been several projects extending relational 
databases with array semantics. Lerner and Shasha  [11] are 
generalizing the idea of arrays as 'ordered data', and discuss 
the optimization opportunities of AQuery, an order-aware 
query language they define. Kersten et. al.  [8] view arrays as 
relational tables, where dimension values comprise the 
primary key. They suggest an extension to SQL, called SciQL 
where basic array operations are defined. These systems 
introduce arrays on the schema level, while in SciSPARQL 
arrays are data instances. 



Baumann et. al.  [6], takes a different approach in the 
RasDaMan system, which internally stores sections of arrays 
called tiles in an RDBMS and represents arrays as abstract 
data types in queries and applications. Recently, Dobos et. al. 
 [4] have studied the requirements of scientific applications for 
storing arrays and implemented their own relational database 
extensions on top of Microsoft SQL Server, storing the array 
data in BLOBs and accessing it via T-SQL UDFs. Recently, 
the SciDB  [3] [21] project was started, targeted at storing large 
amounts of chunked array data in distributed environments. 
Their latest work  [17] studies the strategies for array tiling and 
overlap storage.  

By contrast, we define arrays as an abstract data type for 
SPARQL. Furthermore, we use array descriptor objects to 
efficiently derive new arrays from large base arrays, while in 
the other systems raw base array sections are stored in a 
database. We use the Chelonia system  [19] as a distributed 
relational back-end for scalable storage of very large arrays 
also based on chunking/tiling.  

Dedicated array databases and query languages have been 
developed actively in past decades. In 1996 Libkin et. al  [12] 
defined the query language AQL, including calculus and 
algebra for accessing multi-dimensional arrays, e.g. 
concatenation, slicing, and aggregates. In AML  [14] bit 
patterns are used to optimize array access and transformations 
exploiting operational associativity and externally defined 
locality. Rather than having arrays as the only data type, 
SciSPARQL handles other kinds of data than arrays as well.  

VII. CONCLUSIONS AND FUTURE WORK 

Extensions to SPARQL to handle scientific data were 
defined. The extended language SciSPARQL includes array 
operations, function views, expressions, and definition of 
external functions implemented in e.g. Python.  

SciSPARQL is implemented in a prototype system called 
SSDM (SciSPARQL Database Manager). SSDM provides 
efficient representation for arrays identified in RDF 
collections and implements functionality to efficiently 
produce derived arrays without copying data. The system 
architecture of SSDM was overviewed along with descriptions 
and examples of how arrays are represented and processed in 
SSDM. 

SSDM is being integrated with the distributed relational 
back-end system Chelonia  [19] designed for scalable array 
storage and access. This includes strategies for distributed 
processing of multi-dimensional array queries.  

Evaluation work is in progress based on a real-life usage 
scenarios. The scenarios provide motivations for introducing 
new features required for scientific computing. Among these 
foreseeable features are second-order functions. Another 
direction is efficient processing of RDF streams, by adding 
stream and window semantics to SciSPARQL. 
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