
Scientific SPARQL:

Semantic Web Queries over Scientific Data
Andrej Andrejev*1, Tore Risch*2

* Department of Information Technology, Uppsala University
Box 337, SE-75105 Uppsala, Sweden

1andrej.andrejev@it.uu.se
2tore.risch@it.uu.se

Abstract— We define an extended version of the Semantic Web
query language SPARQL called Scientific SPARQL,
SciSPARQL. It is targeted mainly at scientific computing and
laboratory data management. SciSPARQL includes expressions,
numeric multi-dimensional array operations, user-defined
functions, aggregate functions, and function views. A prototype
system translates SciSPARQL to a Datalog dialect which is
extensible by external functions implemented in a regular
programming language. The system automatically recognizes
collections in RDF Turtle statements that represent numerical
multi-dimensional arrays in order to represent them with a
special native data type. A back-end relational database provides
persistent storage.

I. INTRODUCTION

Historically, results from scientific experiments were
stored in ASCII or binary files. The experimental results
stored in the files are typically large multi-dimensional arrays
with spatial and/or temporal semantics. Often meta-data
describing classes, relationships, properties, domain
constraints, keys is implicit and built into the software
developed to process the results. With these traditional
solutions meta-data becomes separated from the experimental
results proper.

As the original goal of the Semantic Web [2] was to
support semantic interoperability between applications
exchanging data on the web, its technical standards, most
prominently, RDF [22], RDF Schema [23], and the SPARQL
query language [24] are now widely used by researchers
worldwide for schema-independent storage and processing of
experimental data. The RDF Data Cube vocabulary [29]
provides an ontology for mapping statistical data to RDF.

The Semantic Web is based on the RDF data
representation where all kinds of data and meta-data are
represented as 'triples of knowledge'. The SPARQL query
language provides a general way to search such triples. By
using RDF to represent both data and meta-data uniformly it
is possible to make semantics-aware queries that combine all
kinds of data.

Scientific data processing often involves complex
numerical data, such as multi-dimensional arrays and
functions over such numerical data. However, SPARQL does
not provide a general way of representing multi-dimensional
arrays. They have to be broken down into triples, which is
both unnatural and slow. Furthermore, scientific applications

also require a rich set of functions operating over numerical
data, which are not part of SPARQL.

In this work we propose extensions to SPARQL to support
scientific applications. The extended language is called
Scientific SPARQL, SciSPARQL. It is enriched with array
semantics, numeric expressions, aggregate functions, function
views, and external functions.

The Scientific SPARQL Database Manager, SSDM,
implements SciSPARQL and provides an efficient
representation of numerical arrays and functions. In SSDM
arrays are represented by a dedicated data type. Basic array
operators are implemented as functions over this data type.
These functions can be used in SciSPARQL queries.
Functions provide array transformations, like slicing,
transposition, and projection avoid copying the data, which
saves memory and opens to array-specific query optimization.

As the notation for numerical arrays we transparently use
the Turtle notation for collections [25] by identifying
rectangular (cubical etc.) collections of numbers as multi-
dimensional arrays. This makes the array notation fully
compatible with SPARQL’s notation for collections.

Other highly wanted functionality for scientific
applications includes aggregate functions integrated into
queries, and extensibility of the query language with external
functions written in some programming language to
implement numerical algorithms and operators. We provide
both of these. We implement aggregate functions following
the latest W3C SPARQL 1.1. recommendations [26]. We also
make SciSPARQL extensible by providing a general way to
define external functions in Python, Java, or C.

SSDM adds numerical array representations and SPARQL
processing to an extensible DBMS Amos II [13]. Amos II can
access other data managers, such as relational databases, RDF
stores, and files though its wrapper interfaces. In particular,
existing relational databases can be queried [5] in terms of
RDF resources and triples [15] [18].

This paper is organized as follows. Section II describes the
query language SciSPARQL, explaining its major extensions
with regard W3C SPARQL 1.1 recommendations. Section III
provides an overview of the SSDM architecture and Section
IV describes the array storage techniques and implementation
of array operations. Section V presents a real-life usage
scenario, Section VI gives an overview of related work, and
Section VII summarizes our contributions and future work.

II. SCIENTIFIC SPARQL

Scientific SPARQL extends SPARQL with the following
functionality to support scientific applications:

 Certain Turtle collections are recognized as multi-
dimensional numerical arrays and internally represented
as a dedicated data structure called numeric multi-
dimensional arrays (NMAs) to enable efficient storage
of such collections and queries involving array
operations.

 SciSPARQL provides extended syntax in the SELECT
class for expressions, in particular numerical
expressions.

 User defined external functions enable arbitrary
computations to be implemented in some external
programming language, e.g. Python. This provides
access to Python’s numerical packages.

 User defined aggregate functions enable
implementation of summary values over collections.

 User defined functions implemented as SPARQL
queries enable to define common expressions and
queries as function views.

A. Multi-dimensional Arrays and Numerical Expressions

SciSPARQL allows the use of arbitrary expressions in the
SELECT clause, including numerical expressions, named by
variables, e.g.:
SELECT (f(2*?x+3) AS ?y) ...

Numerical expressions in SciSPARQL are infix
expressions where basic terms are variables, numeric
constants, function calls, or array dereferences.

Slices are specified as in NymPy [20] using the notation
lo:hi or lo:hi:stride for each dimension where lo denotes the
lower bound of a slice and hi is the upper one. Subscripts are
0-based and therefore the element hi is never part of the array
defined by the slice. lo defaults to 0 and hi to the dimension,
while stride defaults to 1, for example:
SELECT (?a[:,0:5] AS ?firstFiveColumns)
 (?b[::2] AS ?everySecondRow)

Array elements and slices can be passed to functions or
returned like any other values.

The SciSPARQL syntax for projections is similar to array
slicing with a colon (:) indicating a projected dimension, for
example A[:,1], B[1,:,2:3:5].

Regular array dereferencing is specified by supplying all
subscripts, for example A[1,2].

B. External functions

SciSPARQL functionality can be extended by defining
external functions implemented in, e.g., Python. For example,
a plus function can be defined in SciSPARQL as:
DEFINE FUNCTION plus(?a) AS PYTHON 'plus';

The implementation in Python of plus would be:
def plus(a, b): return a+b;

Notice that the arrays themselves are stored and managed
by SSDM, not by Python; only an external function’s logic is
implemented in Python.

C. Aggregate Functions

Aggregate functions differ from normal functions in that
they produce one result value for a bag of input values. In
SciSPARQL, they are defined as external functions:
DEFINE AGGREGATE sum(?a) AS PYTHON 'mysum';

The corresponding Python implementation code is:
def mysum(b): return sum(b);

Actually, in this case user function 'mysum' is not required
- the built-in Python sum function can be used directly.

D. Function Views

A SciSPARQL function can also be implemented entirely
in terms of SciSPARQL, thus defining a function view by a
subquery. Function views cannot be recursive. For example,
the following function will calculate the sum of the :x and :y
properties of a given subject ?s:
DEFINE FUNCTION sumxy(?s) AS SELECT (?x+?y AS ?res)
 WHERE { ?s :x ?x ;
 :y ?y }

III. THE SCISPARQL DATABASE MANAGER

We have developed a prototype system to process
SciSPARQL queries, called the SciSPARQL Database
Manager (SSDM). SSDM utilizes the extensible DBMS Amos
II [16], for its in-memory data storage and interfaces to
relational databases. Fig. 1 shows the overall architecture.

Fig. 1 Overview of SSDM architecture

The RDF loader is used to load both instances of
experiments (parameter values, measurements), and meta-data
describing classes, relationships, and attributes in experiment
data. The latter can be designed by the user with help of
ontology design tools like Protégé [7]. Both kinds of data are
loaded from RDF files, and stored in the relational database
back-end RDB as RDF(S) triples.

A main memory local database inside SSDM represents
temporary data required for processing SciSPARQL queries
over RDF, such as cached triples and numeric arrays.

Numeric arrays are automatically recognized when Turtle
collections are imported or in SPARQL queries. They are
represented as numeric multi-dimensional arrays (NMAs) in
the local database and are converted to a corresponding BLOB
representation when stored in the RDBMS back-end.

A storage object represents a one-dimensional array of
either integer, double, or complex numbers. It contains a small
header and is therefore self-descriptive. A descriptor object
stores a pointer to a storage object, the number of dimensions
dims of the array, the index offset of the first element in the
storage object referenced in a derived array, and a sequence of
dimension access descriptors (DADs), each describing one
dimension of a derived array enumerated form 0 and up.

SciSPARQL is an extensible language where functions can
be implemented in a foreign language and used in queries.
The SSDM is integrated with the Python engine, which is
used as run-time system for SciSPARQL external functions.

Fig. 2 SciSPARQL query processing

The query processing, as shown in Fig. 2, involves several
steps. First, the SciSPARQL query is parsed and translated
into ObjectLog [13], a Datalog dialect allowing external
predicates.

The rewriter then transforms ObjectLog expressions into
more efficient equivalents. For example, function views are
expanded, common subexpressions eliminated, and numerical
expressions simplified.

The cost-based optimizer constructs an execution plan,
minimizing the overall processing cost. The execution plan is
an algebra expression, enhanced with array operations. This
expression is then evaluated in an iterative fashion, and each
valid result - a mapping of query variables to values, is
emitted as soon as it is found. External functions defined in,
e.g., Python can be called from execution plans. Cost hints
can be associated with external functions. If no cost hint is
specified for some external function the system uses an
approximate cost based on function signatures. Built-in
external functions are used for accessing the back-end
relational database.

IV. ARRAY FUNCTIONALITY

All RDF datatypes [22], including URIs and Unicode
Strings, are natively supported in SSDM, its query processor,
and its storage system. Distinctive SciSPARQL features such
as NMAs are integrated into the core of our system. Detailed
explanation of in-memory array storage and operations to
produce derived arrays is given below. As a relational back-
end storage system we interface Chelonia [19], which has a
capacity to handle large multi-dimensional arrays.

A. In-memory Representation

In our native main-memory data storage, NMAs are
represented as descriptor objects referring to storage objects,
as shown on Fig. 3a. The storage objects compactly stores the
elements of an array in continuous memory, while the
descriptor objects provide very space efficient representations
of derived arrays. This allows us to compute derived arrays
without copying data.

A given storage object can have many descriptors
corresponding to different derived arrays. When a new array
is created, both the descriptor and storage objects are allocated
in main memory. When a derived array is produced, a new
descriptor object is created linking to the storage object of the
original array. Descriptor objects are automatically freed by a
garbage collector whenever no variable or object refers to it.
When the last descriptor object is freed, the garbage collector
frees the storage object as well.

Fig. 3 In-memory array representation

For each array, its dimension sizes are stored in
corresponding dim fields of its DADs. The storage order (so)
values enumerate the dimensions from outmost to inmost
dimension. The lower bounds (lo) are initialized to 0, and the
iteration strides (stride) are initialized to 1. In this simple case,

the access function 10 ,..., niia that maps the array

subscripts to the storage index takes the form:

k

soso

m
mkn

km

iiia dim,..., 10

This expression is simplified by pre-computing the access
multipliers (am), representing invariant parts of the formula
per array dimension:

km soso

m
mkam dim

B. Array Operations

In the most general case, an array access involves a
physical offset, some iteration strides, and some lower bounds
of each logical index. The complete form of an access
function aA for accessing one element i0,…,in-1 of the array A
is:

 k
k

k
A
knA amipoffsetiia 10 ,...,

where

 kkkk
A
k strideiloip

The function projects a logical subscript ik of the

derived array A to the logical subscript of the basic array.

 k
A
k ip

1) Permutation of dimensions is a multi-dimensional
generalization of the matrix transposition operation. Given an
n-dimensional numeric array A, the order of logical subscripts
used to access its elements can be changed without affecting
the physical order. This involves swapping the DADs, while
retaining their access multipliers (am) intact, Fig. 3b.

The operation Permute(A, h0,…,hn-1) takes an array A and
a vector of distinct permutation indices h0,…,hn-1, 0≤hk<n and
returns a derived array B such that the access functions map to
the same elements as pointed to by the permuted subscripts:

10

,...,,..., 10
 nhhBnA iiaiia

Permute is a SciSPARQL function that can be used in the
SELECT clause or FILTER expressions. Matrix transposition
is defined by the function view:
DEFINE FUNCTION Transpose(?matrix)
 AS SELECT Permute(?matrix,1,0);

2) Slicing is an operation that can be applied to each array
dimension independently, resulting in a subset of array slices
specified by subscripts and stride, as shown on Fig. 3c. Given
an n-dimensional numeric array A, the operation
Subk(A,lok,hik,stridek) results in an derived array B of the same
dimensionality, where the first element is defined by lok:

 0,...,00,...,,...,0 BkA aloa
so that, effectively, the lo value in the k-th DAD of the
resulting array B is:

 k
A
k

B
k loplo ,

Analogously, the iteration stride of B is multiplied by the
stridek argument:

k
A
k

B
k stridestridestride

The dimensions of B are defined as:

1

1
dim

B
k

B
kk

B
kB

k stride

lohip

When applied to different dimensions, slicing operations
are completely orthogonal and commutative.

3) Projection involves reducing the dimensionality of an
array by selecting one subscript value in a specified dimension
- either row (Figure 3d) or column (Figure 3e) of a matrix,
slice of a cube, etc. Projection removes one of the DADs,
while retaining the access multipliers for the other dimensions
untouched. The operation Prk(A,ik) results in a derived array
B where the offset references the first element of B:

 0,...,,...,0 kAB iaoffset

C. Data input

When a Turtle file is imported by the RDF loader,
collections that can be converted to numeric arrays are

identified and represented as NMAs. For example, the RDF
object of the Turtle statement
:x :a ((1 2 3) (4 5 6)) .

is in SSDM represented as a single NMA literal with
dimensions two and three. The conventional naïve
representation as RDF triples would require 16 triples and
eight blank nodes. In contrast, the object of Turtle statement
:y :a (1 (2 3) 4) .

cannot be represented as an NMA, since it is not rectangular.
Therefore it is represented as a regular RDF sequence where
the 2nd element is represented as a one-dimensional NMA.
This saves the storage of four triples and two blank nodes.

In practice, the numeric sequences are expected to be very
large, so NMA vastly outperforms the standard RDF triple
representation.

V. EXAMPLE

For evaluation of our system we use the following real-life
scenario from the field of computational biology. In the
scenario experimental data about yeast polarization
experiments are represented in RDF. Fig. 4 shows the schema.

Trajectory

inExperiment

YeastPolarizationExperiment

N

1

Km kon TrajNo

Width

ModelName

ModelVersion

SimulationAlgorithm

Diffusion
Timestep

FloatNMA

instanceOf

InputType

Fig 4 Yeast Polarization Experiment: EER diagram

@prefix : <http://udbl.uu.se/YeastPolarization#> .

:Experiment001 a :YeastPolarizationExperiment ;
 :ModelName "ALL_Alt" ;
 :ModelVersion 1 ;
 :SimulationAlgorithm “ISSA” ;
 :InputType
 "GradientWithSwitching_Input” ;
 :Diffusion 0.01 ;
 :TimeStep 30 .
[] a :TrajectoryData ;
 :inExperiment :Experiment001 ;
 :Km 10 ;
 :kon 0.01 ;
 :TrajNo 1 ;
 :Width (0 17.82 10.8 34.1) #typically longer!
[] a :TrajectoryData ;
 :inExperiment :Experiment001 ;
 :Km 10 ;
 :kon 0.01 ;
 :TrajNo 1 ;
 :Width (0 3.56 12.4 22.41)

Fig 5 RDF data file in Turtle format

The class YeastPolarizationExperiment represents
properties of experiments about yeast polarizations. Each
experiment is recorded as a number of trajectories represented
by the class Trajectory. Each trajectory has a property Width
that contains the measured values of the trajectory as a time
series array of floating point numbers (class FloatNMA). The
trajectories are computed using some SimulationAlgorithm
and InputType. Each trajectory has an associated trajectory ID

TrajNo and the simulation parameters Km and kon. A
collection of such time series is associated with an instance of
a simulation experiment through the property inExperiment.
The attribute TimeStep of an experiment represents the time
step of the trajectory in seconds.

Fig. 5 contains an example of an RDF data file in Turtle
format compliant with the above schema. Empty brackets
denote blank nodes – the RDF equivalent of surrogate keys.

Different experiment instances might have different
attributes, and multi-parameter search can be implemented
across different parameter sets. If we would store the data in a
relational database, this could effectively mean a separate
schema for each instance of an experiment. The RDF data
model is more flexible, as we do not require all instances of a
class to have the same attributes and relationships, which, in
fact, we cannot foresee in a rapidly evolving laboratory
information context.

Examples of queries to the above schema:
1) What is the mean and variance of the values of each

trajectory, having kon parameter below 0.05? This is
expressed in SciSPARQL as:
PREFIX : <http://udbl.uu.se/YeastPolarization#>
SELECT ?Km ?kon ?TrajNo
 (mean(?Width) AS ?WidthMean)
 (variance(?Width) AS ?WidthVariance)
WHERE { ?trData a :TrajectoryData ;
 :inExperiment :Experiment001 ;
 :Km ?Km ;
 :kon ?kon ;
 :TrajNo ?trajNo ;
 :Width ?Width .
 FILTER (?kon < 0.05) }

The functions mean and variance take a single array as
argument and return a scalar. In the result we get a set of
tuples for each trajectory containing bindings for the variables
Km, kon, TrajNo, WidthMean, and WidthVariance.

2) For each combination of the parameters km and kon,
where kon is below 0.05, compute the mean trajectory where
each value is the average of the stored trajectory values.
PREFIX : <http://udbl.uu.se/YeastPolarization#>
SELECT ?Km ?kon
 (meanAgg(?Width) AS ?MeanTrajectory)
WHERE { ?trData a :TrajectoryData ;
 :inExperiment :Experiment001 ;
 :Km ?Km ;
 :kon ?kon ;
 :Width ?Width .
 FILTER (?kon < 0.05) }

The aggregate function meanAgg takes a bag of arrays as
argument and computes a new array of the mean values
element-wise of the input arrays. The query looks similar to
the previous query, except that here the aggregate function
meanAgg is applied on a bag of ?Width arrays. Here we
effectively do grouping by Km and kon values as specified in
 [26], and aggregate across different trajectories.

3) What is the mean of the last five trajectory values in
trajectories with time step of 2 minutes?
PREFIX : <http://udbl.uu.se/YeastPolarization#>
SELECT ?Km ?kon ?TrajNo
(mean(?Width[adims(?Width)[0]-6:
 round(120/?timestep):])
 AS ?L5Mean)

WHERE { ?trData a :TrajectoryData ;
 :inExperiment :Experiment001 ;
 :Km ?Km ;
 :kon ?kon ;
 :TrajNo ?trajNo ;
 :Width ?Width .
 :Experiment001 :TimeStep ?timestep }
HAVING ?L5Mean > 100;

Here we do a sub-sampling of each trajectory time series,
apply array-to-scalar function mean, and use :TimeStep to
select the experiment metadata.

4) Define a function computing the final time of a given
parameter ?trajectory:
PREFIX : <http://udbl.uu.se/YeastPolarization#>
DEFINE FUNCTION final_time(?trajectory)
 AS SELECT ((adims(?width)[0]-1)*?timestep AS ?res)
 WHERE {?trajectory :inExperiment ?experiment ;
 :Width ?width .
 ?experiment :TimeStep ?timestep }

Here we define a function view in SciSPARQL - the
function final_time that takes a resource of class Trajectory as
argument and returns a numeric value. The function uses a
SciSPARQL query to find the corresponding experiment
entity and its TimeStep value. It also accesses the first
dimension size of the Width property of the trajectory, which
is a one-dimensional array.

VI. RELATED WORK

Several other extensions to SPARQL were proposed to
make the query language more useful for certain tasks. Lausen
et. al. [10] suggest specifying RDBMS-style data constraints
(primary and foreign keys, domain ranges, subclasses and
subpropeties) when mapping to RDF, and making use of this
information during SPARQL query optimization. Kochut and
Janik [9] extend SPARQL with functionality of discovering
semantic paths of possibly unknown length, specified as
regular expressions over subjects and properties. Barbieri et.
al. [1] propose syntax extensions to define windows over
streams of RDF triples. These proposals are orthogonal to
ours. We are not aware of any extension of SPARQL with
array functionality insofar.

As SSDM Sesame [27] and CORESE [28] also allow
extensibility of SPARQL with simple external functions in
Java. In addition SSDM provides user defined aggregate
functions and function views. Since our extensions are
targeted at array processing, we choose Python with the
NumPy library [20] as the primary imperative-language to
implement external functions in SciSPARQL operating over
array data stored in SSDM.

There have been several projects extending relational
databases with array semantics. Lerner and Shasha [11] are
generalizing the idea of arrays as 'ordered data', and discuss
the optimization opportunities of AQuery, an order-aware
query language they define. Kersten et. al. [8] view arrays as
relational tables, where dimension values comprise the
primary key. They suggest an extension to SQL, called SciQL
where basic array operations are defined. These systems
introduce arrays on the schema level, while in SciSPARQL
arrays are data instances.

Baumann et. al. [6], takes a different approach in the
RasDaMan system, which internally stores sections of arrays
called tiles in an RDBMS and represents arrays as abstract
data types in queries and applications. Recently, Dobos et. al.
 [4] have studied the requirements of scientific applications for
storing arrays and implemented their own relational database
extensions on top of Microsoft SQL Server, storing the array
data in BLOBs and accessing it via T-SQL UDFs. Recently,
the SciDB [3] [21] project was started, targeted at storing large
amounts of chunked array data in distributed environments.
Their latest work [17] studies the strategies for array tiling and
overlap storage.

By contrast, we define arrays as an abstract data type for
SPARQL. Furthermore, we use array descriptor objects to
efficiently derive new arrays from large base arrays, while in
the other systems raw base array sections are stored in a
database. We use the Chelonia system [19] as a distributed
relational back-end for scalable storage of very large arrays
also based on chunking/tiling.

Dedicated array databases and query languages have been
developed actively in past decades. In 1996 Libkin et. al [12]
defined the query language AQL, including calculus and
algebra for accessing multi-dimensional arrays, e.g.
concatenation, slicing, and aggregates. In AML [14] bit
patterns are used to optimize array access and transformations
exploiting operational associativity and externally defined
locality. Rather than having arrays as the only data type,
SciSPARQL handles other kinds of data than arrays as well.

VII. CONCLUSIONS AND FUTURE WORK

Extensions to SPARQL to handle scientific data were
defined. The extended language SciSPARQL includes array
operations, function views, expressions, and definition of
external functions implemented in e.g. Python.

SciSPARQL is implemented in a prototype system called
SSDM (SciSPARQL Database Manager). SSDM provides
efficient representation for arrays identified in RDF
collections and implements functionality to efficiently
produce derived arrays without copying data. The system
architecture of SSDM was overviewed along with descriptions
and examples of how arrays are represented and processed in
SSDM.

SSDM is being integrated with the distributed relational
back-end system Chelonia [19] designed for scalable array
storage and access. This includes strategies for distributed
processing of multi-dimensional array queries.

Evaluation work is in progress based on a real-life usage
scenarios. The scenarios provide motivations for introducing
new features required for scientific computing. Among these
foreseeable features are second-order functions. Another
direction is efficient processing of RDF streams, by adding
stream and window semantics to SciSPARQL.

ACKNOWLEDGMENT

This work was supported by eSSENCE and the
Swedish Foundation for Strategic Research, grant RIT08-0041.

REFERENCES
[1] D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, and M. Grossniklaus,

"Querying RDF Streams with C-SPARQL," SIGMOD'10, Jun. 2010
[2] T. Berners-Lee, J. Hendler, and O. Lassila, "The Semantic Web,"

Scientific American, vol. 284(5) pp. 34–43, May 2001.
[3] P. Cudre-Mauroux, H. Kimura, K.-T. Lim, J. Rogers, R. Simakov, E.

Soroush, P. Velikhov, D. L. Wang, M. Balazinska, J. Becla, D. DeWitt,
B. Heath, D. Maier, S. Madden, J. Patel, M. Stonebraker, and S.
Zdonik, "A demonstration of SciDB: a science-oriented DBMS," Proc.
VLDB Endow., 2(2) pp. 1534–1537, 2009.

[4] L. Dobos, A. Szalay, J. Blakeley, T. Budavári, I. Csabai1, D. Tomic, M.
Milovanovic, M. Tintor, and A. Jovanovic, "Array Requirements for
Scientific Applications and an Implementation for Microsoft SQL
Server in Proc. EDBT/ICDT - Workshop on Array Databases 2011,

[5] G. Fahl and T. Risch. "Query Processing over Object Views of
Relational Data," The VLDB Journal, vol. 6, pp 261-281, Nov. 1997.

[6] P. Furtado and P. Baumann. "Storage of Multidimensional Arrays
Based on Arbitrary Tiling", ICDE'99, 1999.

[7] J. H. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso, M.
Crubézy, H. Eriksson, N. F. Noy, and S. W. Tu, "The evolution of
Protégé: an environment for nowledge-based systems development",
Human-Computer Studies vol. 58 (2003) pp. 89–123

[8] M. Kersten, N. Nes, Y. Zhang, and M. Ivanova, "SciQL, A Query
Language for Science Applications," in Proc. EDBT/ICDT - Workshop
on Array Databases 2011, 2011.

[9] K. J. Kochut and M. Janik, "SPARQLeR: Extended Sparql for
Semantic Association Discovery," ESWC 2007, Jun. 2007

[10] G. Lausen, M. Meier, and M. Schmidt, "SPARQLing Constraints for
RDF," EDBT'08, Mar. 2008

[11] A. Lerner and D. Shasha. "Aquery: query language for ordered data,
optimization techniques, and experiments," in Proc. VLDB’2003, pp.
345–356, 2003.

[12] L. Libkin, R. Machlin, and L. Wong, "A Query Language for
Multidimensional Arrays: Design, Implementation, and Optimization
Techniques," in Proc. ACM SIGMOD'96 pp. 228 – 239, 1996

[13] W. Litwin, and T. Risch, "Main Memory Oriented Optimization of OO
Queries using Typed Datalog with Foreign Predicates," Proc. IEEE
Trans. on Knowledge and Data Engineering, 4(6), pp. 517-528, 1992

[14] A. P. Marathe and K. Salem, "Query processing techniques for arrays,"
The VLDB Journal vol. 11, pp. 68–91, 2002.

[15] J.Petrini and T.Risch. "SWARD: Semantic Web Abridged Relational
Databases," in Proc. 6th International Workshop on Web Semantics,
WEBS 2007, 2007

[16] T.Risch, V.Josifovski, and T.Katchaounov, "Functional Data
Integration in a Distributed Mediator System," Functional Approach to
Data Management - Modeling, Analyzing and Integrating
Heterogeneous Data, Springer, 211-238, 2003

[17] E. Soroush, M. Balazinska, and D.Wang, "ArrayStore: A Storage
Manager for Complex Parallel Array Processing," SIGMOD’11, 2011.

[18] S.Stefanova and T.Risch: “Optimizing Unbound-property Queries to
RDF Views of Relational Databases”, Proc. of 7th International
Workshop on Scalable Semantic Web Knowledge Base Systems
(SSWS2011), Oct. 2011.

[19] S.Toor, M.Sabesan, S.Holmgren, and T.Risch, "A Scalable
Architecture of Distributed Storage by Employing Databases for e-
Science Applications", 7th IEEE International Conference on e-
Science, Dec. 2011.

[20] S. van der Walt, S. C. Colbert, and G. Vaouquaux. "The NumPy Array:
A Structure for Efficient Numerical Computation," Computing in
Science and Engineering, 13(2), Mar. 2011

[21] -- "Overview of SciDB. Large Scale Array Storage, Processing and
Analysis," SIGMOD’10, Jun. 2010.

[22] http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
[23] http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
[24] http://www.w3.org/TR/rdf-sparql-query/
[25] http://www.w3.org/TeamSubmission/turtle/#sec-collections
[26] http://www.w3.org/TR/sparql11-query/
[27] http://rivuli-development.com/further-reading/sesame-

cookbook/creating-custom-sparql-functions/
[28] http://www-sop.inria.fr/acacia/soft/corese/manual/#function
[29] http://publishing-statistical-

data.googlecode.com/svn/trunk/specs/src/main/html/cube.html

