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SUMMARY

Integration of data from autonomous, distributed and heterogeneous data sources poses several technical
challenges. This paper overviews the data integration system AMOS II based on the wrapper-mediator
approach. AMOS II consists of: (i) a mediator database engine that can process and execute queries over
data stored locally and in several external data sources, and (ii) object-oriented (OO) multi-database views
for reconciliation of data and schema heterogeneities among sources with various capabilities. The data
stored in different types of data sources is translated and integrated using OO mediation primitives,
providing the user with a consistent view of the data in all the sources. Through its multi-database facilities
many distributed AMOS II systems can interoperate in a federation. Since most data reside in the data
sources, and to achieve high performance, the core of the system is a main-memory DBMS having a
storage manager, query optimizer, transactions, client–server interface, disk backup, etc. The AMOS II data
manager is optimized for main-memory access and is extensible so that new data types and query operators
can be added or implemented in some external programming language. The extensibility is essential for
providing seamless access to a variety of data sources. Copyright  2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The computing environments have become increasingly distributed through the use of Internet and
other computer communication networks. Today we are experiencing an ever-increasing access to
more or less structured information which is furthermore very dynamic and is continuously changing.
In this environment it is getting more and more critical to develop tools for building systems that
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combine relevant data from many sources and present them in a form which is comprehensible for
users. These tools must be maintainable and scalable to highly dynamic and distributed environments.

Several technical problems arise in the design and implementation of data integration systems that
provide the user with a unified view of data in multiple data sources. First, due to the distribution of the
data sources, such a system has to operate in a distributed environment. Second, the data sources might
use different data models and languages, and might contain equivalent, conflicting or complementary
data, requiring reconciliation before it is presented to the user. Finally, the data sources are not under
control of the data integration system, and the integration process should not affect their functionality
or require modifications.

The wrapper-mediator approach introduced in [1], divides the functionality of a data integration
system into two kinds of subsystems. The wrappers provide access to the data in the data sources using
a common data model (CDM) and a common query language. The mediators provide coherent views
of the data in the data sources by performing semantic reconciliation of the CDM data representations
provided by the wrappers.

AMOS II§ is a distributed mediator system where several AMOS II mediator servers communicate
over the Internet using an internal TCP/IP socket based protocol. This protocol is used only for
inter-AMOS II communication while wrappers interface the data sources, such as, e.g., wrappers for
accessing XML data sources through HTTP [2] and for accessing relational databases through ODBC
[3,4]. Each mediator server is also a DBMS of its own containing all the traditional database facilities,
such as a storage manager, a recovery manager, a transaction manager, a disk backup manager, and a
query processor for an object-oriented (OO) query language, AMOSQL [5]. AMOSQL is similar to
the OO parts of SQL:99 [6] and based on the functional data model DAPLEX [7] and OSQL [8].

Each mediator server appears as a virtual OO database layer having OO data abstractions and
query language. OO views provide transparent access to the data sources from clients and other
mediator servers. Conflicts and overlaps between similar real-world entities being modelled differently
in different data sources are reconciled through the mediation primitives [9,10] of AMOS II.
The mediation services allow transparent access to similar object structures represented differently
in different data sources.

AMOS II mediators are composable since the OO views in a mediator server can be based on the OO
views in other mediator servers and data sources. The composition of mediators allows for modularity
and reuse of the view definitions while avoiding the administrative and performance bottleneck of
having a single mediator system with a global schema. Different interconnecting topologies can be
used to compose mediator servers depending on the integration requirements of the environment.

Every mediator server must belong to a group (federation) of mediator servers. The mediator servers
in a federation are described through a meta-schema stored in a mediator server called name server.
The mediator servers are autonomous and there is no central schema in the name server. The name
server contains only some general meta-information such as the locations and names of the mediator
servers in the federation while each mediator server has its own schema describing its local data and
data sources. The information in the name server is managed without explicit operator intervention;
its contents is managed through messages from the mediator servers. To avoid a bottleneck, mediator

§Active Mediator Object System.
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servers usually communicate directly without involving the name server; it is normally involved only
when a connection to some mediator server is established.

The AMOS II kernel in an object-oriented, open, and extensible DBMS with a relatively small
footprint (about 2 MB on Windows NT 4.0). It is a main-memory (RAM) DBMS with high
performance. This does not limit the capacity of AMOS II as a mediator system as it provides a
virtual database layer on top of external data sources with limited amounts of data stored in the
mediator servers. The vast bulk of the data is stored in the data sources while mainly meta-information,
temporary data and data that is relevant only to particular applications is stored in the mediator
servers. To minimize memory requirements during interpretation of queries over large data sets, the
queries are compiled into execution plans that are interpreted in an iterative tuple-by-tuple style
materializing data in the mediator only when favourable [10]. The query optimizer then inserts in
the plans operators that materialize temporary data. Nevertheless, each mediator server can also store
local data, e.g. for associating properties with mediated data. For example, a sales person that uses
a mediator extracting prime customers from a set of data sources would store customer information
in the mediator. A recovery system for the RAM storage has been developed [11] based on logging
of database updates and saving complete database images. The system can be used as a single-user
database or as a multi-user server to applications and to other AMOS II systems. The data manager is
designed for high performance in main-memory [12] and is optimized for efficient execution when the
entire database fits in main-memory.

AMOS II’s predecessor, Amos [13], was built on top of the workstation version of the Iris system,
WS-Iris [14], running on Unix platforms. AMOS II has a completely new kernel developed on a
Windows NT/95 platform and ported to Unix platforms. AMOS II provides OO multi-database queries
and reconciliation of heterogeneous data not present in Amos. Furthermore, AMOS II is designed for
multi-layered distribution of mediator servers where distributed query optimization [15] allows queries
to be passed through many layers of mediators without any performance degradation.

The AMOSQL query language has it roots in the functional query languages OSQL [8] and
DAPLEX [7] with extensions of mediation primitives [9,10], multi-directional foreign functions [14],
late binding [16], active rules [17], etc. AMOSQL is relationally complete. Queries are specified using
the select - from - where construct as in SQL.

Due to its declarative nature, queries expressed in AMOSQL require optimization before they
are executed. The query compiler translates AMOSQL statements into object calculus and algebra
expressions in an internal simple logic based language called ObjectLog [14], which is an OO dialect
of Datalog [18]. As part of the translation into object algebra programs, many optimizations are applied
on AMOSQL expressions relying on their OO and multi-database properties. During the optimization
steps, the object calculus expressions are re-written into equivalent but more efficient expressions.
For distributed multi-database queries a query decomposer [19] distributes each object-calculus query
into local queries to be executed in the different distributed mediator servers and data sources. A cost-
based optimizer on each site translates the local queries into procedural execution plans in an OO
algebra, based on statistical estimates of the cost to execute each generated query execution plan
expressed in the OO algebra. A query interpreter finally interprets the optimized algebra to produce
the (partial) result of a query.

The query optimizer is extensible through plug-ins using a generalized foreign function mechanism,
multi-directional foreign functions [14]. This mechanism provides transparent access from AMOSQL
to special purpose data structures such as internal AMOS II meta-data representations or user defined
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storage structures. The mechanism allows the programmer to implement query language operators in
an external language (Java, C or Lisp) and to associate costs and selectivity estimates with different
user-defined access paths. The architecture relies on extensible optimization of such foreign function
calls [14]. They are important both for building wrappers that access external general query processors
[4] and for integrating customized data representations from data sources.

The rest of this paper first describes the architecture of an AMOS II mediator server (Section 2) and
how federations of distributed mediator servers are formed. In Section 3 the basic data model used
in the mediator servers is described. Section 4 then describes the mediation primitives of the system.
Section 5 gives an overview of the query processing. Related work is discussed in Section 6 followed
by a summary.

2. ARCHITECTURE

The multi-database architecture of AMOS II allows mediator servers to connect and communicate over
a network using an internal TCP/IP socked based protocol. Figure 1 illustrates how AMOS II systems
in a federation can communicate and how they can be configured in different modes with respect to
how they interact with other systems. The lines indicate communication between sub-systems where
the arrows indicate the servers. A federation of mediator servers is managed by a name server which
is a mediator server whose local database contains the names, locations and other general data about
the mediators in the federation. The dotted lines illustrate how mediators communicate with the name
server. The name server can be queried as any other mediator server which makes it possible to find
and query the mediators in the federation.

Figure 1 illustrates how the system can be configured in two dimensions (Table I).

• On the accessibility dimension it can be a single-user, a server or an embedded system, where a
single-user AMOS II system is a private database, a server is servicing several other AMOS II
systems and an embedded system is linked to some application.

• On the mediation dimension it can be a stand-alone or a mediator system, where a stand-alone
system is an isolated database and a mediator accesses data from some mediator(s) or data
source(s).

The grey-shaded AMOS II systems in Figure 1 illustrate the following modes of operation along the
two dimensions.

• (A) is an embedded mediator linked to an application program. In this configuration the system
can mediate data from mediator servers, but not be used as a mediator server itself. The small
footprint of an embedded AMOS II system makes it easy to link it to applications. The system
has interfaces to application programs in Java, C and Lisp. Applications always access meditator
servers by AMOSQL commands which are passed through an embedded AMOS II mediator.

• (B) is a single-user mediator importing and integrating data from mediator servers through the
multi-database facilities, but not servicing other systems.

• (C) is a single user stand-alone database where the user can enter AMOSQL commands to
populate, search and update a private database.
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Figure 1. Distributed AMOS II configurations.

Table I. AMOS II configurations.

Single-user Server Embedded

Stand-alone C F G
Mediator B D, E A
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Figure 2. The architecture of AMOS II.

• (D) is a mediator server servicing inter-mediator requests from other mediators and defining
mediating OO views integrating data from other mediator servers.

• (E) is a mediator server that translates data from a wrapped relational database. It has knowledge
of how to translate AMOSQL queries to SQL [3] and interfaces to call SQL through ODBC [4].
It can use the facilities of AMOSQL for semantic reconciliation of data from its data source and
its local database into views presented to other systems.

• (F) is a stand-alone database server accessed from mediator (D) by TCP/IP. It is also a name
server which keeps track of the mediators in this group of mediators. Every AMOS II mediator
belongs to a group of mediators and must be given a unique name within the group. The name
server is an ordinary mediator server having the special task to store locally information about
names, locations and other meta-properties of the mediators in a group. A name server thus
identifies a group of mediators and all mediators in the group can there access meta-data for
information about the federation of mediators (dotted lines in Figure 1).

• (G) is a stand-alone embedded AMOS II system which provides database facilities for an
application, e.g. for Finite Element Analysis [20].

When an AMOS II system is started, it initially assumes stand-alone single-user mode of operation
in which no communication with other AMOS II stand-alone databases or mediators can be done.
By issuing a system command with the location of the name server the system requests there to
become a mediator in the federation. Another system command makes the mediator a server that
accepts incoming commands from other mediators in the federation.

Figure 2 illustrates the three level architecture of each AMOS II server. The top level contains
applications and the lowest contain various data sources. Mediator servers constitute the middle
mediator level in the figure. Each mediator server has a kernel containing the basic DBMS facilities.
The lowest level contains the plug-ins implemented as foreign functions.
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In order to access data from external data sources AMOS II mediators may contain one or several
wrappers which interface and process data from external data sources, e.g. ODBC based access to
relational databases [3,4] or access to XML files [2]. A wrapper is a program module in a mediator
server having specialized facilities for query processing and translation of data from a particular kind
of external data sources. It contains both interfaces to external data repositories and knowledge of how
to efficiently translate and process queries involving accesses to the different kinds of external data
sources. More specifically the wrappers perform the following functions.

• Schema importation: the explicit or implicit schema information from the sources is translated
into a set of AMOS II types and functions.

• Query translation: object calculus is translated into equivalent API calls or query language
expressions executable by the source.

• OID generation: when OIDs are required for the data in the sources, the query language
expressions to be executed in the source are augmented with code or API calls to extract the
information needed to generate these OIDs.

Once a wrapper has been defined for a particular kind of source, e.g. ODBC or XML, the system
knows how to process any AMOSQL query or view definition for such sources. When integrating a
new instance of that source the mediator administrator can define a set of views in AMOSQL that
provide good abstractions of the source. View definitions must also be added to reconcile differences
between abstracted data from different sources. We will explain this further in Section 4.

Meditator servers known to a mediator are also regarded as external data sources and there is a
special wrapper for accessing other mediator servers. However, among the mediator servers special
query optimization methods are used that take into account the distribution, capabilities, costs, etc. of
the different servers [21].

Analogously, different types of applications require different interfaces to the mediator layer.
For example, there are call level interfaces allowing AMOSQL statements to be embedded in the
programming languages Java, C, and Lisp. Figure 2 illustrates three such call-in interfaces. The call-in
interface for Java has been used for developing a Java-based multi-database object browser, GOOVI.
Furthermore, there are also ODBC- and JDBC-based call-in interfaces that allow application programs
to interact with AMOS II using those standards. A special problem in this case is that ODBC/JDBC
assumes a non-OO relational model and the call-in interface modules for these standards therefore
translate between SQL and AMOSQL.

It is even possible to closely embed AMOS II with applications, e.g. a Computed Aided Engineering
(CAE) system [20]. The AMOS II kernel is then directly linked with the application. In this case the
inter-Amos interface can be used for communication between the embedded database and the mediator
servers.

Figure 2 furthermore illustrates that the AMOS II kernel can be extended with plug-ins for
customized query optimization, fusion of data and data representations (e.g. matrix data). Often
specialized algorithms are needed for integrating data from a particular application domain. Through
the plug-in features of AMOS II domain-oriented algorithms can easily be included in the system and
made available as new query-language functions in AMOSQL. It is also possible to add new query
transformation rules (rewrite rules) for optimizing queries over the new domain.

To achieve good performance we have carefully optimized the representation of critical kernel data
structures, e.g. the storage manager, object representation, type information and the representation of
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function definitions. We use tailored main memory data structure representations of system objects
[12], rather than, for example, storing them in relational tables. For example, our object identifiers are
represented as variable length records with pointers to data structures representing type-information,
function definitions, dependent objects, etc. It is crucial that system information is represented
efficiently, since it is extensively looked up during both compilation and interpretation of AMOSQL
queries and functions. The storage manager has an incremental garbage collector for removing unused
data.

3. BASIC DATA MODEL

The data model of AMOS II [5] is an OO extension of the DAPLEX [7] functional data model.
Everything in an AMOS II database is represented as objects managed by the system, both system and
user-defined objects. There are two main kinds of representations of objects: literals and surrogates.
The literal objects are self-described system maintained objects which do not have explicit object
identifiers (OIDs), e.g. numbers and strings. Literal objects can also be collections of other objects,
e.g. vectors (1-dimensional arrays of objects) and bags (unordered sets with duplicates). The surrogates
have associated explicit OIDs managed by the system. Surrogate objects are explicitly created and
deleted by the user or the system. Examples of surrogates are objects representing real-world entities
such as persons.

An object can be classified into one or more types (classes) making the object an instance of those
types. The set of all instances of a type is called the extent of the type. The types are organized in a
multiple inheritance, supertype/subtype hierarchy. If an object is an instance of a type, then it is also
an instance of all the supertypes of that type; conversely, the extent of a type is a subset of the extent
of a supertype of that type (extent-subset semantics).

Surrogates also represent meta-objects (system objects) such as types and functions. The meta-
objects are first class and can be queried as any other objects. For example, there are meta-types named
type and function whose extents are the types and functions, respectively, defined in the mediator server.
The transparent representation of meta-objects in the mediator servers allows powerful queries about
the structure of each mediator server. In the name server even AMOS II mediators are represented as
meta-mediator objects. Thus one can query the name server for the mediator server in the federation
having, e.g. a specific name, then send meta-queries to that mediator server to explore its structure, and
then finally query its data. Meta-queries are extensively used in the graphical object-oriented multi-
database browser, GOOVI, which is written as an application that communicates with AMOS II solely
through queries.

3.1. Types

There are four kinds types, called stored, derived, proxy and integration union types. The derived,
proxy and integration union types are used for data integration purposes and are described in the next
section.

Stored types are regular types (classes) having their extents explicitly stored locally in the mediator
server. Their instances are maintained by the user. They are defined with a create type statement.
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For example, the following statements submitted to a mediator server will define two types, person and
student:

create type person;
create type student under person;

Inheritance from one or several stored supertypes is supported by the keyword under.
The general syntax for queries is

select <result>
from <domain specifications>
where <condition>

Each domain specification associates a query variable with a type where the variable is universally
quantified over the extent of the type.

For example, the following query retrieves the names of the parents of all persons having sailing as
a hobby:

select p, name(parent(p))
from person p
where hobby(p) = ’sailing’;

Functions are allowed in projections and selections as in SQL:99. In this simple example it is assumed
that every person can have just one hobby. It is also possible to represent that a person can have more
than one hobby by declaring the value of the function hobby as an unordered collection (bag).

3.2. Functions

Object attributes, queries, methods and relationships are modelled by functions. Depending on their
implementation the basic functions can be classified into stored, derived, foreign and proxy functions;
also database procedures.

Stored functions represent properties of objects (attributes) stored in the mediator database. A stored
function S(X) returns the value of attribute S for an object X. Stored functions represent facts stored
in the databases, as tables do in relational databases. For example,

create function age(person)->integer
as stored;

create function name(person)->char
as stored;

Stored functions are updatable, i.e. there are AMOSQL statements for updating the extent of stored
functions explicitly. For example,

set age(:bob) = 45;

sets the age of object :bob to 45.
Derived functions are functions defined in terms of queries over other AMOSQL functions. Derived

functions cannot have side effects and the query optimizer is applied when they are defined. Derived
functions correspond to side-effect free methods in OO models and views in relational databases.
For example,
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create function age(person p)->integer as
select current_year() - born(p);

Functions may have any number of arguments; in the example current year is a function with no
argument, thus representing a constant object.

As for relational views derived functions are updatable only in special cases.
Foreign functions are implemented through an external programming language (Java, C or Lisp).

Foreign functions correspond to methods in OO databases and provide access to external storage
structures similar to data ‘blades’, ‘cartridges’ or ‘extenders’ in object-relational databases. As a simple
example, assume we have an external disk-based hash table on strings to be accessed from AMOS II.
We can then implement the following foreign function to access it:

create function get_string(char x)-> char y
as foreign "JAVA:Foreign/get_hash";

Here the function get string is externally defined in Java as a method get hash of the public class
Foreign. The code is dynamically loaded from some Java library when the function is defined. The Java
Virtual Machine is interfaced with the AMOS II kernel through the Java Native Interface to C.

Foreign functions provide the basic primitives to access external systems from AMOS II.
For example, data structures stored in external storage managers can be manipulated through foreign
functions. Foreign functions can then also be defined to update the external data structures.

The access of an external source can be expensive, and, to help the query processor, a foreign
function can have associated costing information defined as user functions. The foreign functions are
furthermore multidirectional, allowing the definition of inverse functions. For example, our hash table
could not only be accessed, but also scanned, allowing queries finding all the keys and values stored in
the external table. We can generalize it by defining:

create function get_string(char x)->char y
as multidirectional

("bf" foreign "JAVA:Foreign/get_hash"
cost {10,1})

("ff" foreign "JAVA:Foreign/scan_hash"
cost scan_cost);

Here, the JAVA function scan hash implements scanning of the external hash table. Scanning will
be used, for example, in queries retrieving the hash key for a given hash value. The binding patterns
(e.g. ‘bf’) indicate whether the argument or the result of the AMOSQL function must be bound (b) or
free (f ) when the external function is called. The cost specifications indicate both estimated execution
costs in internal cost units and result fanouts (result sizes) of calls to the external functions. In the
example the cost specifications are constant for get hash and computed through the external function
scan cost for scan hash. The cost specifications are used for comparing different execution strategies
(e.g. scanning versus accessing) and need only be approximate.

Thus multi-directional foreign functions allow the specification of several access paths to external
data structures. When wrapping external data sources with a mediator server the multi-directional
foreign function facility provides the primitive to specify access paths and capabilities of the sources.
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To handle external data as objects (rather than literals as in the example) it is possible to map external
values to/from AMOS II proxy objects through system functions.

The basis for the multi-directional foreign functions was developed in [14], where the mechanisms
are further described.

Proxy functions internally represent functions in other mediators when making multi-database
queries (Section 4).

Database procedures are functions defined using a procedural sublanguage of AMOSQL. They
correspond to methods with side effects in OO models. The syntax is similar to the stored procedures
in SQL:99.

Functions may be overloaded, i.e. have the same name for different argument(s). Queries over
overloaded functions pose special optimization problems as it may not be known until query execution
time what resolvent of an overloaded function to invoke. Special optimization methods have been
developed [10,16] to handle such late bound function calls. The implementations of many system
features utilize the optimization of queries with late bound function calls.

4. DATA INTEGRATION BY OBJECT-ORIENTED MODELLING

To provide data integration features, the basic data model is extended with proxy types and functions
[9] for supporting multi-database queries. Reconciliation is supported through derived types (DTs) [9]
defined as subtypes of other types, and integration union types (IUTs) [10] defined as supertypes of
other types.

Proxy types represent objects stored in other mediators or in data sources. The instances of proxy
types are called proxy objects. The proxy types are internally created by the system when the user
makes multi-database queries, e.g.,

select name(p) from Personnel@Tb p;

This query retrieves the names of all persons in a mediator server named Tb. It causes the system to
internally generate a proxy type for Personnel@Tb in the mediator server where the query is issued,
M . It will also create a proxy function name in M representing the name function in Tb.

Proxy types allow general multi-database queries over a federation of mediator servers. The result
of such queries may be literals (as in the example), proxy objects or local objects. The system stores
internally information about the origin of proxy objects so they can be identified properly. Two proxy
objects are considered equal if they represent objects with equal OIDs that are created in the same
mediator server. Views can be defined that hide the origin of types and functions and that reconcile
semantic differences. There are two special types for reconciliation, derived types and IUTs, to be
explained next.

Proxy types can be used in function definitions as any other type. In the example one can define a
function (view) of the persons located in a certain location by the function definition

create function personnel_in(char l)
->Personnel@Tb

as select p from Personnel@Tb p
where location(p) = l;
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In this case the function personnel in will return instances of the proxy type for Personnel@Tb. It can
be used in queries and function definitions, and in multi-database queries from other mediators in
the federation. Multi-database queries and functions are compiled and optimized through a distributed
query decomposition process fully described in [19] and summarized in the next section. Notice again
that there is no central federated schema and the query compilation and execution of multi-database
queries are made by exchanging (meta-)data with the accessed mediator servers. If some schema of a
mediator server is modified, the multi-database functions accessing the mediator server become invalid
and must be recompiled.

Derived types (DTs) are defined implicitly in terms of one or more supertypes through a declarative
query over the supertypes. The supertypes are called the constituent types of the DT. The extents (object
instances) of DTs are thus subsets of the intersection of the extents of the constituent types restricted
by the query. For example,

create derived type CSD_Emp under Personnel p
where location(p)=’’CSD’’;

This statement creates a derived type CSD Emp whose extent contains those people who work in the
CSD department. When a derived type is queried the system will create those of its instance OIDs
necessary to execute the query.

An important purpose of derived types is to define types as views that reconcile differences between
types in different mediator servers. For example, the type Personnel might be defined in mediator Ta

while Tb has a corresponding type Faculty. The following statement executed in a third mediator, M ,
defines a derived type Emp in M representing those employees who work both in Ta and Tb.

create derived type Emp
under Faculty@Ta f, Personnel@Tb p
where ssn(f)=id_to_ssn(id(p))

Here the where clause identifies how to match equivalent objects from both sources. The function ssn
is assumed to uniquely identify faculty members in Ta , while the function id in Tb identifies personnel
by employee numbers. A (foreign) function id to ssn in M translates employee numbers to SSNs.

The system will internally use proxy types to represent objects imported from Ta or Tb when making
queries over Emp. The system internally maintains the information necessary to map between OIDs of
a derived type and its constituent types. For details on this mechanism see [9].

Any kind of type is allowed as constituent types of a derived type. However, stored types cannot
inherit from derived types as this could allow explicit creation of objects to a stored subtype that does
not have a corresponding instance in some of its derived supertypes. This violates the extent-subset
semantics where the extent of a supertype is a superset of the union of the extents of the subtypes.

The DT instances are derived from the instances of their supertypes according to a declarative
condition specified in the DT definitions. DT instances are assigned OIDs by the system, which allows
their use in locally stored functions (attributes) defined over the DTs in the same way as over the
ordinary types. A selective OID generation for the DT instances is used to avoid performance and
storage overhead.

The concept of derived types and its use for data integration is fully described in [9].
The DTs provide means for mediation based on operators such as join, selection and projection.

However, these do not suffice for integration of sources having overlapping data. When integrating
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Figure 3. An object-oriented view for the computer science department.

data from different mediator servers it is often the case that the same entity appears either in one of
the mediators or in both. For example, if one wants to combine employees from different departments,
some employees will only work in one of the departments while others will work in both of them.

For this type of integration requirements the AMOS II system features Integration Union Types
(IUTs) defined as supertypes of other types. IUTs are used to model unions of real-world entities
represented by overlapping type extents. Informally, while the DTs represent restrictions and
intersections of extents of other types, the IUTs represent reconciled unions of (possibly overlapping)
data in one or more mediator server or data sources. The example in Figure 3 illustrates the features
and the applications of the IUTs.

In this example, a computer science department (CSD) is formed out of the faculty members of two
universities named A and B. The CSD administration needs to set up a database of the faculty members
of the new department in terms of the databases of the two universities. The faculty members of CSD
can be employed by either one of the universities. There are also faculty members employed by both
universities. The full-time members of a department are assigned an office in the department.

In Figure 3 the mediators are represented by rectangles; the ovals in the rectangles represent types
and the solid lines represent inheritance relationships between the types. The two mediators TA and
TB provide views in AMOS II’s data model of the relational databases Uni A DB and Uni B DB.
In mediator TA there is a type Faculty and in mediator TB a type Personnel.

The relational databases are accessed through an ODBC wrapper in Ta and Tb that translates
AMOSQL queries into ODBC calls. The ODBC wrapper interface translates AMOSQL queries
over objects represented in relations into calls to a foreign function executing SQL statements
[4]. The translation process is based on partitioning general queries into subqueries only using the
capabilities of the data source, as fully explained in [19].

A third mediator M is setup in the CSD to provide the integrated view. Here, the semantically
equivalent types CSD A emp and CSD B emp are defined as derived subtypes of types in TA and TB .
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create derived type CSD_A_EMP
under Faculty@TA
where dept(Faculty@TA) = ‘CSD’;

create derived type CSD_B_EMP
under Personnel@TB
where location(Personnel@TB) = ‘G house’;

The system imports the external types, looks up the functions defined over them in the originating
mediators and defines local proxy types and functions with the same signature but without local
implementations.

The IUT CSD emp represents all the employees of the CSD. It is defined over the constituent types
CSD A emp and CSD B emp. CSD emp contains one instance for each employee object regardless of
whether it appears in one of the constituent types or in both. There are two kinds of functions defined
over CSD emp. The functions on the left of the type oval in Figure 3 are derived from the functions
defined in the constituent types. The functions on the right are locally stored.

The data definition facilities of AMOSQL include constructs for defining IUTs as described above.
The integrated types are internally modelled by the system as subtypes of the IUT. Equality among
the instances of the integrated types is established based on a set of key attributes. IUTs can also have
locally stored attributes and attributes reconciled from the integrated types. See [10] for details.

The type CSD emp is defined as follows:

CREATE INTEGRATION TYPE csd_emp
KEYS ssn INTEGER;
SUPERTYPE OF
csd_A_emp ae: ssn = ssn(ae);
csd_B_emp be: ssn = id_to_ssn(id(be));

FUNCTIONS
CASE ae

name = name(ae);
salary = pay(ae);

CASE be
name = name(be);
salary = salary(be);

CASE ae, be
salary = pay(ae) + salary(be);

PROPERTIES
bonus integer;

END;

For each of the constituent subtypes, a key expression is given. The instances of different constituent
types having the same key values will map into a single IUT instance. The key expressions can contain
both local and remote functions.

The FUNCTIONS clause defines the reconciled functions of CSD emp, derived from functions over
the constituent types. For different subsets of the constituent types, a reconciled function of an IUT can
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have different implementations specified by the CASE clauses. For example, the definition of CSD emp
specifies that the salary function is calculated as the salary of the faculty member at the university to
which it belongs. In the case when s/he is employed by both universities, the salary is the sum of the
two salaries. When the same function is defined for more than one case, the most specific case applies.
Finally, the PROPERTIES clause defines the stored function bonus over the IUT CSD emp.

The IUTs can be subtyped by derived types. In Figure 3, the type Full Time is defined as a subtype of
the CSD emp type, representing the instances for which the salary exceeds a certain number (50 000).
The locally stored function office stores information about the offices of the full time CSD employees.
The type Full Time and its property office have the following definitions

create derived type Full_Time under CSD_emp e where salary(e)>50000;
create function office(Full_Time)->char

as stored;

5. QUERY PROCESSING

The functional data model is flexible and well suited for data integration, which actually was one
of the motivations for the DAPLEX functional data model [7]. By describing type hierarchies and
semantic heterogeneity using declarative functions and a functional Common Data Model there are
many opportunities for the extensive query optimization needed in an OO mediation framework.

Figure 4 illustrates the query processing of a distributed query in AMOS II.
To illustrate the query compilation we use the sample ad hoc query

select p, name(parent(p))
from person p
where hobby(p) = ’sailing’;

The first query compilation step, calculus generation, translates the parsed AMOSQL query tree into
an object calculus representation [14]. The object calculus is a declarative representation of the original
query.

The calculus generator translates the example query into the expression

{p, nm |
p = Personnil→person() ∧
pa = parentperson→person(p) ∧
nm = nameperson→character(pa) ∧
’sailing’ = hobbyperson→character(p)}

The first predicate in the expression is inserted by the system to assert the type of the variable p.
This type check predicate defines that the variable p is bound to one of the objects returned by the extent
function for type Person, Person(), which returns all the instances (the extent) of its type. The variables
nm and pa are generated by the system. Notice that the functions in the predicates are annotated with
their type signatures, to allow for overloading of function symbols over the argument types.

The unoptimized object calculus is then transformed by the query optimizer into an execution plan
represented in an object algebra. The execution plan interpreter will finally interpret the execution plan
to yield the result of the query.
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Figure 4. Multi-database query processing in AMOS II.

The query optimizer has several submodules, as indicated by the inner dashed box. In case the query
is over more than one mediator the query optimizer will interact with other mediator servers to produce
several distributed execution plans that are interacting during query interpretation, as indicated by the
arrows.

The calculus optimizer of the query optimizer first transforms the unoptimized calculus expression
to reduce the number of predicates, e.g. by exploring properties of type definitions. In the example, it
removes the type check predicate

{p, nm |
pa = parentperson→person(p) ∧
nm = nameperson→character(pa) ∧
’sailing’ = hobbyperson→character(p)}

This transformation is correct because p is used in a stored function (parent or hobby) with an argument
or result of type person. The referential integrity system of stored functions constrains the stored
instances to the correct type [14].

Queries over DTs are expanded by system-inserted predicates performing the DT system support
tasks [9]. These tasks are divided into three mechanisms: (i) providing consistency of queries over
DTs so that the extent-subset semantics is followed; (ii) generation of OIDs for those DT instances
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needed to execute the query; and (iii) validation of the DT instances with assigned OIDs so that DT
instances satisfy the constraints of the DT definitions. The system generates derived function definitions
to perform these tasks. During the calculus optimization the query is analysed and, where needed, the
appropriate functions definitions are added to the query. A selective OID generation mechanism avoids
overhead by generating OIDs only for those derived objects that are either needed during the execution
of a query, or have associated local data in the mediator database.

The functions specifying the view support tasks often have overlapping parts. [9] demonstrates how
calculus-based query optimization can be used to remove redundant computations introduced from the
overlap among the system-inserted expressions, and between the system-inserted and user-specified
parts of the query.

Each IUT is mapped by the calculus optimizer to a hierarchy of system generated DTs, called
auxiliary types [10]. The auxiliary types represent disjoint parts of the outerjoin needed for this type
of data integration. The reconciliation of the attributes of the integrated types is modelled by a set
of overloaded derived functions generated by the system from the specification in the IUT definition.
Several novel query processing and optimization techniques are developed for efficiently processing
the queries containing overloaded functions over the auxiliary types, as described in [10].

In case the query is not distributed, the Local Optimizer will then use cost-based optimization to
produce the executable object algebra plan from the transformed query calculus expression. The system
has a built-in cost model for the local data and built-in algebra operators. Basically the cost-based
optimizer generates a number of execution plans, applies the cost model on each of them, and then
chooses the cheapest for execution. The system has the options of using dynamic programming, hill
climbing, or random search to find the final execution plan with a minimal cost. The user can instruct
the system to choose one of these strategies.

The optimizer is furthermore extensible whereby new algebra operators are defined using the
multi-directional foreign functions, which also provide the basic mechanisms for interactions between
mediator servers in distributed execution plans.

The Query Decomposer [15,19] is invoked whenever a query is posed over data from more than one
mediator server. As the local optimizer, it uses a combination of heuristic and dynamic programming
strategies to produce a set of distributed object algebra plans. The query decomposer thereby interacts
with the local optimizer as well as with the query optimizers of the other mediator servers involved
in the query. Examples of interactions with other mediator servers are requests to estimate costs and
selectivities of subqueries and requests to compile subqueries into local execution plans in remote
mediator servers. The generated local execution plan interacts with the execution plans produced by
the other mediator servers.

The details of the query decomposer is described in [19]. Here we will overview its main steps.
Given a query over multiple data sources, the goal of the query decomposition is to explore the space
of possible distributed execution plans and choose a ‘reasonably’ cheap one. The distributed nature of
AMOS II requires a decomposition framework that allows cooperation of a number of distinct mediator
servers for query processing.

The Query Decomposer has five phases.

(1) Predicate grouping. This phase attempts to reduce the problem of finding an optimal execution
plan by reducing the query fragments to optimize at each site. Predicates executed at the same
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data source are grouped into one or more composite predicates which are treated afterwards as a
single predicate.

(2) Site assignment (predicate placement). This phase uses cost-based heuristics to decide which
composite predicate is executed where, eventually replicates some of the predicates, and assigns
execution sites to those predicates that can be executed at more than one site (e.g. θ -joins
specified by comparison operators). The output of this phase is a distributed query graph where
all the nodes are assigned to some site.

(3) Cost-based execution scheduling. In order to translate the query graph from the previous phase
into an executable query plan, the query processor decides on the order of execution of the
predicates in the query graph nodes, and on the direction of the data shipping between the nodes.
Execution schedules for distributed queries in AMOS II are represented by decomposition trees.
Each node in a decomposition tree describes a join cycle through a client mediator (i.e. the
mediator where the query is issued). In a cycle, first intermediate results are shipped to the site
where they are used. Then a subquery is executed at that site using the shipped data as input,
and the result is shipped back to the mediator. Finally, one or more post-processing subqueries
are performed at the client mediator. The result of a cycle is always materialized in the mediator.
A sequence of cycles can represent an arbitrary execution plan. As the space of all execution
plans is exponential to the number of participating databases, we examine only a subset of the
family of left-deep decomposition trees using a dynamic programming approach.

(4) Tree distribution. In this phase, a distributed compilation is performed at the participating
mediators to rebalance and distribute the decomposition tree produced by the previous phase.
One deficiency of the plans produced by the previous phase is that all the data flows through
the mediator. This can lead to many superfluous data flows when the data is to be transferred
from one data source to another. The execution schedule resulting from the tree distribution can
contain sequences where the data is shipped directly from one mediator to another, eliminating
the bottleneck of shipping all data through a single mediator. This approach makes the whole
set of mediators function as one distributed mediation system. As a result of this phase a set of
decomposition trees representing multi-source queries are generated at a subset of the mediators
participating in the query compilation and execution. See [15] for details.

(5) Object algebra generation. The input to this phase is an executable decomposition tree, which
is translated into equivalent sets of inter-calling local object algebra plans.

6. RELATED WORK

AMOS II is related to research in the areas of data integration, object views, distributed databases and
general query processing. There has been several projects on integration of data in a multi-database
environment [22–31]. The integration facilities of AMOS II are based on work in the area of OO views
[32–39].

Most of the mediator frameworks reported in the literature (e.g. [26,31,40]) propose centralized
query compilation and execution coordination. In [41] it is indicated that a distributed mediation
framework is a promising research direction, but to the best of our knowledge no results in this area are
reported. Some recent commercial data integration products, such as IBM’s DataJoiner, also provide
centralized mediation features.
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In the DIOM project [29], the importance of the mediator composability is also recognized.
A framework for integration of relational data sources is presented where the operations can be
executed either in the mediator or in a data source. The compilation process in DIOM is centrally
performed, and there is no clear distinction between the data sources and the mediators in the
optimization framework.

The Multiview [37] OO view system provides multiple inheritance and a capacity-augmented
view mechanism implemented with a technique called Object Slicing [35] using OID coercion in an
inheritance hierarchy. However, it assumes active view maintenance and does not elaborate on the
consequences of using this technique for integration of data in autonomous and dislocated repositories.
Furthermore, it is not implemented using declarative functions for the description of the OO view
functionality.

There are few research reports describing the use of OO view mechanisms for data integration.
The Multibase system [23] is also based on a derivative of the DAPLEX data model and does
reconciliation similar to the IUTs in this paper. An important difference between Multibase and
AMOS II is that the data model used in Multibase does not contain the concept of OIDs. The query
optimization methods in AMOS II are also more elaborate than in Multibase.

The UNISQL [27] system also provides views for database integration. The virtual classes
(corresponding to the DTs) are organized in a separate class hierarchy. The virtual class instances
inherit the OIDs from the corresponding instances in the ordinary classes, which prohibits definition
of stored functions over virtual classes defined by multiple inheritance as in AMOS II. There is no
integration mechanism corresponding to the IUTs, but rather a set of queries can be used to specify a
virtual class as an union of other classes. This imposes relationships among the classes not included in
the class hierarchy, resulting in two types of dependencies among the virtual classes.

[42] gives a good overview of distributed databases and query processing. As opposed to the
distributed databases, where there is a centralized repository containing meta-data about the whole
system, the architecture described in this paper consists of autonomous systems, each storing only
locally relevant meta-data. One of the most thorough attempts to tackle the query optimization problem
in distributed databases was done within the System R* project [43] where, unlike AMOS II, an
exhaustive, cost-based and centrally performed query optimization is made to find the optimal plan.
Another classic distributed database system is SDD-1 [44] which also used a hill-climbing heuristics
as the query decomposer in AMOS II.

7. SUMMARY

We have given an overview of the AMOS II mediator system where federations of distributed mediator
servers are used to integrate data from several sources with different query processing capabilities.
Each mediator server in a federation has DBMS facilities for query compilation and exchange of data
and meta-data with other mediator servers. OO views can be defined where data from several mediator
servers are abstracted, transformed, and reconciled. Wrappers are defined by interfacing AMOS II
systems with external systems through its multi-directional foreign function interface. AMOS II can
furthermore be embedded in applications and used as stand-alone databases. The paper gave an
overview of AMOS II’s architecture with references to other published papers on the system for details.
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We described the OO and functional data model and query language forming the basis for data
integration in AMOS II. The distributed multi-mediator query decomposition strategies used were
summarized.

The mediator servers in a federation are autonomous without any central schema. A special mediator
server, the name server, keeps track of what mediator servers are members of a federation. The name
servers can be queried for the location of mediator servers in a federation. Meta-queries to each
mediator server can be posed to investigate the structure of its schema.

Some unique features of AMOS II are as follows.

• A distributed mediator architecture where query plans are distributed over several
communicating mediator servers. This direction has been noted as a promising future research
direction in, e.g. [22].

• Modelling reconciled OO views spanning over multiple mediator servers and specified through
declarative functional queries.

• Query processing and optimization of queries to reconciled views using OO concepts such as
overloading, late binding and type-aware query rewrites.
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Linköping U., Sweden. http://www.dis.uu.se/˜udbl/publ/vanjaphd.pdf [1999].

22. Bukhres O, Elmagarmid A (eds.). Object-oriented Multidatabase Systems. Pretince Hall, 1996.
23. Dayal U, Hwang H-Y. View definition and generalization for database integration in a multidatabase system. IEEE

Transactions on Software Engineering 1984; 10(6):628–645.
24. Evrendilek C, Dogac A, Nural S, Ozcan F. Multidatabase query optimization. Distributed and Parallel Databases 1997;

5(1):77–114.
25. Fang D, Ghandeharizadeh S, McLeod D, Si A. The design, implementation, and evaluation of an object-based sharing

mechanism for federated database system. Proceedings of the 9th International Conference on Data Engineering
Conference (ICDE’93). IEEE, 1993; 467–475.

26. Haas L, Kossmann D, Wimmers EL, Yang J. Optimizing queries across diverse data sources. Proceedings of the 23th
International Conference on Very Large Databases (VLDB’97), 1997; 276–285.

27. Kelley W, Gala S, Kim W, Reyes T, Graham B. Schema architecture of the UNISQL/M multidatabase system. Modern
Database Systems—The Object Model, Interoperability, and Beyond, Kim W (ed.). ACM Press, 1995; 621–648.

28. Lim E-P, Hwang S-Y, Srivastava J, Clements D, Ganesh M. Myriad: Design and implementation of a federated database
system. Software—Practice and Experience 1995; 25(5):533–562.

29. Liu L, Pu C. An adaptive object-oriented approach to integration and access of heterogeneous information sources.
Distributed and Parallel Databases 1997; 5(2):167–205.

30. Subramananian S, Venkataraman S. Cost-based optimization of decision support queries using transient views. Proceedings
of the ACM International Conference on Management of Data (SIGMOD’98), 1998; 319–330.

31. Tomasic A, Raschid L, Valduriez P. Scaling access to heterogeneous data sources with DISCO. IEEE Transactions on
Knowledge and Date Engineering 1998; 10(5):808–823.

32. Abiteboul S, Bonner A. Objects and views. Proceedings of the ACM International Conference on Management of Data
(SIGMOD’91), 1991; 238–247.

33. Bertino E. A view mechanism for object-oriented databases. Proceedings of the 3rd International Conference on Extending
Database Technology (EDBT’92), 1992; 136–151.

34. Heiler S, Zdonik S. Object views: Extending the vision. Proceedings of the 6th International Conference on Data
Engineering (ICDE’90). IEEE, 1990; 86–93.

35. Kuno H, Ra Y, Rundensteiner E. The object-slicing technique: A flexible object representation and its evaluation. Technical
Report CSE-TR-241-95, University of Michigan, 1995.

36. Motro A. Superviews: Virtual integration of multiple databases. IEEE Transaction on Software Engineering, 1987;
13(7):785–798.

37. Rundensteiner E, Kuno H, Ra Y, Crestana-Taube V, Jones M, Marron P. The MultiView project: Object-oriented view
technology and applications. Proceedings of the ACM International Conference on Management of Data (SIGMOD’96),
1996; 555.

38. Scholl M, Laasch C, Tresch M. Updatable views in object-oriented databases. Proceedings of the 2nd Deductive and
Object-Oriented Databases Conference (DOOD91), 1991; 189–207.

39. Souza dos Santos C, Abiteboul S, Delobel C. Virtual schemas and bases. Proceedings of the International Conference on
Extending Database Technology (EDBT’92), 1994; 81–94.

40. Garcia-Molina H, Papakonstantinou Y, Quass D, Rajaraman A, Sagiv Y, Ullman J, Vassalos V, Widom J. The TSIMMIS
approach to mediation: Data models and languages. Intelligent Information Systems 1997; 8(2):117–132.

41. Du W, Shan M. Query processing in Pegasus. Object-Oriented Multidatabase Systems, Bukhres O, Elmagarmid A (eds.).
Pretince Hall, 1996; 449–471.
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