A Wrapper for MIDI filesfrom an Object-Relational
Mediator System

Semester thesisin informatics for the University of Zirich

Written by

Martin Jost
ZUrich, Switzerland
Studentnumber 97-709-968

Made at the
Department of Information Science
at Uppsala University, Sweden

Prof. Tore Risch

1 INTRODUCTION ...t 4

2 WHAT IS MIDI? ..o, 5
2.1 Streaming Data in the MIDI Wire Protocolc.cocooovrninnnccnnccnes 5
2.2 Sequenced Data in Standard MIDI Fil€S.......ccooiriiscceecs 6
2.3 Thebasic structureof MIDI ... 6

2.3.1 ChanNEl-BEVENES.......ooiiiie ettt e st 7

232 MELEEVENES ...t 10

2.3.3 SYSEX-EVENES ... e 10
3 THE JAVA SOUND APL...ooooeeeeeeeeeeeeeeeee e, 12
3.1 TheJava Sound API’s Representation of MIDI Data..........ccccovvcvcunieeee. 12

S L1 MIDI MESSAES ..evuvrerereniesereeteesessesteese sttt eese et s et e ea et es e bennes 12

S L2 MIDI EVENES.....coiiieeeieieeeeee ettt ettt et be e s e 13

3.1.3 SeqUENCES @NA TTACKS.....cciee ettt ettt sb et et sae e saee e 13
3.2 Useof theJava SoUNd AP ... 13
4 DATABASE SCHEMA ... 16
SEXAMPLES ..., 20
6 SUMMARY ..ottt 23
T REFERENCES ... 24
8 APPENDIXccooviiiiiiieieeeees ERROR! BOOKMARK NOT DEFINED.
A Codelisting and comments..........cccvverreeceneecenccenenns Error! Bookmark not defined.
B Database creation SCripts........cccoveenecenicenieeniceseeeenns Error! Bookmark not defined.
C Installing iNStruCtionsS.......cccvvrein e, Error! Bookmark not defined.

Table 1: Summary of MIDI StatUS BYLES.......c..coiiiiiiiiiiiesiie et e 8

Table 2: Summary of most common MIDI Status & Data BYtes..........cccceevvevieiieeenienseesiene 9
Table 3: Summary of MIDI Note Numbers for Different Octaves..........ccocvveevveeeiiesccee e, 9
Table 4: Selected MEta BVENE LYPESoivii ettt e sae e e 10
Table 5: Syntactic variants Of SYSEX EVENES........ccuiruiiiiiiiiire e s 11
Fig.1: The object oriented database scheme for Midiccooceiiiiiiiiiiicce e 19

1 Introduction

In the 80ties the relational database models prevailed in the practice. In many fields of
application of the commercial and administrative world they found and find still their use.
And thisistotally entitled, because for these areas, the data modéd is optimally developed.

In the beginning of the 90ties the database world expanded into the area of multimedia
applications and one determined quickly that the until now well known relational database
models were not able to suffice the new demands to describe more complex objects. The User
of so-called non-standard applications (CAD/CAM etc.) demanded a database model with
which they also could store and manage the objects of their world.

Due to thisfact, the search for a new database model started. This time the goal was the object
oriented database modd.

The goal of this project isto extend the Object-Oriented (OO) multi-database system Amos 1|
with awrapper implemented in Java, which can access MIDI files trough the net by giving the
wrapper an URL of amidi file and store it in the database. To understand what isAMOSII, |
will give abrief description about it.

AMOS I is adescendant of AMOS, which has its roots in amain memory version of Hewlett
Packard’s DBMS IRIS. The entire database is stored in main memory and is saved on disk
only through explicit commands. AMOS Il can be used as a single user database, a multi-user
server, or as acollection of interacting AMOS Il multi-database servers. AMOS |1 hasa
functional data modd with arelaionaly complete object-oriented query language,
AMOSQL. The AMOS Il data manager is extensible so that new data types and operators can
be added to AMOSQL, implemented in some externa programming language (Java, C, or
Lisp).

AMOS I isimplemented in C and runs under Windows 95/98 and Windows NT 4.0. For
more information about AMOS 11, see [1].

To achieve the god, the project was divided in the following 6 issues:

1. | had to acquire consolidated knowledge about the MIDI standard and its protocols. |
will expatiate thisissue in chapter 1.

2. Thesecond task was to look after and select a development environment especialy for
Java classes, which can access MIDI files. To my advantage Sun’s JDK 1.3 natively
supports MIDI and sampled audio access. The Java Sound API will be discussed in
Chapter 3.

3. One of the most important tasks was the investigation of an object oriented database
scheme for the MIDI structure according to the Java Sound API.

4. Inthe next phase | designed primitive foreign functions which take the name of a
MIDI file as a parameter, accessing them trough the web and then emitting a stream of
AMOS |1 objects and attributes, according to the schema, to the mediator.

5. Inchapter 5 | will show that useful queries can be specified over the schema and
therefore the usefulness of a foreign function for MIDI.

6. Last but not least, the whole application had to be packaged and installed in a running
AMOS 1 environment at the University of Uppsala.

2 What ismidi?

The Musical Instrument Digital Interface (MIDI) standard defines a communication protocol
for electronic music devices, such as electronic keyboard instruments and personal computers.
MIDI data can be transmitted over special cables during alive performance, and can also be
stored in a standard type of file for later playback or editing.

MIDI is both a hardware specification and a software specification. To understand MIDI’s
design, it helps to understand its history. MIDI was originally designed for passing musical
events, such as key depressions, between electronic keyboard instruments such as
synthesizers. Hardware devices known as sequencers stored sequences of notes. Those
sequences could control a synthesizer, allowing musical performances to be recorded and
subsequently played back. Later, hardware interfaces were developed that connected MIDI
instruments to a computer’ s serial port, alowing sequencersto be implemented in software.
More recently, computer sound cards have incorporated hardware for MIDI 1/O and for
synthesizing musical sound. Today, many users of MIDI deal only with sound cards, never
connecting to externa MIDI devices. CPUs have become fast enough that synthesizers, too,
can be implemented in software. A sound card is needed only for audio 1/0 and, in some
applications, for communicating with external MIDI devices.

The brief hardware portion of the MIDI specification prescribes the pin outs for MIDI cables
and the jacks into which these cables are plugged. This portion need not concern us. Because
devices that originally required hardware, such as sequencers and synthesizers, are now
capable of being implemented in software, perhaps the only reason for most programmersto
know anything about MIDI hardware devicesis simply to understand the metaphorsin MIDI.
However, external MIDI hardware devices are gill essential for some important music
applications.

The software portion of the MIDI specification is extensive. This portion concerns the
structure of MIDI data and how devices such as synthesizers should respond to that data. It is
important to understand that MIDI data can be streamed or sequenced. This duality reflects
two different parts of the Complete MIDI 1.0 Detailed Specification:

« MIDI 10

» Standard MIDI Files
I will explain what streaming and sequencing means by examining the purpose of each of
these two parts of the MIDI specification.

2.1 Streaming Data in the MIDI Wire Protocol

Thefirst of these two parts of MIDI specification describes what is known informally as
“MIDI wire protocol”. MIDI wire protocol, which is the original MIDI protocol, is based on
the assumption that the MIDI datais being sent over aMIDI cable (the “wire”). The cable
transmits digital data from one MIDI device to another. Each of the MIDI devices might be a
musica insgrument or asimilar device, or it might be a general-purpose computer equipped
with a MIDI-capable sound card or aMIDI-to-serial-port interface.

MIDI data, as defined by MIDI wire protocol, is organized into messages. The different kinds
of message are distinguished by the first byte in the message, known as the status byte. (Status
bytes are the only bytes that have the highest-order bit set to 1). The bytes that follow the

status byte in a message are known as data bytes. Certain MIDI messages, known as channel
messages, have a status byte that contains four bits to specify the channe number. There are
therefore 16 MIDI channels; devices that receive MIDI messages can be set to respond to
channel messages on all or only one of these virtua channels. Often each MIDI channel
(which shouldn’t be confused with a channel of audio) is used to send the notes for a different
instrument. As an example, two common channel messages are Note On and Note Off, which
start a note sounding and then stop it, respectively. These two messages each take two data
bytes: the first specifies the note’ s pitch and the second its “velocity” (how fast the key is
depressed or released, assuming a keyboard instrument is playing the note).

MIDI wire protocol defines a streaming model for MIDI data. A central feature of this
protocol isthat the bytes of MIDI data are delivered in real time — in other words, they are
streamed. The dataitself contains no timing information; each event is processed asit’s
received, and it’s assumed that it arrives at the correct time. That model isfineif the notes are
being generated by alive musician, but it’ s insufficient if you want to store the notes for later
playback, or if you want to compose them out of real time. This limitation is understandable
when you realize that MIDI was originaly designed for musical performance, as away for a
keyboard musician to control more than one synthesizer, back in the days before many
musicians used computers. (The first version of the specification was released in 1984.)

2.2 Sequenced Data in Standard MIDI Files

The Standard MIDI Files part of the MIDI specification addresses the timing limitation in
MIDI wire protocol. A standard MIDI fileis adigital sequence that contains MIDI events. An
event issimply a MIDI message, as defined in the MIDI wire protocol, but with an additional
piece of information that specifies the event’ stiming. (There are also some events that don't
correspond to MIDI wire protocol messages.) The additiona timing information is a series of
bytes that indicates when to perform the operation described by the message. In other words, a
standard MIDI file specifies not just which notes to play, but exactly when to play each of
them. It’sabit like amusical score.

Theinformation in astandard MIDI fileisreferred to as a sequence. A standard MIDI file
contains one or more tracks. Each track typically contains the notes that a single instrument
would play if live musicians performed the music. A sequencer is a software or hardware
device that can read a sequence and deliver the MIDI message contained in it at the right time.
A sequencer is abit like an orchestra conductor, it has the information for al the notes,
including their timings, and it tells some other entity when to perform the notes.

2.3 Thebasc structure of MIDI

Finally | want to give a short set over the basic structure of MIDI on arather low leve of the
MIDI specification.

A standard MIDI file consigts of a header and one or more tracks.

<Standard-M DI -Fi | e> : = <Header> <Track> [<Track>]. ..

Thefirst 4 bytes of the header are the identifier of aMIDI file, followed by some information
bytes.

<Header> := 4D 54 68 64 00 00 00 06 00 xx yy yy zz zz

{oo | o1} Typeof the MIDI-File:
Type 0: File has only one track,
Type 1: File has several tracks.

XX

yy vy Number of Tracks

7z 22 Timestamp: Number of Time elements per ¥4 note;
should be divided trough 24.
Common values are:
00 78 (120), 00 FO (240), 01 EO (480), 03 CO (960).

A track consists of a header and one or more events separated by atime difference.

<Track> : = <Track-Header ><Ti ne- di f f er ence><Event >[<Ti ne-
di f f erence><Event >] ...

The track header has following information bytes:

<Track- Header> := 4D 54 72 6B xx XX XX XX
Whereby xx xx xx xx is the length of the track in bytes without the track header itself.

The time difference between the events is measured in timestamps. The first time difference
counts from the beginning of the piece of music to the first event of the track and is coded in
variable length.

An event can be either a channel event, a meta event or a sysex event and is the e ementary
command to the playback device.

<EBEvent> : = {<Channel - Event> | <Meta-Event> | <Sysex-Event>}

Let us have now a closer look on those elementary commands, since they hold the most
important information in aMIDI file and thereby they are also necessary for the modelling of
the object oriented database scheme.

2.3.1 Channel-Events

A channel event isa command to a certain MIDI channel of the playback device. The genera
syntax is as follows:

<Channel - Event > : = [<St at us- Byt e>] <Dat a- Byt e> [<Dat a- Byt e>]

The status byte contains the type of the event and the channel number, on which the playback
device executes the event.

<St at us- Byt e> : = <Event - Type> <Channel - Nunber >

Thefirst (leading) nibble of the status byte is the event type; it specifies the type of the
command. Common values are 0x90 (Note On) and 0x80 (Note Off), see table 1 for details.

<Event-Type> := {8 | 9| A| B| C| D| E

The second nibble of the status byte declares the number of the MIDI channel which to
perform the command on. The numbering starts with O.

<Channel - Nunber >

={0| .| P}

The data byte contains the parameter of the command. See Table 2 for explicit values and

signification.

<Dat a- Byt e>

:= {00 |

L] 7R

Setting the status byte only in the first event and omitting it in the following events can
shorten a chain of channel events with the same status byte. Thisuseis practicaly dways
made. The coding is explicit, since data bytes are smaller than 80 bytes and status bytes
greater or equal 80 bytes.

MIDI message HEX value | Dec value | Description

Active Sensing OxFE 254 Status byte for Active Sensing

Channel Pressure 0xDO 208 Command value for Channel Pressure (Aftertouch)
message

Continue OxFB 251 Status byte for Continue message

Control Change 0xB0 176 Command value for Control Change message

End of Exclusive OxF7 247 Status byte for End of System Exclusive message

MIDI Time Code OxF1 241 Status byte for MIDI Time Quarter Frame message

Note Off 0x80 128 Command value for Note Off message

Note On 0x90 144 Command value for Note On message

Pitch Bend OxEQ 224 Command value for Pitch Bend message

Poly Pressure OxA0 160 Command value for Polyphonic Key Pressure
(Aftertouch) message

Program Change 0xCO 192 Command value for Program Change message

Song Position Pointer OxF2 242 Status byte for Song Position Pointer message

Song Select 0xF3 243 Status byte for MIDI Song Select message

Start OxFA 250 Status byte for Start message

Stop OxFC 252 Status byte for Stop message

System Exclusive OxFO 240 Status byte for System Exclusive message

System Reset OxFF 255 Status byte for System Reset message

Timing Clock OxF8 248 Status byte for Timing Clock message

Tune Request OxF6 246 Status byte for Tune Request message

Table 1: Summary of MIDI Status Bytes

Type of command 1. Nibble of | 1. Data Byte 2. Data Byte
the Status
Byte
Note On 0x90 Tone pitch, for detailed Velocity for the Note On
Turn on of a MIDI note. information about the values see | event. Value 00 is
The note is played until table 3. In percussion, the tone illegal.
a suitable command pitch is interpreted as a certain
“Note Off"” happens. percussion instrument.
Note Off 0x90 Tone pitch 00
There are two
possibilities.
0x80 Tone pitch Velocity for the Note Off
event. From most
devices ignored.
Aftertouch OxA0 Tone pitch on which the command | Modified velocity
The velocity of a note is causes, if there is a note turned
changed. on.
Control Change 0xB0 Number of the regulator. There Controlled variable
are some predefined regulators in
the MIDI specification, e.g.
00 = Choice of the sound bank
07 = Volume
OA = Stereo position
Program Change 0xCO0 Number of the program. The None
Choice of the melodic assignment of instruments is
instrument or drums. determined in the MIDI
specification. Enhanced standards
use the regulator sound bank for
sound variation.
Channel Pressure 0xDO Modified velocity None
Changing of the velocity
of all running notes in
the channel.
Pitch Bend OxEQ Pitch bend
Changing the running
notes tune.
Table 2: Summary of most common MIDI Status & Data Bytes
Octave
C C# D D# E F F# G G# A A# B
0 0 1 2 3 4 5 6 7 8 9 10 11
1 12 13 14 15 16 17 18 19 20 21 22 23
2 24 25 26 27 28 29 30 31 32 33 34 35
3 36 37 38 39 40 M1 42 43 44 45 46 47
4 48 49 50 51 52 53 54 55 56 57 58 59
5 60 61 62 63 64 65 66 67 68 69 70 71
6 72 73 74 75 76 77 78 79 80 81 82 83
7 84 85 86 87 88 89 90 91 92 93 94 95
8 96 97 98 99 100 101 102 103 104 105 106 107
9 108 109 110 111 112 113 114 115 116 117 118 119
10 120 121 122 123 124 125 126 127

Table 3: Summary of MIDI Note Numbers for Different Octaves

2.3.2 Meta-Events

Meta events are not transmitted to the playback device. They control the playback tempo and
provide additional information for better reading and understanding of aMIDI file. The
general syntax is as follows:

<Met a- Event > : = FF <Event-Type> <Lengt h> [<Cont ent >]

The type of the meta event is determined by the <Event-Type>. The <Length> parameter
contains the following content in bytes. There is no content, if the length equals 0. Based on
that syntax, meta events can be delimited in a data stream. A MIDI program doesn’'t have to
know therefore the content of al meta events.

Selected meta events are represented in order of their meaning (the most important first).

Event-Type Length | Content Description

Track End 2F |00 None Must stand at the end of each track. The event is
represented including the time difference by “00 FF 2F
00"

Tempo 51 |03 XX XX XX Tempo in microseconds per quarter note.

Time Signature |58 |04 xx yy zz 08 | Beat in MIDI ticks per quarter note.

Key Signature |59 |02 XX Yy xx > 0: key has xx crosses,

xx < 0: key has —xx B’s,
xx = 0: C-major/a-minor;
yy = 0: major, yy = 1: minor.

Track Name 03 |Any Any Name of the track, usually description of the
instrument. The name of the first track is interpreted
often as song title.

Instrument 04 |Any Any All sequencers do not indicate description of the
instrument.

Text 01 |Any Any Any comment

Song Text 05 |Any Any Text module to sing with. Should stand directly after

the relevant Note On event in the melody track. Does
not become indicated by all sequencers.

User-defined 7F | Any Any Any

Table 4: Selected meta event types

2.3.3 Sysex-Events

These are system exclusive commands that are used by the MIDI standard. In a standard
MIDI file, sysex events are represented as follows:

<Sysex-Event> : = {FO <Length> <Content> | F7 <Length> <Cont ent >}

The <Length> parameter indicates the length of the following content in bytes.

Long command sequences are supposed to be transmitted in little portions with certain
intervals. Therefore there are several syntactic variants, that all can be led back to both named
variants.

10

Representation in the file

Significance

To transmit...

FO <Length> <Commands> F7

Complete sysex event. The final signal F7
is included in the length.

FO <Commands> F7

FO <Length> <Commands>

The first portion of a separated event.

FO <Commands>

F7 <Length> <Commands>

Sequel of a separated event.

<Commands>

F7 <Length> <Commands> F7

End of a separated event. The end signal
F7 is included in the length.

<Commands> F7

Table 5: Syntactic variants of sysex events

11

3 The Java Sound API

The Java Sound API is alow-level API for effecting and controlling the input and output of
sound media, including both audio and Musica Instrument Digital Interface (MIDI) data. The
Java Sound API provides explicit control over the capabilities normally required for sound
input and output, in aframework that promotes extensbility and flexibility.

The Java Sound API provides the lowest level of sound support on the Java platform. It
provides application programs with a great amount of control over sound operations, and it is
extensible. For example, the Java Sound API supplies mechanisms for ingaling, accessing

and manipulating system resources such as audio mixers, MIDI synthesizers, other audio or
MIDI devices, file readers and writers and sound format converters. The Java Sound API does
not include sophisticated sound editors or graphical tools, but it provides capabilities upon
which such programs can be built. It emphasizes low-level control beyond that commonly
expected by the end user.

The Java Sound API includes support for both digita audio and MIDI data. These two major
modules of functionality are provided in separate packages:
» javax.sound.sampled
This package specifies interfaces for capture, mixing and playback of digita
(sampled) audio.
* javax.sound.midi
This package provides interfaces for MIDI synthesis, sequencing and event
transport.
Two other packages permit service providers (as opposed to application developers) to create
custom software components that extend the capabilities of an implementation of the Java
Sound API:
» javax.sound.sampled.spi
* javax.sound.midi.spi
Therest of the chapter | will concentrate on the classes of the javax.sound.midi package,
which are relevant for accessing and manipulating MIDI files.

3.1 The Java Sound API’s Representation of MIDI Data

3.1.1 MIDI Messages

M di Message isan abstract class that representsa“raw” MIDI message. A “raw” MIDI
message is usually a message defined by the MIDI wire protocol. It can aso be one of the
events defined by the Standard MIDI Files specification, but without the event’ s timing
information. There are three categories of raw MIDI message, represented in the Java Sound
API by these three respective M di Message subclasses:

* Short Messages arethe most common messages and have at most two data
bytes following the status byte. The channel messages, such as Note On and Note
Off, are all short messages, as are some other messages.

* SysexMessages contain system-exclusive MIDI messages. They may have
many bytes, and generally contain manufacturer-specific instructions.

12

e Met aMessages occur in MIDI files, but not in MIDI wire protocol. Meta
messages contain data, such as lyrics or tempo settings, that might be useful to
sequencers but that are usually meaningless for synthesizers.

3.1.2 MIDI Events

Aswe ve seen, standard MIDI files contain events that are wrappers for “raw” MIDI
messages along with timing information. An instance of the Java Sound API’sM di Event
class represents an event such as might be stored in a standard MIDI file.

The API for M di Event includes methods to set and get the event’ stiming value. There's
also a method to retrieve its embedded raw MI1DI message, which is an instance of a subclass
of M di Message. (The embedded raw MIDI message can be set only when constructing the
M di Event .)

3.1.3 Sequences and Tracks

As mentioned earlier, astandard MIDI file stores events that are arranged into tracks. Usually
the file represents one musical composition, and usually each track represents a part such as
might have been played by a single instrumentalist. Each note that the instrumentalist playsis
represented by at least two events: a Note On that starts the note, and a Note Off that ends it.
The track may also contain events that don’t correspond to notes, such as meta events (which
were mentioned above).

The Java Sound API organizes MIDI datain athree-part hierarchy:

* Sequence
* Track
e Mdi Event

A Track isacollectionof M di Event s, and aSequence isacollection of Tr acks.
This hierarchy reflects the files, tracks, and events of the Standard MIDI files specification.
(Note: thisis a hierarchy in terms of containment and ownership; it's not a class hierarchy in
terms of inheritance. Each of these three classes inherits directly from java.lang.Object.)

Sequences can be read from MIDI files, or created from scratch and edited by adding
Tr acks to the Sequence (or removing them). Similarly, M di Event s can be added to or
removed from the tracks in the sequence.

3.2 Use of the Java Sound API

In this chapter | want to show some basic functions of the Java Sound API relating to my
foreign function. It should show how the classes and interfaces of the Java Sound API are
used to stream aMIDI file through the net and accessing its tracks, events, and so on. The
following code fragments are taken of my foreign function and can be read more detailed in
Appendix A.

13

In order to load a MIDI file into a sequencer and finally into AMOS I1, we have to deliver an
URL of an existing MIDI file to the foreign function. We take the URL parameter of the
foreign function from Amos toploop to create an URL object:

String s = tpl.getStringEl em(0);
try {
url = new URL(S);
} catch (Mal fornmedURLException e) { Systemout.println(e);
}

The base modulein the Java Sound API’s messaging system isM di Devi ce (aJava
language interface). M di Devi ce include sequencers (which record, play, load, and edit
sequences of time-stamped MIDI messages), synthesizers (which generate sounds when
triggered by MIDI messages), and MIDI input and output ports, through which data comes
from and goes to external MIDI devices. In our case we need to load a sequencer to access the
MIDI sequence of our URL object. We dso try to load a synthesizer, so we can extend in
future our foreign function to play back aMIDI sequence.

Sequencer sequencer ;

try {
/1l Try to |load the default Sequencer

sequencer = M di Syst em get Sequencer();
i f (sequencer instanceof Synthesizer) {
synt hesi zer = (Synt hesi zer) sequencer;
channel s = synt hesi zer. get Channel s();

}

} catch (Exception ex) {ex.printStackTrace(); return;}

Now we create a sequence, we invoke M di Sy st enis overloaded method get Sequence.
The method is able to get the sequence from an InputStream, a File or an URL like in our
case. The method returns a Sequence object, which we can access how:

Sequence current Sound = M di Syst em get Sequence(url);

/1l Get some information about the M DI Sequence

duration = current Sound. get M crosecondLength() / 1000000. O;
ti ckLengt h = current Sound. get Ti ckLengt h();

resol uti on = current Sound. get Resol ution();

di vi si onType = current Sound. get Di vi si onType();

To get areverence to the available Tr acks inthe Sequence we createaTr ack object and
invoke Sequence. get Tr acks:

Track tracks = current Sound. get Tracks();

Once the sequence contains tracks, we can access the contents of the tracks by invoking
methods of the Tr ack class. The M di Event s contained inthe Tr ack are stored as a
java. util . Vector intheTr ack object, and Tr ack provides a set of methods for
accessing, adding and removing the eventsin the list. The methodsadd and r enove are
fairly self-explanatory, adding or removing a specified M di Event fromaTr ack. A get
method is provided, which takes an index into Tr ack’s event list and returns the

14

M di Event stored there. In addition, there are size and tick methods, which respectively
return the number of M di Event s inthe track, and the track’ s duration, expressed as a total
number of Ti cks.

/1 Loop all MdiEvents in a Track object
for (int i=0; i < tracks.length; i++) {
/1l Get nunber of events in a track
events = tracks[i].size();
ticks = tracks[i].ticks();
/1 Create the Mdi Event object in a Track object
m di Event = new M di Event [events];
/1 loop the Mdi Event object
for (int j = 0; J < events; j++) {
/1 obtain the event at the specified index
m di Event[j] = tracks[i].get(j);
ti mestanp = mdi Event[j].getTick();
m di Message = m di Event[]. get Message();
/1l Check if the MdiEvent is a MetaEvent, a
/'l Channel Event or a SysexEvent
i f (m di Message i nstanceof MetaMessage) {
/1l Handl e the MetaMessage object and create
/'l the necessary objects and functions in
/1 AMOS |1
/1.
}
i f (m di Message i nstanceof ShortMessage) {
/1 Handl e the Short Message object and
/'l create the necessary objects and
/1 functions in AMOS |1
/1.
}
i f (m di Message i nstanceof SysexMessage) {
/'l Handl e the SysexMessage object and
/'l create the necessary objects and
/1 functions in AMOS |1
/...

}
}

For more detailed information about the classes, interfaces and methods of the Java Sound
AP, see the Java 2 Documentation [8].

15

4 Database schema

After we made ourselves now a picture over the Java Sound API, we take alook at the object
oriented data base scheme. One of the most important targets of this project consisted of
developing an object oriented database model in order to be able to store MIDI filesin AMOS
I1. There were certain basic conditions to consider. First of al the database model is as far as
possible supposed to be object oriented, i.e. to deploy the most important concepts of object
orientation, which AMOS |l placesto use. Secondly the MIDI specification should be
illustrated as complete and meaningful as possible. And thirdly | could refer to the classes of
the Java Sound API at the development of the database model. In the following | want to
describe briefly my database model as seeninfig. 1. For more detailed information about the
implementation of the database model in AMOS |1, see the database creation scriptsin
Appendix B.

The database model consists of eight types, whereof three are inherited and three serve as
lookup types for some trandations of data. The program takes aloaded MIDI fileasa
sequence, in which all tracks and events are contained as we have seen in the previous
chapters. The sequence is decomposed in accordance with the MIDI specification into single
elements and then stored as objects into AMOS I1. The type MIDI represents the core MIDI
object, it contains following attributes:

MIDI
URL: String of the URL, which we downloaded the file of
FileName: String of the name of thefile
Length: Integer of the size of the filein KB
Duration: Real of the Length of the file in seconds
Number Of Tracks: Integer of the number of existing tracks in the MIDI file
TickLength: Integer of the duration of the MIDI sequence, expressed in MIDI ticks
Resolution: Integer of the timing resolution for the MIDI sequence. That is the number
of ticks per beat or per frame.
DivisonType: Real of the timing division type for this MIDI sequence

Aswe know already, the MIDI sequence consists of at least one track. These Track objects
are desgned under the type Track and are connected over the relation tracks with its MIDI
object. Since there can be several tracksin a MIDI sequence, the relation isimplemented as a
set of objects. The type Track has the attributes:

Track
Number OfEvents:. Integer of the number of eventsin this track
Ticks: Integer of the length of the track expressed in MIDI ticks

The single eventsin the track are created as objects of type MidiEvent in AMOS |I. Each
single MidiEvent is connected with its Track object by the relation midievents. Since there
can be several MidiEvents per Track object, the relation isimplemented as a vector of
MidiEvent.

MidiEvent
TimeStamp: Integer obtaining the time stamp for the event in MIDI ticks
Length: Integer of the number of bytesin the MIDI event, including the status byte and
any data bytes
SatusByte: Integer obtaining the status byte for the MIDI event

16

MidiMessage: Byte array containing the MIDI event data. The first byte is the status
byte for the event; subsequent bytes up to the length of the event are data bytes for this
event. In our database scheme the bytes are transformed into integers and stored as a
vector of integers.

The created MidiEvent object can either be a channel event, a meta event or a sysex event
(system exclusive). Thisis now the point where our database scheme gets object oriented. All
this different events are implemented as atype under the type MidiEvent and therefore are
directly inherited from MidiEvent. Each event (channel, meta and sysex) has the same
attributes, TimeStamp, StatusByte and MidiMessage, which are inherited of the MidiEvent
type. The types ChannelEvent, M etaEvent and SysexEvent are connected through anis-a
relation with the super type. Besides the inherited attributes, each event type hasits own
attributes.

Channel Event
Channd: Integer obtaining the MIDI channel associated with this event
Command: Integer obtaining the MIDI command associated with this event
Datal: Integer obtaining the first data byte in the message
Data2: Integer obtaining the second data byte in the message
CommandAsString: String representing the command trandated to a meaningful String
NoteEvent: derived function to trand ate the channel event command into a
meaningful string. Information isretrieved from type NoteEvents.
Note: String representing the note of a Note On or a Note Off channel event.
Octave: Integer obtaining the octave of a Note On or a Note Off channel event

MetaEvent
MetaType: Integer obtaining the type of the meta event
MetaDatalnt: Obtains a copy of the data for the meta message. The returned array of
bytes does not include the status byte or the message length data. The length of the
data for the meta message is the length of the array. Note that the length of the entire
message includes the status byte and the meta message type byte, and therefore may be
longer than the returned array. In our database scheme the bytes are transformed into
integers and stored as a vector of integersif the data is representing an integer value of
the MIDI file.
MetaDataString: Same as MetaDatalnt, except it contains a string. If the data of the
meta event represents a string like lyrics, text or instrument description, the datais
stored in MetaDataString.
MetaTypeAsString: String representing the meta type trandated to a meaningful String

SysexEvent
SysexData: Obtains a copy of the datafor the system exclusive message. The returned
array of bytes does not include the status byte. The array of bytesistransformed into
integers and stored as a vector of integersin our database scheme.

These are dl the types and functions that are needed to model the object oriented database
scheme for the MIDI 1.0 specification. Because alot of datais stored as smple integers we
extend the database model with three ‘lookup’ typesin order to trandate the integersinto
meaningful data. In fact it is now much easer for the user to search for a specific string
instead of an integer or to understand how the data is represented in a MIDI file. The three
types are Channel Commands, NoteEvents and MetaCommands. The Channel Commands type
is connected with the channel Event type through the derived function commandAsString. It

17

takes the integer of the command of a channel event and trandates it into a string. The
NoteEvents type, which is connected through the derived noteEvents function, takes the data
of aNote On or a Note Off event and trandate it into the particular Note. Findly, the function
MetaTypeAsString takes the integer of the metaType and trandates it through the

M etaCommands type into a string.

Channel Commands
Command: Integer obtaining the channel commands.

commandString: String representing the trandated integer vaue of a channel
command.

NoteEvents

notelnt: Integer obtaining the integer value of a Note On or Note Off event.
noteString: String representing the note of a Note On or Note Off event as a string.
Octave: Integer obtaining the octave of a Note On or Note Off event.

MetaCommands
MetaTypelnt: Integer obtaining the meta type of a meta event.
MetaTypeString: String representing the meta type trandated into a string.

18

Midi
url charstring
fileName charstring
length integer
duration real
numberOfTracks integer
tickLength integer
resolution integer
divisionType real

ChannelCommands
commandsString charstring
command integer

NoteEvents
octave integer
notelnt integer
noteString charstring

MetaCommands
metaTypelnt integer
metaTypeString charstring

Legend

Track
numberOfEvents integer
ticks integer

Entitiy_name

. Entities with attributes and their data types
attribute type P

~ Inheritance (is-a)

midievents *>

relationship > Relationship with logical direction

Single Object
— > Set of objects
—— o Vector of objects

MidiEvent
timeStamp integer
length integer
statusByte integer

midiMessage vector of integer

ChannelEvent
channel integer
command integer
datal integer

MetaEvent SysexEvent
metaType integer SysexData vector of integer

metaData vector of integer
metaTypeAsString charstring

data? integer
commandAsString charstring
noteEvent noteEvents

note charstring

octave integer

Fig.1: The object oriented database scheme for Midi

19

5 Examples

WEll, let us see now what are the benefits of this MIDI wrapper for the object-oriented
database AMOS 1. In this chapter | want to show some reasonable queries to approximate the
usefulness of this wrapper. We will load some MIDI filesin our AMOS |l database through
the web and make some queriesto retrieve selected information.

First of all we need to set up the environment properly and create the database. Refer to
Appendix C to see the installing ingtructions.

Once the environment is running, we load some MIDI filesinto AMOS II:

JavaAMOS 1> |oadM di ("http://files.mdifarmconm mdifiles/
general _mdi/sinatra_frank/ nyway4. md");

JavaAMOS 2> |oadM di ("http://files.mdifarmconm mdifiles/
general _m di/roxettel/ roxette-sleepinginmcar.md");

After we loaded as many MIDI files as we want into AMOS Il we save the database by the
command:

save ‘mdi.dnp’;

Now we can make some querieswith AMOS' |1 query language AMOSQL. Similarly to
SQL, AMOSQL is acombination of DDL (Data Definition Language) and a DML (Data
Manipulation Language). The query part of the language is Smilar to SQL.

The following command answers the question * Which song last longer than 2 minutes and has
two or more Tracks'.

JavaAMOS 1> select distinct m
frommd m
where duration(m > 120.00 and tracks(m >= 2;

Or we can simply search for aMIDI object of a certain interpret:

JavaAMOS 2> select m
frommdi m
where like(filename(n),”*sinatra*”);

We can also define functions to retrieve or manipulate datain AMOS 1. A function defined in
terms of other functionsis called a derived function. Especially if we often need to look for
specific information in the database, we define derived functions. There are aready some
derived functions defined in our database scheme. For example to find out which track or
which midi object amidi event belongs to, we have defined the following derived functions in
the database scheme:

create function track(m dievent e)-> track t as

select t
frominteger i
wher e

20

m di events(t)[i] = e;

create function mdi(mdievent m-> mdi as
select mdi(track(m);

Now we can use these derived functions to get for example all MIDI objects that play a guitar
asinstrument:

JavaAMOS 3> sel ect distinct mdi(m
from netaevent m
where |ike(netabDataString(m, “*guitar*”);

To answer the question * Which songs are written in C-major? we have to perform severa
commands. As you may remember, key sgnature data is stored as a meta event in our
database scheme. The key signature has the meta type value 89 that is trandated into the
string “Key Signature”. The data itself is represented as a vector of two integers. To find now
asong written in c-major, we have to look for a vector with two zeros as integers. For more
details see table 4.

First we create a derived function to look for the specific vector of integers that represents a c-
major song:

JavaAMOS 4> create function major(netaevent n)->netaevent as
select mfrom nmetaevent m
where netadataint (n)[0]=0
and nmetadataint(m][1] =0
and net atypeasstring(m = “Key Signature”;

The following command will now retrieve all the MIDI songs written in c-magjor:
JavaAMOS 5> sel ect mgjor(m from netaevent m
Analogical we can look for al MIDI songs written in aminor:

JavaAMOS 6> create function m nor(netaevent n)->netaevent as
select mfrom nmetaevent m
where netadataint (n)[0] =0
and netadataint(m[1]=1
and net atypeasstring(m = “Key Signature”;

JavaAMOS 7> select mnor(nm from netaevent m

There are many other valuable queries that can be executed. Last but not least | want to show
aquery, which can be improved later on to find patterns of note eventsina MIDI object. We
want to retrieve al Note On events on a specific channd of a certain MIDI object in order of
their appearance. First we have to create a derived function to compare two channel events
ordered by their timestamps:

JavaAMOS 8> create function orderByTi nestanp(channel event ca,

channel event cb) -> bool ean as sel ect true where tinestanp(ca)
< timestanp(ch);

21

The following command will retrieve all Note On eventsin channel four of the MIDI song
‘My way' by Frank Sinatra. The sor t function will order the results regarding our derived
function or der By Ti nest anp.

JavaAMOS 9> sort((sel ect ce from channel event ce where
command(ce) = 144 and channel (ce) = 4 and
filename(ce)="/mdifiles/general _mdi/sinatra_frank/ nyway4. m d
"), “orderByTi nestanp");

22

6 Summary

Today we find databases in many kind of use to store every kind of data we can imagine. The
goal of this project was now to access any given midi file through a database wrapper and
store the data of the MIDI file in an object-oriented database called AMOS |I. This database
wrapper isimplemented in Java and runs as a foreign function in AMOS I1. The function
takes the name of aMIDI file as a parameter, accesses it trough the web and then emits a
stream of AMOS Il objects and attributes, according to the developed schema, to the
mediator.

To understand how thisworks | want to give a brief overview over the MIDI specification and
the object-oriented database scheme. How does the MIDI structure look like? Each MIDI
stream can be divided inits single tracks, those tracks in turn consist of different sequential
events. There are three types of different events, the channel events, the meta events and the
system exclusive events. Most important though are the channedl events, since they include
information about how to play each tone. Meta events are not transmitted to the playback
device; they control the playback tempo and provide additional information for better reading
and understanding of a MIDI file.

The object-oriented database scheme has been developed to carry al the information of a
MIDI file, which we can access through the Java wrapper. There are tree base types, Midi,
Track and MidiEvent and three types, which are inherited of the base type MidiEvent. Those
types are ChannelEvent, MidiEvent and SysexEvent. To store all the datain the database, the
wrapper creates the necessary database objects out of the MIDI stream according to our
scheme. The MIDI file exists now in our database as a numerous and various set of objects.
What are the benefits of such a MIDI wrapper? There are plenty of reasonable queries to
approximate the usefulness of such awrapper. You may be interested in al the songs of a
specific interpret, or you are looking for a song written in c-mgor and played on a piano.
Since every single note event is stored as an object, you could also search for a pattern of
notes to retrieve the requested song.

The future work for this project will surely be to implement a foreign function that plays back
aMIDI track through AMOS I1. This foreign function should select aMIDI object and load it
into a sequencer to play back the song. Also many other fields of applications can be
implemented, such as editing tracks or events. For example adding new tracksto aMIDI
object or removing them, changing the instrument on a channel or adding lyrics or text to the
MIDI object. Pattern matching functions can aso be invented to search for a pattern of note
events. That might be very useful if you remember a piece of the melody of a song, but have
forgotten the name or interpret.

23

7 References

[1]

[2]

(3]

[4]

(5]

(6]

[7]

(8]

Tore Risch, Vanja Josifovski, Timour Katchaounov: AMOS |1 Concepts, June 23, 2000
http://www.dis.uu.se/~udbl/amos/doc/amos_concepts.html

Staffan Flodin, Vanja Josifovski, Timour Katchaounov, Tore Risch, Martin Skdld, and
Magnus Werner: AMOS 11 User’s Manual, AMOS Il Beta Release 3, June 23, 2000
http://www.dis.uu.se/~udbl/amos/doc/amos_users guide.html

Tore Risch: Introduction to AMOSQL, Department of Information Science, Uppsala
University, Sweden, April 23 2001
http://www.dis.uu.se/~udbl/engdb/amosgl.pdf

Gustav Fahl and Tore Risch: AMOS 11 Introduction, Uppsala Database Laboratory,
Department of Information Science, Uppsala University, Sweden, October 1, 1999

Daniel Elin and Tore Risch: AMOS Il Java Interfaces, Uppsaa Database Laboratory,
Department of Information Science, Uppsala University, Sweden, August 25, 2000

Joe M.: MIDI Specification 1.0
http://www.ibiblio.or g/emusic-l/info-docs-FAQS/M I DI -doc/

Rainer Jahn: Spezifikation MIDI-Datei, December 5, 1999
http://www.zbs-ilmenau.de/~r ainer /midispez/

Java 2 Platform SE v1.3.1: Package javax.sound.midi,
http://java.sun.com/j 2se/1.3/docs/api/javax/sound/midi/package-summary.html

24

