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Abstract 
 
Scientific instruments, such as radio telescopes, colliders, 
sensor networks, and simulators generate very high vol-
umes of data streams that scientists analyze to detect and 
understand physical phenomena. The high data volume 
and the need for advanced computations on the streams 
require substantial hardware resources and scalable 
stream processing. We address these challenges by 
developing data stream management technology to sup-
port high-volume stream queries utilizing massively 
parallel computer hardware. We have developed a data 
stream management system prototype for state-of-the-art 
parallel hardware. The performance evaluation uses real 
measurement data from LOFAR, a radio telescope 
antenna array being developed in the Netherlands. 
 
 

1. Background 
 

LOFAR [13] is building a radio telescope using an 
array of 25,000 omni directional antenna receivers whose 
signals are digitized. These digital data streams will be 
combined in software into streams of astronomical data 
that no conventional radio telescopes have been able to 
provide earlier. Scientists perform computations on these 
data streams to gain more scientific insight. 

The data streams arrive at the central processing facili-
ties at a rate of several terabits per second, which is too 
high for the data to be saved on disk. Furthermore, expen-
sive numerical computations need to be performed on the 
streams in real time to detect events as they occur. For 
these data intensive computations, LOFAR utilizes an 
IBM BlueGene supercomputer and conventional clusters. 

High-volume streaming data, together with the fact 
that several users wanting to perform analyses suggests 
the use of a data stream management system (DSMS) [9]. 
We are implementing such a DSMS called SCSQ (Super 
Computer Stream Query processor, pronounced cis-
queue), running on the BlueGene computer. SCSQ scales 
by dynamically incorporating more computational re-

sources as the amount of data grows. Once activated, 
continuous queries (CQs) filter and transform the streams 
to identify events and reduce data volumes of the result 
streams delivered in real time. The area of stream data 
management has gained a lot of interest from the database 
research community recently [1] [8] [14]. An important 
application area for stream-oriented databases is that of 
sensor networks where data from large numbers of small 
sensors are collected and queried in real time [21] [22]. 
The LOFAR antenna array will be the largest sensor net-
work in the world. In difference to conventional sensor 
networks where each sensor produces a limited amount of 
very simple data, the data volume produced from each 
LOFAR receiver is very large.  

Thus, DSMS technology needs to be improved to meet 
the demands of this environment and to utilize state-of-
the-art hardware. Our application requires support for 
computationally expensive continuous queries over data 
streams of very high volumes. These queries need to exe-
cute efficiently on new types of hardware in a heteroge-
neous environment. 
 
2. Research problem 
 

A number of research issues are raised when investi-
gating how new hardware developments like the 
BlueGene massively parallel computer can be optimally 
utilized for processing continuous queries over high-
volume data streams. For example, we ask the following 
questions: 
1. How is the scalability of the continuous query execu-

tion ensured for large stream data volumes and many 
stream sources? New query execution strategies need 
to be developed and evaluated. 

2. How should expensive user-defined computations, 
and models to distribute these, be included without 
compromising the scalability? The query execution 
strategies need to include not only communication 
but also computation time. 

3. How does the chosen hardware environment influ-
ence the DSMS architecture and its algorithms? The 
BlueGene CPUs are relatively slow while the 



communication is fast. This influences query 
distribution. 

4. How can the communication subsystems be utilized 
optimally? The communication between different 
CPUs depends on network topology and the load of 
each individual CPU. This also influences query 
distribution. 

 
3. Our approach 
 

To answer the above research questions we are de-
veloping a SCSQ prototype. We analyze the performance 
characteristics of the prototype system in the target hard-
ware environment in order to make further design choices 
and modifications. The analyses are based on a 
benchmark using real and simulated LOFAR data, as well 
as test queries that reflect typical use scenarios. These 
experiments provide test cases for prototype 
implementation and system re-design. In particular, 
performance measurements provide a basis for designing 
a system that is more scalable than previous solutions on 
standard hardware. 

The CQs are specified declaratively in a query 
language similar to SQL, extended with streaming and 
vector processing operators. Vector processing operators 
are needed in the query language since our application 
requires extensive numerical computations over high-
volume streams of vectors of measurement data. The 
queries involve stream theta joins over vectors applying 
non-trivial numerical vector computations as join criteria. 
To filter and transform streams before merging and 
joining them, the system supports sub-queries 
parameterized by stream identifiers. These sub-queries 
execute in parallel on different nodes. 

A particular problem is how to optimize high-volume 
stream queries in the target parallel and heterogeneous 
hardware environment, consisting of BlueGene compute 
nodes communicating with conventional shared-nothing 
Linux clusters. Pre- and post-processing computations are 
done on the Linux clusters, while parallelizable computa-
tions are likely to be more efficient on the BlueGene. The 
distribution of the processing should be automatically 
optimized over all available hardware resources. When 
several different nodes are involved in the execution of a 
stream query, properties of the different communication 
mechanisms (TCP, UDP, MPI) substantially influence the 
query execution performance. 
 
4. The hardware environment 
 

Figure 1 illustrates the stream dataflow in the target 
hardware environment. The users interact with SCSQ on 
a Linux  front cluster where they specify CQs. The input 
streams from the antennas are first pre-processed accor-

ding to the user CQs in the Linux back-end cluster. Next, 
BlueGene processes the CQs over these pre-processed 
streams. The output streams from BlueGene are then 
post-processed in the front cluster and the result stream is 
finally delivered to the user. Thus, three parallel 
computers are involved and it is up to SCSQ to trans-
parently and optimally distribute the stream processing 
between these. 

The hardware components have different 
architectures. The BlueGene features dual PowerPC 440d 
700MHz (5.6 Gflops max) compute nodes connected by a 
1.4 Gbps 3D torus network, and a 2.8 Gbps tree network 
[3]. Each compute node has a local 512 MB memory. The 
compute nodes run the compute node kernel (CNK) OS, a 
simple single-threaded operating system that provides a 
subset of UNIX functionality. Each compute node has 
two processors, of which normally one is used for 
computation and the other one for communication with 
other compute nodes. MPI is used for communication 
between BlueGene compute nodes, whereas communi-
cation with the Linux clusters utilizes I/O nodes that pro-
vide TCP or UDP. One important limitation of CNK is 
the lack of support for server functionality (no listen(), 
accept() or select() are implemented). Furthermore, two-
way communication is expensive and should be avoided 
for time-critical code. Each I/O-node is equipped with a 1 
Gbit/s network interface. In LOFAR’s BlueGene, there 
are 6144 dual processor compute nodes, grouped in pro-
cessing sets, or psets, consisting of 8 compute nodes and 
one I/O node. This I/O-rich configuration enables high 
volumes of incoming and outgoing data streams. 

The Linux front and back-end clusters are IBM JS20 
computers with dual PowerPC 970 2.2GHz processors. 
 
5. The SCSQ system 
 

Figure 2 illustrates the architecture of the SCSQ com-
ponents running on the different clusters. 

On the front cluster, the user application interacts with 
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a SCSQ client manager. The client manager is respon-
sible for i) interacting with the user application, ii) sen-
ding CQs and meta-data, such as client manager identi-
fication, to the query coordinator for compilation.  

The query coordinator is responsible for i) compiling 
incoming CQs from client managers, ii) starting one or 
more front stream processors (FSP) to do the post pro-
cessing of the streams from the BlueGene, and iii) 
posting instructions to the BlueGene components for 
execution of CQs. When the query coordinator receives a 
new CQ from a client manager, the query coordinator 
initiates new FSPs for post-processing of that CQ. It also 
maintains a request queue of CQs and other instructions 
to be processed by the BlueGene. This queue is regularly 
polled by the BlueGene compute node coordinator 
(CNC) (single arrow in Figure 2). 

The CNC is responsible for i) retrieving new CQs and 
instructions from the query coordinator, ii) assigning and 
coordinating stream processors on the compute nodes, 
and iii) monitoring the execution of all stream processors. 
The BlueGene processors to be used by SCSQ are initia-
ted once when the system is set up. The CNC is always 
executing on a single node while all other nodes are 
stream processors waiting for instructions from the CNC. 
When the CNC retrieves a new CQ, it assigns one idle 
stream processor to be the new query master for that 
query.  

A query master is responsible for i) compiling and 
executing its stream query, ii) delivering the result to an 
FSP on the front cluster previously initiated by the query 
coordinator, iii) starting new stream processors of 
subqueries if needed, iv) communicating with the back-
end cluster to retrieve input data, and v) monitoring the 
execution of its stream query. When a query master 
receives a CQ it is compiled and then the execution is 
started. If the query master determines that additional 
stream processors are needed for some stream subqueries, 
it dynamically requests the CNC to assign new ones. The 
query master then sends the subqueries to the new stream 
processors for execution. Each stream processor may in 
turn start new subqueries when so required. Stream 
queries may be terminated either by explicit user 
intervention or by some stop condition in the query. 
Therefore, the stream processors also exchange control 
messages to initialize and terminate stream queries. 
Control messages are also used to regulate the stream 
flow between the processors. 

The only difference between a stream processor and a 
query master is that the query master delivers its result to 
an FSP in the front cluster using TCP, while a stream 
processor delivers its result stream through MPI to the 
stream processor or query master that initiated it. 

Nodes participating in the processing of a stream are 
called working nodes. Stream processors, query masters, 
and FSPs are all working nodes. 

When a working node needs measurements from an 
input stream it initiates TCP communication for that 
stream through its preparator. A preparator is a working 
node running on the back-end cluster wrapping one or 
more input streams. 

The set-up of a stream query generates a distributed 
query execution tree, as illustrated by the double arrows 
in Figure 2. 

We have implemented the first SCSQ prototype and 
are evaluating it. All BlueGene and front node functiona-
lity for execution of single user queries have been 
implemented. We have used this implementation to 
analyze bandwidth properties of the I/O nodes and 
strategies for efficient buffering in the MPI and TCP 
communication subsystems. 

The implementation of SCSQ nodes is based on Amos 
II (Active Mediator Object System) [18] [19], which is 
modified to allow execution of continuous queries over 
streams in the target hardware environments. The SCSQ 
modules are extensible by linking user-defined functions 
written in compiled C. On the front and back-end 
clusters, dynamic linking is allowed. However, only static 
linking is allowed on BlueGene. As a consequence, all 
user- defined stream operators written in C must be 
statically linked with the stream processor executable for 
the BlueGene. To configure dynamically the stream pro-
cessors at run-time we utilize a built-in Lisp interpreter to 
communicate code between the front cluster and the 
BlueGene. All time-critical code running on the 
BlueGene is written in C and statically linked. 
 
6. Related work 
 

The SCSQ implementation is related to research in 
DSMSs, parallel and distributed databases, continuous 
query processing, and database technology for scientific 
applications. 

A promising approach to achieve the high perfor-
mance, flexibility, and expressiveness required is to de-
velop a distributed DSMS running on highly connected 
clusters of main memory nodes [2] [7] [12], which is ex-
tensible through user-defined data representations and 
computational models [10]. Most of the DSMS, e.g. [6] 
[8] [14] [15] [20], are designed for rather small data items 
and a relatively small cost of the stream operators per 
item. In contrast, SCSQ is intended for a very high total 
stream volume, large data item sizes, and computationally 
expensive scientific operators and filters. 

The use of extensible database technology where data-
base queries call user-defined functions in the database 
engine have been shown very useful for astronomical 



applications [17]. Parallelization of user-defined 
functions has been studied in [16]. 

Distributed execution of expensive user-defined 
stream query functions has been studied in the recently 
proposed Grid Stream Data Manager (GSDM) [10] [11], 
an object-relational DSMS for scalable scientific stream 
query processing. GSDM features a framework for pre-
defined and customized parallelization schemes, which 
distribute the execution of user-defined stream query 
functions over the Grid. Like SCSQ, GSDM is intended 
for scalable on-line analysis using expensive user-defined 
stream query functions over high-volume scientific data 
streams from instruments and simulations.  

However, unlike all other DSMSs, SCSQ will be opti-
mized for a heterogeneous target hardware environment 
including a BlueGene supercomputer. 
 
7. Ongoing work 
 

Query execution scalability is achieved by developing 
query processing strategies able to utilize an increasing 
number of compute nodes while optimally utilizing the 
communication facilities. 

To generate local query execution plans on each 
stream processor we employ query optimization strategies 
based on heuristics and a simple cost model. 

Queries are distributed based on the need to execute 
sub-queries in parallel. Currently, each stream processor 
can execute only one sub-query. Any stream processor 
can at run-time request idle stream processors from the 
CNC to execute sub-queries. This allows dynamic 
reconfiguration of the distributed query execution plan.  

The performance monitoring subsystem in each stream 
processor measures the performance of different phases 
of stream query execution. It is currently used to evaluate 
the characteristics of different execution strategies. 
However, the same mechanism will also be used to 
optimize the stream query distribution itself. Since our 
system allows dynamic reassignment of stream 
processors we will use the performance monitoring 
subsystem for adaptive run-time query re-optimization. 
This is necessary since sudden bursts in the measured 
signals may require execution plans to be dynamically 
reconfigured. 

To analyze the system and understand the issues that 
are relevant to the LOFAR application we are developing 
a benchmark. The benchmark includes real and simulated 
data as well as queries from the radio astronomy applica-
tion domain. We are initially concentrating on queries 
that detect transients among a large number of incoming 
streams. We scale the number of incoming streams and 
optimize throughput and latency as the data volume 
grows. Therefore, we scale not only the data volume but 
also the computation time in our experiments.  

A stream oriented communication protocol between 
stream processors is developed based on MPI. We 
measure the characteristics for different communication 
methods between the stream processors. The 
communication latency and bandwidth depend on the 
topology and the load of the nodes. For example, nodes 
far apart have long latency but may have a high 
bandwidth, since there are many communication links 
between them that can be used in parallel. On the other 
hand, highly loaded intermediate nodes slow down 
communication [5]. These characteristics will influence 
query decomposition and distribution. 

The query execution performance depends on the 
utilization of each stream processor. The utilization of a 
stream processor depends on the relation between its 
stream rate and computational load. Each stream 
processor is buffering its incoming and outgoing streams. 
The buffer utilization of a stream processor indicates the 
load balance between communication and processing. 
Each stream processor monitors its buffer utilization and 
adapts the flow rate by sending control messages 
regularly. In an overflow situation, different policies can 
be devised, for example: load shedding by dropping 
incoming data [23], simplifying aggregation operators 
[4], sending control messages that slow down sub query 
stream processors, or asking CNC for more stream 
processors. 

It is also important to analyze the performance of 
queries involving expensive operators. We investigate the 
scalability over large numbers of high-volume input 
streams that are merged by computationally expensive 
stream combination functions from the benchmark. The 
goal is to understand how to distribute the streams and 
computations optimally in the heterogeneous target 
hardware environment. 
 
Acknowledgements 
 
This work is supported by LOFAR. 
 
References 
 
[1] Daniel J. Abadi et al, “Aurora: a new model and archi-

tecture for data stream management”, The VLDB Jour-
nal, Springer, 12(2) 2003, pp 120–139. 

[2] Daniel J. Abadi et al, “The Design of the Borealis 
Stream Processing Engine”, in The Second Biennial 
Conference on Innovative Data Systems Research 
(CIDR), Asilomar, CA 2005, pp 277–289. 

[3] George Almási et al, “Implementing MPI on the 
BlueGene/L Supercomputer”, Lecture Notes in Com-
puter Science, Volume 3149, Jan 2004, pp 833–845. 

[4] Brian Babcock, Mayur Datar, Rajeev Motwani, “Load 
Shedding for Aggregation Queries over Data Streams”, 
in Proc. of the International Conference on Data 



Engineering (ICDE 2004), Boston, USA, pp 350–361. 
[5] Gyan Bhanot et al, “Optimizing task layout on the Blue 

Gene/L supercomputer”, IBM Journal of Research 
and Development, Volume 49, Number 2/3, 2005, pp 
489–500. 

[6] Donald Carney et al, “Monitoring Streams – A New 
Class of Data Management Applications”, in Proc. Of 
the 28th Int’l Conf. on Very Large Databases (VLDB’02), 
Hong Kong, China, 2002, pp 215–226. 

[7] Mitch Cherniack et al, “Scalable distributed stream 
processing”, in The First Biennial Conference on Inno-
vative Data Systems Research (CIDR), Asilomar, CA 
2003. 

[8] Chuck Cranor, Theodore Johnson, Oliver Spataschek, 
and Vladislav Shkapenyuk, “Gigascope: A Stream Data-
base for Network Applications”, in Proc. Of the ACM 
SIGMOD Conference on Management of Data, San 
Diego, CA 2003, pp 647–651. 

[9] Lukasz Golab and M. Tamer Özsu, “Issues in data 
stream management”, SIGMOD Record, 32(2), 2003, pp 
5–14. 

[10] Milena Ivanova and Tore Risch, ”Customizable Parallel 
Execution of Scientific Stream Queries”, in Proc. Of the 
31st Int’l Conf. on Very Large Databases (VLDB’05), 
Trondheim, Norway 2005, pp 157–168. 

[11] Milena Ivanova, ”Scalable Scientific Stream Query Pro-
cessing”, in Uppsala Dissertations from the Faculty of 
Science and Technology 66, Acta Universitatis Upsa-
liensis, Uppsala 2005, 
http://user.it.uu.se/~udbl/Theses/MilenaIvanovaPhD.pdf. 

[12] Bin Liu et al, “A Dynamically Adaptive Distributed Sys-
tem for Processing Complex Continuous Queries”, in 
Proc. Of the 31st Int’l Conf. on Very Large Databases 
(VLDB’05), 2005, pp 1338–1341. 

[13] LOFAR, http://www.lofar.nl/. 
[14] Samuel Madden, Mehul A. Shah, Joseph M. Hellerstein, 

and Vijayshankar Raman, “Continuously adaptive con-
tinuous queries over streams”, in Proc. Of the ACM 
SIGMOD Conference on Management of Data, Madi-
son, Wisconsin 2002, pp 49–60. 

[15] Rajeev Motwani et al, “Query processing, approxima-
tion, and resource management in a data stream ma-
nagement system”, in The First Biennial Conference on 
Innovative Data Systems Research (CIDR), Asilomar, 
CA 2003. 

[16] Kenneth W. Ng and Richard R. Muntz, “Parallelizing 
user-defined functions in distributed object-relational 
DBMS”, in International Database Engineering and 
Applications Symposium (IDEAS), Montreal, Canada 
1999, pp 442–450. 

[17] María A. Nieto-Santisteban et al, “When Database Sys-
tems Meet the Grid”, in The Second Biennial Conference 
on Innovative Data Systems Research (CIDR), Asilomar, 
CA 2005, pp 154–161. 

[18] Tore Risch and Vanja Josifovski, “Distributed Data Inte-
gration by Object-Oriented Mediator Servers”, in Con-
currency and Computation: Practice and Experience J. 
13(11), John Wiley & Sons, September 2001, pp 933–
953. 

[19] Tore Risch, Vanja Josifovski, and Timour Katchaounov, 

[20] Elke A. Rundensteiner et al, “CAPE: A Constraint-
Aware Adaptive Stream Processing Engine”, in Nauman 
Chaudhry, Kevin Shaw, and Mahdi Abdelguerfi (eds.): 
Stream Data Management, Advances in Database Sys-
tems Series, Springer 2005, pp 83–111. 

[21] Special Section on Sensor Network Technology and 
Sensor Data Management, SIGMOD Record, 32(4), 
December 2003. 

[22] Special Section on Sensor Network Technology and 
Sensor Data Management (Part II), SIGMOD Record, 
31(1), March 2004. 

[23] Nesime Tatbul, et al, “Load Shedding in a Data Stream 
Manager”, in Proc. Of the 29th Int’l Conf. on Very Large 
Databases (VLDB’03), Berlin, Germany, pp 309–320. 

 


