Addendum to Scalable Splitting of Massive Data Streams

Erik Zeitler, Tore Risch

Department of Information Technology Uppsala University Sweden erik.zeitler@it.uu.se tore.risch@it.uu.se

Abstract. Equation (9) in Zeitler, Risch: *Scalable Splitting of Massive Data Streams* (Proc. DASFAA 2010) described how to compute the fanout of each level in a theoretically optimal splitstream tree, called *maxtree*. This addendum shows how the *maxtree* formula is derived.

1 Derivation of the *maxtree* formula

The cost model for a node at level ℓ in a splitstream tree is expressed using Equation (5) in [1]:

$$C_{\ell} = \Phi o^{(\ell-1)} \cdot \left(cc + (cp + ce) \cdot \left(r_{\ell} + f_{\ell} \cdot b_{\ell} \right) \right)$$
(1)

Using this model, the cost at the root node C_l (whose fanout is $f_l = 2$) is

$$C_{I} = \Phi \cdot \left(cc + (cp + ce) \cdot (r + 2 \cdot b) \right)$$
⁽²⁾

As discussed in [1], solving f_{ℓ} for $C_{\ell} = C_I$ gives the maximum allowed (optimal) fanout at each level $\ell > 1$.

$$\Phi o^{(\ell-1)} \cdot \left(cc + (cp + ce) \cdot \left(r_{\ell} + f_{\ell} \cdot b_{\ell} \right) \right) =$$

$$\Phi \cdot \left(cc + (cp + ce) \cdot \left(r + 2 \cdot b \right) \right)$$
(3)

Substitute r_{β} , b_{β} , and $\Phi o^{(\beta)}$ using Equations (4) and (5) in [1] to express Equation (3) in terms of r, b, and λ_{β} :

$$\Phi\left(b + \frac{r}{\lambda_{\ell-1}}\right) \cdot \left(cc + (cp + ce) \cdot \left(\frac{r + f_{\ell} \cdot b\lambda_{\ell-1}}{r + b\lambda_{\ell-1}}\right)\right) = \Phi \cdot \left(cc + (cp + ce) \cdot (r + 2 \cdot b)\right)$$
(4)

It is easy to see that Φ cancels. Multiply both sides by $\lambda_{\ell I} / (cp+ce)$:

2 Erik Zeitler, Tore Risch

$$(r + \lambda_{\ell-1}b) \cdot \left(\frac{cc}{cp + ce} + \left(\frac{r + f_{\ell} \cdot \lambda_{\ell-1}b}{r + \lambda_{\ell-1}b}\right)\right) =$$

$$\lambda_{\ell-1} \frac{cc}{cp + ce} + \lambda_{\ell-1}r + 2 \cdot \lambda_{\ell-1}b$$

$$(5)$$

Set a = cc / (cp+ce) and simplify:

$$f_{\ell} \cdot \lambda_{\ell-1} b =$$

$$a(\lambda_{\ell-1} - r - \lambda_{\ell-1} b) + \lambda_{\ell-1} r + 2 \cdot \lambda_{\ell-1} b - r$$
(6)

Divide by $\lambda_{\ell} b$:

$$f_{\ell} = \frac{a}{b} - \frac{ar}{\lambda_{\ell-1}b} - a + \frac{r}{b} + 2 - \frac{r}{\lambda_{\ell-1}b}$$

$$= 2 + \frac{r}{b} \left(1 - \frac{a}{\lambda_{\ell-1}} - \frac{1}{\lambda_{\ell-1}} \right) + \frac{a}{b} (1 - b)$$
(7)

As each tuple is routed, broadcasted, or omitted, r + b + o = 1. No tuples are omitted in the splitstream tree (o = 0), as assumed in the beginning of Section 3.2 of [1]. Thus, r = 1 - b, which is used to obtain the final formula:

$$f_{\ell} = 2 + \frac{r}{b} \left(1 - \frac{a}{\lambda_{\ell-1}} - \frac{1}{\lambda_{\ell-1}} \right) + \frac{ar}{b}$$

$$= 2 + \frac{r}{b} \left(1 + a - \frac{a}{\lambda_{\ell-1}} - \frac{1}{\lambda_{\ell-1}} \right)$$

$$= 2 + \frac{r}{b} \left(1 + a \right) \left(1 - \frac{1}{\lambda_{\ell-1}} \right)$$
(8)

maxtree is constructed by first assigning two child nodes to the root node. Then, for each node at level ℓ , add f_{ℓ} child nodes. Keep adding levels until λ_{ℓ} is at least *w*.

2 References

1. Zeitler, E., Risch, T.: Scalable Splitting of Massive Data Streams. In: DASFAA (2010)