
Kjell Orsborn 5/5/08

1UU - IT - UDBL

DATABASE TECHNOLOGY - 1MB025
(also 1DL029, 1DL300+1DL400)

 Fall 2007

An introductury course on database systems

 http://user.it.uu.se/~udbl/dbt-ht2007/
alt. http://www.it.uu.se/edu/course/homepage/dbastekn/ht07/

Kjell Orsborn
Uppsala Database Laboratory

Department of Information Technology, Uppsala University,
Uppsala, Sweden

Kjell Orsborn 5/5/08

2UU - IT - UDBL

Introduction to Recovery Techniques
Elmasri/Navathe ch 19

 Padron-McCarthy/Risch ch 23 and 24

Kjell Orsborn

Uppsala Database Laboratory
Department of Information Technology, Uppsala University,

Uppsala, Sweden

Kjell Orsborn 5/5/08

3UU - IT - UDBL

Recovery

– Recovery is needed after aborted transactions.
– The goal is to restore the database to an earlier and consistent state.
– Is possible by saving a log file.
– The recovery manager is a subsystem of the (DBMS that handles these

problems.
– Strategy:
– a) If the disc crasches, fetch the latest backup copy of the database and

use the log file to reproduce the latest updates.
– b) If some other type of failure has caused the inconsistency, eleminate

(undo) the updates that led to the inconsistency.

Kjell Orsborn 5/5/08

4UU - IT - UDBL

Recovery . . .

– To be able to keep the atomicty principle for the transactions the system
must handle different typesof failure that can cause that the execution of
a transaction is aborted.

– The system must reassure that either:
• all operations in a transaction succeed completely and their intended effect is

registered in the database, or
• the transaction is aborted without any side effect.

– The following operations are required:
• Rollback: eleminate side effects of a failured

transaction.
• Undo: eleminate a single operation.
• Redo: redo one/several operations (transactions).

Kjell Orsborn 5/5/08

5UU - IT - UDBL

Logging

• Logging updates in a log(file) required for recovery through in-
place updating

• Write-ahead logging - flush log to disk before updating the
database

• Page management:
– No-steal/steal approach - in a no-steal approach updated pages cannot be

written to disk before transaction commits.
– No-force/force approach - in a force approach all updated pages are

immediately written to disk when transactions commit.

Kjell Orsborn 5/5/08

6UU - IT - UDBL

System log - the log file

• During the execution of transactions the following följande
information is stored on the log (file):
(Start, T) Marks the start for transaction T.
(Write,T,X,old_val,new_val) Marks that T changes the value of X

from old_val to new_val.
(Read, T, X) Marks that T reads the value of X.
(Commit, T) Marks that T is finished with all

accesses and its effect can be
introduced in the database.

(Check point) A feature described later.

Kjell Orsborn 5/5/08

7UU - IT - UDBL

Commit point for a transaction

• When a transaction is finished with all its operations (and no
errors have ocurred) it reaches its commit point.

• Failured transactions do not reach their commit point.

Kjell Orsborn 5/5/08

8UU - IT - UDBL

Rollback - cascading rollback

• Rollback: when a transaction fails to reach its commit point, its
effects must be eleminated, i.e. all values that have been
changed by the operations in the transaction must be restored.

• Cascading rollback: when rollback is applied to a transaction
T, we must apply rollback to all transactions S that have read
item values that has been updated by T. We must then do the
same for transactions that have read values that each such S has
updated and so forth.

• (Read, T, ...) records in the log file are used to decide if
cascading (recursion) is required or not.

Kjell Orsborn 5/5/08

9UU - IT - UDBL

Deferred update
(or no-undo/redo)

• A recovery method that defers actual database updates until a
transaction reaches its commit point.

• Under the execution of the operations, updates are registered in
the log file. When the commit point is reached, first the log file
is updated on secondary memory and thereafter the actual
updates is written to the database.

• If a transaction fails before it reaches the commit point, no undo
operations are required since the database has not been effected.

Kjell Orsborn 5/5/08

10UU - IT - UDBL

Recovery using the deferred update model

• Recovery according to the deferred update model:
1. Start from the last record in the log file and traverse backwards. Create

two lists:
• C transactions that have reached their commit points
• NC transactions that have not reached their commit points.

2. Start from the beginning of the log file and redo all (Write,T,...) for all
transactions T in the list C.

3. Restart all transactions in the list NC.

• If the log file is long, step 2 will take long time. An
improvement of this method is accomplished by introducing
what’s called check points.

Kjell Orsborn 5/5/08

11UU - IT - UDBL

Check points

• Check points are special records stored in the log file to mark
that all write operations (for committed transactions) to this
point have been introduced in the database.

• This means that it is not necessary to redo operations before this
point when a crasch ocurres.

• The recovery manager decides when a check point should be
created.

Kjell Orsborn 5/5/08

12UU - IT - UDBL

Creating checkpoints

The creation of a checkpoint usually include:

1. Suspend execution of transactions temporarily.
2. Force-write all main-memory buffers that have been modified to disk.
4. Write a checkpoint record to the log and force-write the log to disk.
5. Continue with the transactions.

Kjell Orsborn 5/5/08

13UU - IT - UDBL

Recovery using deferred updates
with checkpointing

(multiuser version and assuming strict schedules)

• Recovery according to the deferred update model with check
points:
1. Start from the last record in the log file and traverse backwards until a

check point is reached. Create two lists:
• C transactions that have reached their commit points
• NC transactions that have not reached their commit points.

2. Start from the position after the check point in the log file and redo all
(Write,T,...) for all transactions T in the list C.

3. Restart all transactions in the list NC.

• Step 2 is much cheaper now since the set C is much smaller.

Kjell Orsborn 5/5/08

14UU - IT - UDBL

Immediate updates
(or undo/redo)

• In this update model, the effect of update operations is
introduced in the database even before there commit point has
been reached. Operations are registered in the log file (on disc)
before they are applied to the database.

• If a transaction is aborted before the commit point, its side
effects must be eliminated (rollback).

• To UNDO, i.e. eleminate, an operation means that the value of
item X is reset to old_value.
– (Write,T,X,old_value,new_value)

Kjell Orsborn 5/5/08

15UU - IT - UDBL

Recovery using immediate updates
 (multiuser version and assuming strict schedules)

• Recovery according to the immediate update model:
1. Start from the last record in the log file and traverse backwards until a

check point is reached. Create two lists:
• C transactions that have reached their commit points
• NC transactions that have not reached their commit points.

2. Start from the last record in the log file and apply the UNDO procedure
to all (Write,T,...) where T ∈ NC.

3. Start from the checkpoint and REDO all transactions (Write,T,...) such
that T ∈ C.

4. Restart all transactions in NC.

Kjell Orsborn 5/5/08

16UU - IT - UDBL

Shadow paging
• Alternative to log-based recovery
• Idea: maintain two page tables during the lifetime of a trans-action -

the current page table, and the shadow page table
• Store the shadow page table in nonvolatile storage, such that state of

the database prior to transaction execution may be recovered. Shadow
page table is never modified during execution

• To start with, both the page tables are identical. Only current page
table is used for data item accesses during execution of the
transaction.

• Whenever any page is about to be written for the first time, a copy of
this page is made onto an unused page. The current page table is then
made to point to the copy, and the update is performed on the copy

Kjell Orsborn 5/5/08

17UU - IT - UDBL

Shadow paging cont’d

• To commit a transaction:
1. Flush all modified pages in main memory to disk
2. Output current page table to disk
3. Make the current page the new shadow page table
– keep a pointer to the shadow page table at a fixed (known) location on

disk.
– to make the current page table the new shadow page table, simply update

the pointer to point to current page table on disk
• Once pointer to shadow page table has been written, transaction is

committed.
• No recovery is needed after a crash — new transactions can start right

away, using the shadow page table.
• Pages not pointed to from current/shadow page table should be freed

(garbage collected).

Kjell Orsborn 5/5/08

18UU - IT - UDBL

Shadow paging cont’d

• Advantages of shadow-paging over log-based schemes – no
overhead of writing log records; recovery is trivial

• Disadvantages:
– Commit overhead is high (many pages need to be flushed)
– Data gets fragmented (related pages get separated)
– After every transaction completion, the database pages containing old

versions of modified data need to be garbage collected and put into the
list of unused pages

– Hard to extend algorithm to allow transactions to run concurrently

