
Kjell Orsborn 4/29/08

1UU - IT - UDBL

DATABASE TECHNOLOGY - 1MB025
(also 1DL029, 1DL300+1DL400)

 Spring 2008
An introductury course on database systems

 http://user.it.uu.se/~udbl/dbt-vt2008/
alt. http://www.it.uu.se/edu/course/homepage/dbastekn/vt08/

Kjell Orsborn
Uppsala Database Laboratory

Department of Information Technology, Uppsala University,
Uppsala, Sweden

Kjell Orsborn 4/29/08

2UU - IT - UDBL

Introduction to Transactions &
Concurrency Control

Elmasri/Navathe ch 17 and 18
 Padron-McCarthy/Risch ch 23 and 24

Kjell Orsborn

Uppsala Database Laboratory
Department of Information Technology, Uppsala University,

Uppsala, Sweden

Kjell Orsborn 4/29/08

3UU - IT - UDBL

The transaction concept
• We have earlier assumed that only one program (or DML query)

at a time accesses and performs operations on a database (i.e. we
have assumed serial access).

• In general several programs work on the same database.
– This results in that simultaneous access and updates must be controlled

by means of transactions management (e.g. seat booking, ATM systems)

• In a DBMS context, a transaction is an atomic and logic unit of
database processing that accesses and possibly updates various
data items.
– A simple query in the DML of the DBMS.
– A program written in the host language with one or several calls to DML.

If several users execute the same program every execution constitute a
transaction in their own.

Kjell Orsborn 4/29/08

4UU - IT - UDBL

Transaction concept cont’d . . .

• A transaction must see a consistent state
• During transaction execution the database may be inconsistent
• When a transaction is committed, the database must be

consistent
• Two main issues to deal with:

– Failures of various kinds, such as hardware failures and system crashes
– Concurrent execution of multiple transactions

Kjell Orsborn 4/29/08

5UU - IT - UDBL

Transaction management

• Transaction management aims at handling transactions as
indivisible sets of operations; that is a transaction is either
performed as a whole or not at all.

• In reality, a transaction consist of a sequence of more
elementary steps (operations) such as read and write of database
items.

• At the same time as we want to admit time sharing for these
elementary operations, we want to keep the requirement of
indivisibility.

Kjell Orsborn 4/29/08

6UU - IT - UDBL

Example of a transaction

Ex. two transactions:

T1: T2:
Read X Read X
X:=X-N X:=X+M
Write X Write X
Read Y
Y:=Y+N
Write Y

Without time sharing (serial)

T1: T2:
Read X
X:=X-N
Write X
Read Y
Y:=Y+N
Write Y

Read X
X:=X+M
Write X

Kjell Orsborn 4/29/08

7UU - IT - UDBL

Problem 1: simultaneous transactions
(with time sharing - scheduled)

• Problem with lost updates

T1: T2:
Read X
X:=X-N

Read X
X:=X+M

Write X
Read Y

Write X
Y:=Y+N
Write Y

The last operation in T2 writes a
wrong value in the database.

Kjell Orsborn 4/29/08

8UU - IT - UDBL

Problem 2: simultaneous transactions
(with time sharing - scheduled)

• Problem with temporary updates

T1: T2:
Read X
X:=X-N
Write X

Read X
X:=X+M
Write X

Read Y
Y:=Y+N
Write Y

T1 failured before it was finished.
The system must eliminate
(“undo”) the effects of T1.
However, T2 has already read the
wrong value for X and will also
write that wrong value in the
database.

Kjell Orsborn 4/29/08

9UU - IT - UDBL

Problem 3: simultaneous transactions
(with time sharing - scheduled)

• Problem with incorrect summation
T1: T2:

Sum:=0
Read A
Sum:=Sum+A

Read X ...
X:=X-N ...
Write X ...

Read X
Sum:=Sum+X
Read Y
Sum:=Sum+Y

Read Y
Y:=Y+N
Write Y

T2 performs an aggregation
operation while T1 modifies some
of the relevant items.
Do we get the correct sum in Sum?

Kjell Orsborn 4/29/08

10UU - IT - UDBL

ACID properties
• To preserve the integrity of data, the DBMS must ensure:

– Atomicity (atomic or indivisible): a logic processing unit (all operations
of the transaction) is carried out in its whole or not at all.

– Consistency (preservation): a correct execution of a transaction in
isolation should preserve the consistency of the database (from one
consistent state to another).

– Isolation: Although multiple transactions may execute concurrently,
each transaction must be unaware of of other concurrently executing
transactions. The updates of a transaction shall be isolated from other
transactions until after the commit point.

– Durability (or permanency): If a transaction completes successfully, the
changes it has made to the database must persist and should not be lost in
a later system failure.

Kjell Orsborn 4/29/08

11UU - IT - UDBL

Example of fund transfer
• Transaction to transfer $50 from account A to account B :

1. read(A)
2. A := A - 50
3. write(A)
4. read(B)
5. B := B + 50
6. write(B)

• Consistency requirement — the sum of A and B is unchanged
by the execution of the transaction.

• Atomicity requirement — if the transaction fails after step 3 and
before step 6, the system should ensure that its updates are not
reflected in the database, else an inconsistency will result.

Kjell Orsborn 4/29/08

12UU - IT - UDBL

Example of fund transfer cont’d
• Durability requirement — once the user has been notified that

the transaction has completed (ie. the transfer of the $50 has
taken place), the updates to the database by the transaction must
persist despite failures.

• Isolation requirement — if between steps 3 and 6, another
transaction is allowed to access the partially updated database, it
will see an inconsistent database (the sum A +B will be less than
it should be).

These requirement can be ensured trivially by running
transactions serially, that is, one after the other. However, we
would like to accomplish the same benefits for multiple
transactions executing concurrently.

Kjell Orsborn 4/29/08

13UU - IT - UDBL

Transaction state cont’d

Kjell Orsborn 4/29/08

14UU - IT - UDBL

Transaction state

• Active, the initial state; the transaction stays in this state while it is executing
• Partially committed, when transaction ends, after the final statement has

been executed, it goes into the partially commited state.
• Committed, after successful completion.
• Failed, after the discovery that normal execution can no longer proceed or if

it has been aborted in its active state. Rollback might be necessary.
• Terminated, corresponds to the transaction leaving the system.

After the transaction has been rolled back and the database is restored to its
state prior to the start of the transaction. A failed or aborted transaction can
be restarted either automatically or manually.

Kjell Orsborn 4/29/08

15UU - IT - UDBL

Concurrent executions
• Multiple transactions are allowed to run concurrently in the

system.
Advantages are :
– increased processor and disk utilization, leading to better transaction

throughput: one transaction can be using the CPU while another is
reading from or writing to the disk

– reduced average response time for transactions: short transactions need
not wait behind long ones

• Concurrency control schemes – mechanisms to control the
interaction among the concurrent transactions in order to
prevent them from destroying the consistency of the database.

Kjell Orsborn 4/29/08

16UU - IT - UDBL

Transaction schedule

• There exist a number of different execution orders that can be
scheduled for the operations in a set of transactions.
– But which of these execution orders are acceptable?

• We will assume that the intention, when transactions are
implemented, is that they should be executed in serial.

• A transaction schedule for a set of transactions describes in
what order the operations (Read Write etc.) in the transactions
should be performed.

• OBS!: the relative order among single operations in a
transaction is kept in the transaction schedule.

Kjell Orsborn 4/29/08

17UU - IT - UDBL

Serial and serializable
transaction schedules

• A transaction schedule where the operations for each transaktion
uninteruptedly follow each other is called a serial schedule.

• For example the transaction schedule S for transactions T1 and T2:
T1: o11, o12,..., o1m
T2: o21, o22,..., o2n
S: o11, o12,..., o1m, o21, o22,..., o2n

• A transaction schedule for a number of transactions is said to be serializable
if its effect is “equivalent” to the effect of a serial transaction schedule
incorporating the same transactions.

• To be able to judge if a transaction schedule is correct we must prove that the
schedule is serializable.

Kjell Orsborn 4/29/08

18UU - IT - UDBL

Controlling serializability of schedules

• Testing a schedule for serializability after it has executed is a
little too late!

• Goal – to develop concurrency control protocols that will assure
serializability. The idea is that instead of analyzing if a schedule
is serializable, they will instead impose a protocol that avoids
nonserializable schedules.

• There are algorithms that can control serializability such as two-
phase locking protocols (see concurrency control).

Kjell Orsborn 4/29/08

19UU - IT - UDBL

Classes of recoverable schedules

• recoverable schedule
– committed transactions never need to rolled back

• cascadeless schedule
– recoverable
– transactions read only items written by committed transactions

• strict schedule
– recoverable
– cascadeless
– no read/write item X until the last transaction that wrote X has committed
– simplifies the recovery process

Kjell Orsborn 4/29/08

20UU - IT - UDBL

Transaction definition in SQL
• Data manipulation language must include a construct for

specifying the set of actions that comprise a transaction.
• In SQL, a transaction begins implicitly.
• A transaction in SQL ends by:

– Commit work commits current transaction and begins a new one.
– Rollback work causes current transaction to abort.

• Levels of consistency specified by SQL-92:
– Serializable — default
– Repeatable read
– Read committed
– Read uncommitted

Kjell Orsborn 4/29/08

21UU - IT - UDBL

Levels of consistency in SQL-92
• Serializable — default
• Repeatable read — only committed records to be read, repeated

reads of same record must return same value. However, a transaction
may not be serializable – it may find some records inserted by a
transaction but not find others.

• Read committed — only committed records can be read, but
successive reads of a record may return different (but committed)
values.

• Read uncommitted — even uncommitted records may be read.
• Lower degrees of consistency useful for gathering approximate

information about the database, e.g. statistics for query optimizer.

Kjell Orsborn 4/29/08

22UU - IT - UDBL

Concurrency control

• Concurrency control handles the execution of concurrent
transactions.

• There are two main techniques for concurrency control:
– pessimistic concurrency control - locking of data items
– optimistic concurrency control - shadow paging

Kjell Orsborn 4/29/08

23UU - IT - UDBL

Items and data granularity
• Units of data that are operated on by transactions are called

items.
• The size, or data granularity, of such an item is determined by

the database designer (and capabilities of the DBMS).
• The term item can mean different things:

– a record (or tuple in a relation)
– a data field value
– a disc block
– a whole file
– or the whole database

Kjell Orsborn 4/29/08

24UU - IT - UDBL

Pessimistic techniques - Locking
• Locking is one of the main mechanisms to handle concurrent

transactions (is based on a pessimistic assumption that conflicts will
appear)

• A lock is the access right for an item and a program, the lock
manager, decides which transaction that should be granted the access
right for an item.

• The lock manager stores information about locked items in a table that
consists of records of the form:
– (<item>, <lock-type>, <transaction>)
– A record (I,L,T) means that the transaction T has locked item I with a

lock of type L.
• A locking protocol is a set of rules followed by all transactions while

requesting and releasing locks. Locking protocols restrict the set of
possible schedules.

Kjell Orsborn 4/29/08

25UU - IT - UDBL

Binary locks
• A binary lock only has two states: locked/unlocked.
• Transactions must comply with the following rules:

– 1. The transaction T must perform Lock X before it performs any Read X
or Write X operation.

– 2. T must perform Unlock X after all Read X and Write X operations are
finished.

– 3. T shall not perform Lock X if T already has locked X.
– 4. T should only perform Unlock X if T has locked X at the same

moment.
• During the time between a Lock X and Unlock X in T, T locks

the item X (or T controls item X.)
• Only one transaction is allowed to lock an item at a certain point

of time.

Kjell Orsborn 4/29/08

26UU - IT - UDBL

Example
• Two transactions T1 and T2 that both perform:

Read A;
A:=A+1;
Write A

• The solution is to
introduce locks,

Lock A;
Read A;
A:=A+1;
Write A;
Unlock A

• T2 can not any longer reach A before T1 is finished to operate
on A.

A in DB 5 5 5 5 6 6
ReadA A:=A+1 WriteAT1:

T2: ReadA A:=A+1 WriteA

A in T1:s
working
area

A in T2:s
working
area

5 5 6 6 6 6

5 5 6 6

Kjell Orsborn 4/29/08

27UU - IT - UDBL

Other types of locks

• Binary locks are very restrictive. For that reason one has
adapted locking systems that e.g. grant read access to several
transactions simultaneously. However, write access is only
granted to one transaction.

• The following conditions must be fulfilled:
1. T must perform Readlock X or Writelock X before Read X.
2. T must perform Writelock X before Write X.
3. T must perform Unlock X after all Read X an Write X is finished.
4. T shall not perform Readlock X if T already has locked X.
5. T shall not perform Writelock X if T already has write access to X.
6. T shall only perform Unlock X if T has locked X at the moment.

Kjell Orsborn 4/29/08

28UU - IT - UDBL

The two-phase locking protocol
• This is a protocol which ensures conflict-serializable schedules.

– Phase 1: Growing Phase
• transaction may obtain locks
• transaction may not release locks

– Phase 2: Shrinking Phase
• transaction may release locks
• transaction may not obtain locks

• The protocol assures serializability. It can be proved that the
transactions are serializable in the same order as they acquired
its final lock.

• Two-phase locking does not ensure freedom from deadlocks

Kjell Orsborn 4/29/08

29UU - IT - UDBL

Two-phase locking protocols
• Two-phase locking protocol

– expanding phase - shrinking phase
– guaranteeing serilizable schedules

• Basic 2PL
– All locking operations precedes the the first unlock operation

• Conservative (static) 2PL
– Dead-lock free
– Difficult in practice

• Strict 2PL
– Guarantees strict schedules
– Not dead-lock free
– No release of write-locks until commit/abort

• Rigorous 2PL
– Also guarantees strict schedules
– No release of locks until commit/abort

Kjell Orsborn 4/29/08

30UU - IT - UDBL

Deadlock - a locking problem

• T1: Lock A; Lock B; ...;Unlock A;
Unlock B

• T2: Lock B; Lock A; ...;Unlock B;
Unlock A

• A deadlock is a situation where every
member in S (a set of at least two
transactions) waits for the privilige to
lock an item that already has been
locked by another transaction.

• We have a deadlock (or circular lock)
if there is a cycle in the dependency
graph that shows which transactions
that wait for locks to be realeased.

T2T1

Dependency graph

Kjell Orsborn 4/29/08

31UU - IT - UDBL

To solve a deadlock
Deadlock prevention protocols (impractical)
1. Every transaction should, before it starts, lock all items it needs at the same time.

Partial locks result in a failured transaction.
2. Introduce an arbitrary linear order between the items and demand that the locking

of these items should be performed according to this order.
T1: Lock A; Lock B; ...
T2: Lock A; Lock B; ...

3. Use time stamps to create priorities between transactions.

Deadlock detection and timeouts (practical)
4. Create a wait-for graph that keeps track of the transactions that other transactions

are waiting for. Then check periodically if there is any circularity in the graph.
Stop transactions that causes deadlock.

5. Timeouts - abort transactions that have been waiting for a defined threshold time.

Kjell Orsborn 4/29/08

32UU - IT - UDBL

Other pitfalls of lock-based protocols

• The potential for deadlock exists in most locking protocols -
deadlocks are a necessary evil.

• Starvation is also possible if concurrency control manager is
badly designed. For example:
– A transaction may be waiting for an write-lock on an item, while a

sequence of other transactions request and are granted an read-lock on
the same item.

– The same transaction is repeatedly rolled back due to deadlocks.
• Concurrency control manager can be designed to prevent

starvation using some form of prioritization.

Kjell Orsborn 4/29/08

33UU - IT - UDBL

Optimistic techniques - shadow paging

• Is based on an optimistic assumption that conflicts are seldom.
• Let transactions execute concurrently and control if they have

interacted in a non-serializable manner when they are to be
finished.

• If conflicts occur, one of the transactions can be aborted.
• The technique is combined with shadow paging where each

transaction make updates on their own copy of data in a way
that concurrent transactions do not “see” updates from another
transaction.

