DATABASE TECHNOLOGY - 1MB025 (also 1DL029, 1DL300+1DL400)

Spring 2008

An introductury course on database systems

http://user.it.uu.se/~udbl/dbt-vt2008/ alt. http://www.it.uu.se/edu/course/homepage/dbastekn/vt08/

Kjell Orsborn Uppsala Database Laboratory Department of Information Technology, Uppsala University, Uppsala, Sweden

Introduction to Relational Algebra

Elmasri/Navathe ch 6 Padron-McCarthy/Risch ch 10

Kjell Orsborn

Department of Information Technology Uppsala University, Uppsala, Sweden

2

Query languages

- Languages where users can express what information to retrieve from the database.
- Categories of query languages:
 - Procedural
 - Non-procedural (declarative)
- Formal ("pure") languages:
 - Relational algebra
 - Relational calculus
 - Tuple-relational calculus
 - Domain-relational calculus
 - Formal languages form underlying basis of query languages that people use.

Relational algebra

- Relational algebra is a procedural language
- Operations in relational algebra takes two or more relations as arguments and return a new relation.
- Relational algebraic operations:
 - Operations from set theory:
 - Union, Intersection, Difference, Cartesian product
 - Operations specifically introduced for the relational data model:
 - Select, Project, Join
- It have been shown that the *select*, *project*, *union*, *difference*, and *cartesian product* operations form a complete set. That is any other relational algebra operation can be expressed in these.

Operations from set theory

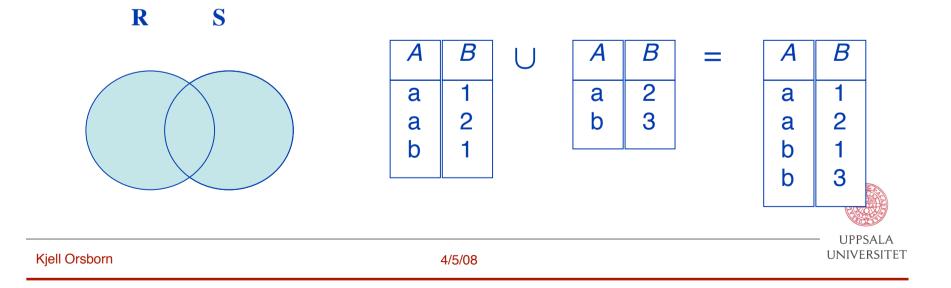
- Relations are required to be **union compatible** to be able to take part in the union, intersection and difference operations.
- Two relations R_1 and R_2 is said to be union-compatible if:

$$\begin{array}{l} \mathsf{R}_1 \subseteq \mathsf{D}_1 \times \mathsf{D}_2 \times \ldots \times \mathsf{D}_n \text{ and } \\ \mathsf{R}_2 \subseteq \mathsf{D}_1 \times \mathsf{D}_2 \times \ldots \times \mathsf{D}_n \end{array}$$

i.e. if they have the same degree and the same domains.

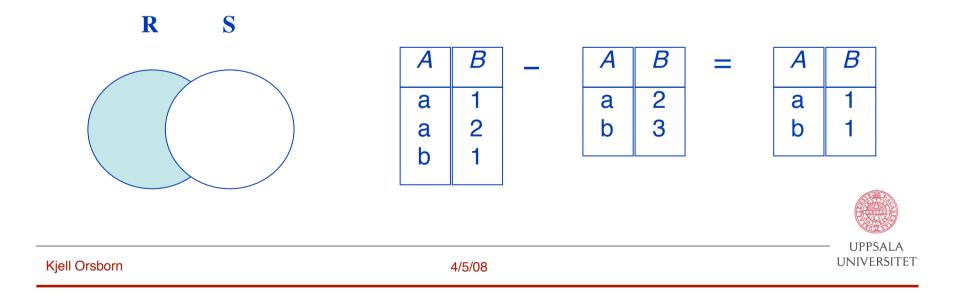
Union operation

- The **union** of two union-compatible relations *R* and *S* is the set of all tuples that either occur in *R*, *S*, or in both.
- Notation: $R \cup S$
- Defined as: $R \cup S = \{t \mid t \in R \text{ or } t \in S\}$
- For example:



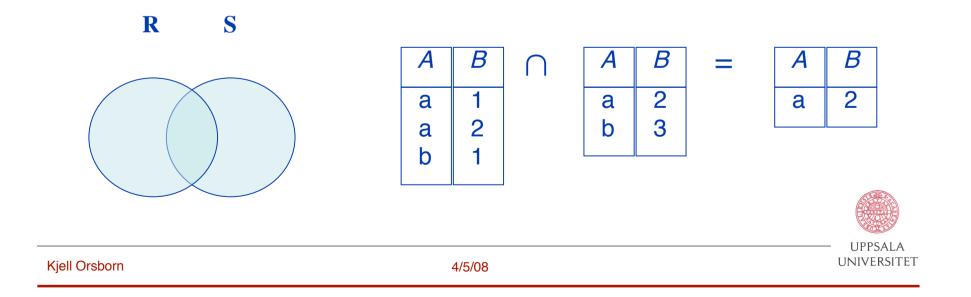
Difference operation

- The **difference** between two union-compatible sets *R* and *S* is the set of all tuples that occur in *R* but not in *S*.
- Notation: R S
- Defined as: $R S = \{t \mid t \in R \text{ and } t \notin S\}$
- For example:



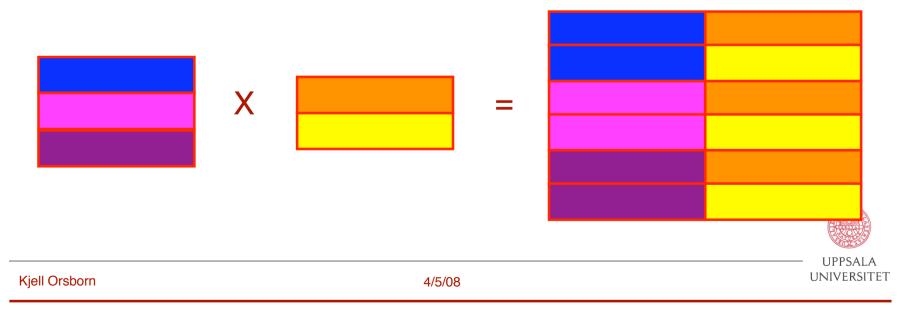
Intersection

- The **intersection** of two union-compatible sets *R* and *S*, is the set of all tuples that occur in both *R* and *S*.
- Notation: $R \cap S$
- Defined as: $R \cap S = \{t \mid t \in R \text{ and } t \in S\}$
- For example:

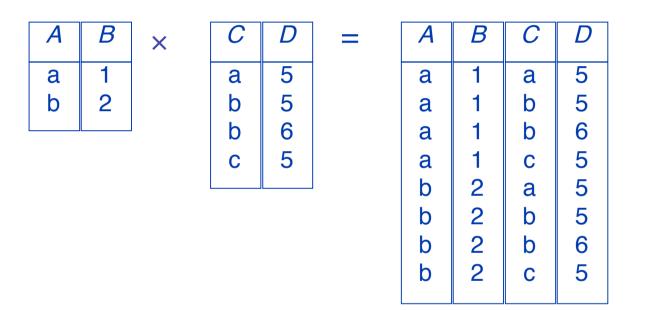


Cartesian product

- Let R and S be relations with k1 and k2 arities resp. The cartesian product of R and S is the set of all possible k₁+k₂ tuples where the first k₁ components constitute a tuple in R and the last k₂ components a tuple in S.
- Notation: R × S
- Defined as: $R \times S = \{t q \mid t \in R \text{ and } q \in S\}$
- Assume that attributes of r(R) and s(S) are disjoint. (i.e. $R \cap S = \emptyset$). If attributes of r(R) and s(S) are not disjoint, then renaming must be used.



Cartesian product example



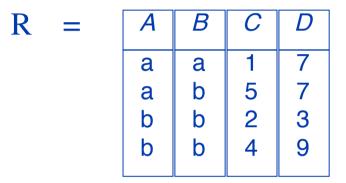
Selection operation

- The selection operator, σ , selects a specific set of tuples from a relation according to a selection condition (or selection predicate) *P*.
- Notation: $\sigma_p(\mathbf{R})$
- Defined as: $\sigma_p(R) = \{t \mid t \in R \text{ and } P(t)\}$ (i.e. the set of tuples t in *R* that fulfills the condition *P*)
- Where *P* is a logical expression^(*) consisting of terms connected by:
 ∧ (and), ∨ (or), ¬ (not)
 and each term is one of:
 <attribute> op <attribute> or <constant>
 where op is one of: =, ≠, >, ≥, <, ≤

Example: $\sigma_{SALARY>30000}(EMPLOYEE)$

(*) a formula in propositional calculus

Selection example



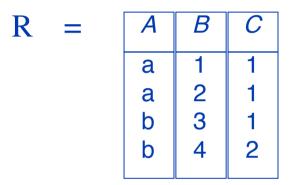
$$^{O}A = B \land D > 5^{(R)} = \begin{bmatrix} A & B & C & D \\ a & a & 1 & 7 \\ b & b & 4 & 9 \end{bmatrix}$$

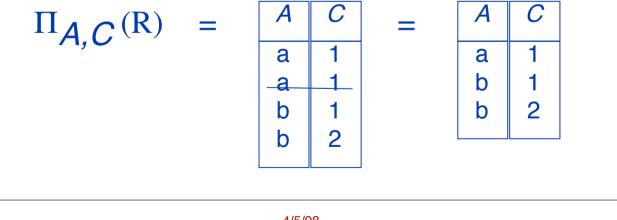
Projection operation

- The projection operator, Π, picks out (or projects) listed columns from a relation and creates a new relation consisting of these columns.
- Notation: $\Pi_{A_1, A_2, \dots, A_k}(R)$ where A_1, A_2 are attribute names and R is a relation name.
- The result is a new relation of k columns.
- Duplicate rows removed from result, since relations are sets.

Example: ПLNAME, FNAME, SALARY (EMPLOYEE)

Projection example



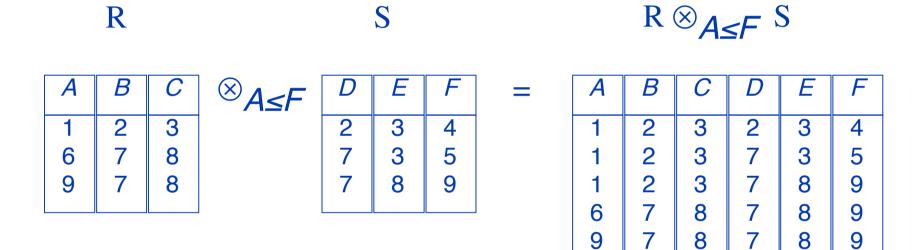


UPPSALA UNIVERSITET

Join operator

- The **join** operator, ⊗ (almost, correct ⋈), creates a new relation by joining related tuples from two relations.
- Notation: $\mathbb{R} \otimes_{C} \mathbb{S}$ *C* is the join condition which has the form $A_{r} \theta A_{s}$, where θ is one of $\{=, <, >, \le, \ge, \ne\}$. Several terms can be connected as C_{1} $\wedge C_{2} \wedge ... C_{k}$.
- A join operation with this kind of general join condition is called "Theta join".

Example Theta join

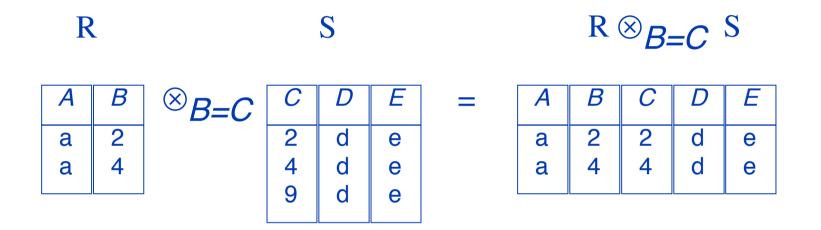


Equijoin

- The same as join but it is required that attribute A_r and attribute A_s should have the same value.
- Notation: $\mathbf{R} \otimes_{\mathbf{C}} \mathbf{S}$

C is the join condition which has the form $A_r = A_s$. Several terms can be connected as $C_1 \wedge C_2 \wedge ... C_k$.

Example Equijoin

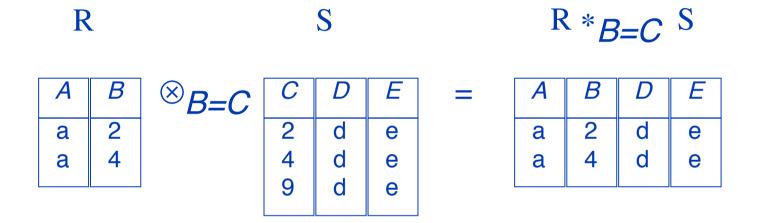


Natural join

- Natural join is equivalent with the application of join to R and S with the equality condition $A_r = A_s$ (i.e. an equijoin) and then removing the redundant column A_s in the result.
- Notation: R * $A_{r,As}$ S $A_{r,A_{s}}$ are attribute pairs that should fulfil the join condition which has the form $A_{r} = A_{s}$. Several terms can be connected as $C_{1} \wedge C_{2} \wedge ... C_{k}$.

19

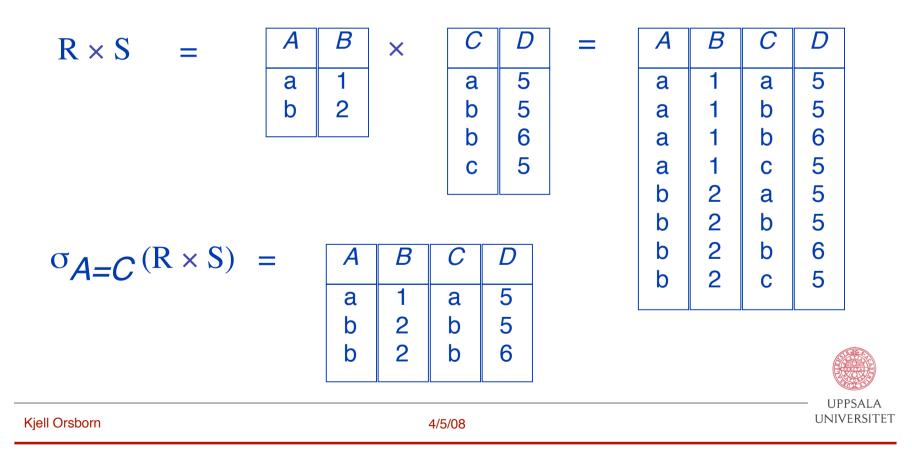
Example Natural join



4/5/08

Composition of operations

- Expressions can be built by composing multiple operations
- Example: $\sigma_{A=C}(\mathbf{R} \times \mathbf{S})$



Assignment operation

- The assignment operation (←) makes it possible to assign the result of an expression to a temporary relation variable.
- Example:

 $temp \leftarrow \sigma_{dno = 5} (EMPLOYEE)$ result \leftarrow $\prod_{fname, Iname, salary} (temp)$

- The result to the right of the ← is assigned to the relation variable on the left of the ←.
- The variable may be used in subsequent expressions.

Renaming relations and attribute

- The assignment operation can also be used to rename relations and attributes.
- Example:

NEWEMP $\leftarrow \sigma_{dno} = 5^{(EMPLOYEE)}$

 $R(FIRSTNAME,LASTNAME,SALARY) \leftarrow \Pi_{fname,Iname,salary} (NEWEMP)$

Division operation

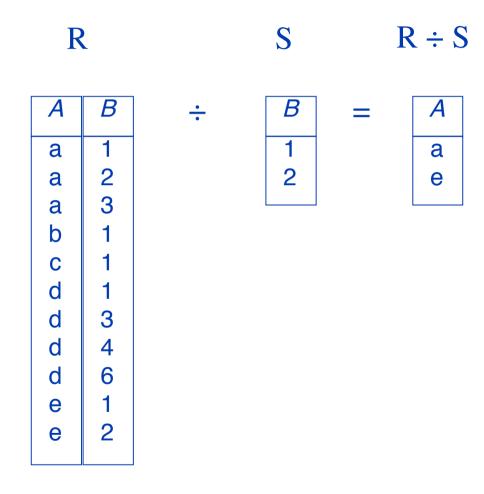
- Suited to queries that include the phrase "for all".
- Let *R* and *S* be relations on schemas *R* and *S* respectively, where

 $R = (A_1, ..., A_m, B_1, ..., B_n)$ $S = (B_1, ..., B_n)$

• The result of $R \div S$ is a relation on the schema $R - S = (A_1, ..., A_m)$

 $R \div S = \{ t \mid t \in \prod_{R-S} (R) \forall u \in S \land tu \in R \}$

Example Division operation



Relation algebra as a query language

- Relational schema: *supplies(sname, iname, price)*
- "What is the names of the suppliers that supply cheese?" $\pi_{sname}(\sigma_{iname='CHEESE'}(SUPPLIES))$
- "What is the name and price of the items that cost less than 5 \$ and that are supplied by WALMART"

 π iname,price^{(σ}sname='WALMART' \land price < 5 (SUPPLIES))

Additional relational operations

- Outer join and outer union (presented together with SQL)
- Aggregation operations (presented together with SQL)
- Update operations (presented together with SQL)
 - (not part of pure query language)

27