DATABASE TECHNOLOGY - 1DL116

Spring 2007

An introductury course on database systems

http://user.it.uu.se/~udbl/dbt-vt2007/
alt. http://www.it.uu.se/edu/course/homepage/dbastekn/vt07/

Kjell Orsborn
Uppsala Database Laboratory
Department of Information Technology, Uppsala University,
Uppsala, Sweden

Introduction to the Relational Model

Elmasri/Navathe ch 5, 7
Padron-McCarthy/Risch ch 5, 6

Kjell Orsborn

Department of Information Technology
Uppsala University, Uppsala, Sweden

The Relational Model

- The relational model was introduced by Dr. Edgar (Ted) F. Codd (1924-2003) in 1970.
- Dr. Codd. a mathematician from Oxford (UK), was at that time working as an IBM researcher in the IBM San Jose Research Laboratory (USA).
- Many DBMS's are based on the relational data model.
- It support simple declarative, but yet powerful, languages for describing operations on data.
- Operations in the relational model applies to relations (tables) and produce new relations.
- This means that an operation can be applied to the result of another operation and that several different operations can be combined.
- Operations are described in an algebraic notation that is based on relational algebra.

Relations as mathematical objects

- In set theory, a relation is defined as a subset of the product set (cartesian product) of a number of domains (value sets).
- The product set of the domains $\mathrm{D}_{1}, \mathrm{D}_{2}, \ldots, \mathrm{D}_{\mathrm{n}}$ is written as $\mathrm{D}_{1} \times \mathrm{D}_{2} \times \ldots \times \mathrm{D}_{\mathrm{n}}$.
- $\mathbf{D}_{\mathbf{1}} \times \mathbf{D}_{\mathbf{2}} \times \ldots \times \mathbf{D}_{\mathbf{n}}$ constitute the set of all ordered sets $\left\langle\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}>\right.$ such that v_{i} belongs to D_{i} for all i.
- If $\mathrm{n}=2, \mathrm{D}_{1}=\{\mathrm{T}, \mathrm{F}\}$ and $\mathrm{D}_{2}=\{\mathrm{P}, \mathrm{Q}, \mathrm{R}\}$ one gets the product sets:
$\left.\left.\mathrm{D}_{1} \times \mathrm{D}_{2}=\{<\mathrm{T}, \mathrm{P}\rangle,<\mathrm{T}, \mathrm{Q}\right\rangle,\langle\mathrm{T}, \mathrm{R}\rangle,\langle\mathrm{F}, \mathrm{P}\rangle,\langle\mathrm{F}, \mathrm{Q}\rangle,\langle\mathrm{F}, \mathrm{R}\rangle\right\}$
$\mathrm{D}_{2} \times \mathrm{D}_{1}=\{\langle\mathrm{P}, \mathrm{T}\rangle,\langle\mathrm{P}, \mathrm{F}\rangle,\langle\mathrm{Q}, \mathrm{T}\rangle,\langle\mathrm{Q}, \mathrm{F}\rangle,\langle\mathrm{R}, \mathrm{T}\rangle,\langle\mathrm{R}, \mathrm{F}\rangle\}$
- For example, we have the relations:

$$
\begin{array}{ll}
\mathrm{R}_{1} \subseteq \mathrm{D}_{2} \times \mathrm{D}_{1} & \mathrm{R}_{1}=\{\langle\mathrm{P}, \mathrm{~T}\rangle,\langle\mathrm{Q}, \mathrm{~T}\rangle,\langle\mathrm{R}, \mathrm{~T}\rangle\} \\
\mathrm{R}_{2} \subseteq \mathrm{D}_{2} \times \mathrm{D}_{1} & \mathrm{R}_{2}=\{\langle\mathrm{P}, \mathrm{~T}\rangle,\langle\mathrm{P}, \mathrm{~F}\rangle\}
\end{array}
$$

- Members of a relation is called tuples. If the relation is of degree n, the tuples are called n-tuples.

Relation schema and instance

- $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}$ are attributes
- $R=\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ is a relation schema
- Customer-schema(customer-name, customer-street, customer-city)
- $r(R)$ is a relation on the relation schema R
- customer (Customer-schema)
an attribute
.
- The current values (relation instance) of a relation are specified by a table.
- An element t of r is a tuple - represented by a row in a table customer

customer a relation	customer-name	customer-street	customer-city
	Jones	Main	Harrison
	Smith	North	Rye
	Curry	North	Rye
	Lindsay	Park	Pittsfield

First Normal Form

- Only simple or atomic values are allowed in the relational model.
- Attributes is not allowed to have composite or multiple values.
- The theory for the relational model is based on these assumptions which is called:

The first normal form assumption

Null values

- A special value, null or \perp, can sometimes be used as an attribute value.
- Every occurence of null is unique. Thus, two occurences of null is not considered to be equal even if they are represented by the same symbol.
- null is used:
- when one does not know the actual value of an attribute.
- when a certain attribute does not have a value.
- when an attribute is not applicable.
- Examples of the use of null are showed later.

Keys

- Because relations are sets, all tuples in the relation are different.
- There is usually a subset k of the attributes in a relation schema R, i.e. $k \subseteq R$, that has the characteristic that if the tuples $\mathrm{t} 1, \mathrm{t} 2 \in \mathrm{r}(\mathrm{R})$ and $\mathrm{t} 1 \neq \mathrm{t} 2$, the following holds:
$\mathrm{t} 1[\mathrm{k}] \neq \mathrm{t} 2[\mathrm{k}]$ (i.e. the value of k in $\mathrm{t} 1 \neq$ the value of k in t 2)
- Every such subset k is called a superkey for R .

Keys - continued...

- A superkey k is minimal if there is no other superkey k such that $k^{\prime} \subset k$.
- Every minimal superkey (NOTE! there can be more than one) is called a candidate key for R.
- The candidate key chosen by the database designer as the key for R is called R:s primary key or just key.
- In addition, term foreign key is used when a tuple is referenced, from another relation, with its key.

Determining keys from E-R types

- Strong entity type. The primary key of the entity type becomes the primary key of the relation.
- Weak entity type. The primary key of the relation consists of the union of the primary key of the strong entity type and the discriminator of the weak entity type.
- Relationship type. The union of the primary keys of the related entity types becomes a super key of the relation.
- For binary many-to-many relationship types, above super key is also the primary key.
- For binary many-to-one relationship types, the primary key of the "many" entity type becomes the relation's primary key.
- For one-to-one relationship types, the relation's primary key can be that of either entity type.

Integrity constraints

for a relational database schema

- 1. Domain constraint
- attribute values for attribute A shall be atomic values from dom(A)
- 2. Key constraint
- candidate keys for a relation must be unique
- 3. Entity integrity constraint
- no primary key is allowed to have a null value
- 4. Referential integrity constraint
- a tuple that refers to another tuple in another relation must refer to an existing tuple
- 5. Semantic integrity constraint
- e.g. "an employee's total work time per week can not exceed 40 hours for all projects taken all together"

Steps in translation from E-R model to relational model

- Translation of entity types and their attributes
- Step 1) Entity types
- Step 2) Weak entity types
- Translation of relationships
- Step 3) 1-1 Relationship
- Step 4) 1-N Relationship
- Step 5) M-N Relationship
- Translation of multivalued attributes and relationships
- Step 6) Multivalued attributes
- Step 7) Multivalued relationships

Translating entity types and their attributes

- Step 1: Entity types - a strong entity type reduces to a table with the same attributes.
- Key attributes (primary key - pk) is made the primary key column(s) for the table. Each attribute gets their own column.
- Composite attributes are normally represented by their simple components.
- Example customer schema and table:

Customer(social-security, customer-name, c-street, c-city)

social-security	customer-name	c-street	c-city
$321-12-3123$	Jones	M ain	Harrison
$019-28-3746$	Smith	North	Rye
$677-89-9011$	Hayes	M ain	Harrison

Translating entity types cont. . .

- Step 2: Weak entity types - a weak entity type becomes a table that includes a column for the primary key of the identifying strong entity type .

pk	a 1

Translating entity types cont. . .

- The table corresponding to a relationship type linking a weak entity type to its identifying strong entity type is redundant.
- Example of the payment schema and table:
- The payment table already contains the information that would appear in the loanpayment table (i.e., the columns loan-number and payment-no).

Payment(loan-number, payment-no, pay-date, amount)

loan-number	payment-no	pay-date	amount
$\mathrm{L}-17$	5	10 May 1996	50
$\mathrm{~L}-23$	11	17 May 1996	75
$\mathrm{~L}-15$	22	23 May 1996	300

Translating relationship types

- Step 3: 1-1 Relationship types
- The foreign key column (fk) is a copy of the other entity's primary key column (pk). The values in a fk-column point to unique row in the other table, and thus implement the relationship.

Alt 1:

Alt 2:

Translating 1-1 relationship types cont. . .

Alt 4:

Translating relationship .. . cont. . .

- Step 4: 1-N Relationship types
- Include the primary key of the " 1 -side" as a foreign key on the " N -side", (i.e. the foreign key column is placed on the entity on the N -side).
- Alternatively, an extra table (R) is created whose primary key is a foreign key composed by the primary key from the N -side.

Translating relationship ... cont. . .

- Step 5: M-N Relationship types
- Always a separate table with columns for the primary keys of the two participating entity types, and any descriptive attributes of the relationship type.

Translating relationship . . . cont. . .

- Step 6: Multivalued attributes
- A separate table is created for the multivalued attribute. Its primary key is composed of the owning entity's primary key, and the attribute value itself.

E-MVA

Translating relationship ... cont. . .

- Step 7: Multivalued relationship types
- First try to remove multivalued relationships on the E-R model level by model transformation.
- A separate table is created, with foreign keys to all tables that are included in the relationship. Its primary key is composed of all foreign keys.

R

$\underline{f k 1}$	$\underline{f k 2}$	$\underline{f k} 3$	a

Translating relationship ... cont. . .

- Step 7: Multivalued relationship types continued
- In the case where R is $1-\mathrm{N}-\mathrm{N}$, the primary key on R shall not include the fk for the table with cardinality 1 .

Translating Specialization/Generalization

- Alternative a) in Elmasri/Navathe

E1

E2

E3

Translating aggregation

- Translating an implicit aggregation relationship type.

- Translating an objectified aggregation relationship type.

Example E-R to relational model translation

