DATABASE TECHNOLOGY - 1DL116

Spring 2007

An introductury course on database systems

http://user.it.uu.se/~udbl/dbt-vt2007/alt. http://www.it.uu.se/edu/course/homepage/dbastekn/vt07/

Kjell Orsborn
Uppsala Database Laboratory
Department of Information Technology, Uppsala University,
Uppsala, Sweden

Introduction to Relational Algebra

Elmasri/Navathe ch 6
Padron-McCarthy/Risch ch 10

Kjell Orsborn

Department of Information Technology Uppsala University, Uppsala, Sweden

Query languages

- Languages where users can express what information to retrieve from the database.
- Categories of query languages:
 - Procedural
 - Non-procedural (declarative)
- Formal ("pure") languages:
 - Relational algebra
 - Relational calculus
 - Tuple-relational calculus
 - Domain-relational calculus
 - Formal languages form underlying basis of query languages that people use.

Relational algebra

- Relational algebra is a procedural language
- Operations in relational algebra takes two or more relations as arguments and return a new relation.
- Relational algebraic operations:
 - Operations from set theory:
 - Union, Intersection, Difference, Cartesian product
 - Operations specifically introduced for the relational data model:
 - Select, Project, Join
- It have been shown that the *select*, *project*, *union*, *difference*, and *cartesian product* operations form a complete set. That is any other relational algebra operation can be expressed in these.

Operations from set theory

- Relations are required to be **union compatible** to be able to take part in the union, intersection and difference operations.
- Two relations R_1 and R_2 is said to be union-compatible if:

$$\begin{array}{l} \mathbf{R}_1 \subseteq \mathbf{D}_1 \times \mathbf{D}_2 \times ... \times \mathbf{D}_n \text{ and } \\ \mathbf{R}_2 \subseteq \mathbf{D}_1 \times \mathbf{D}_2 \times ... \times \mathbf{D}_n \end{array}$$

i.e. if they have the same degree and the same domains.

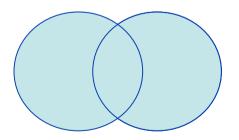
Union operation

• The **union** of two union-compatible relations R and S is the set of all tuples that either occur in R, S, or in both.

• Notation: $R \cup S$

• Defined as: $R \cup S = \{t \mid t \in R \text{ or } t \in S\}$

• For example:



A	В
а	1
a	2
b	1

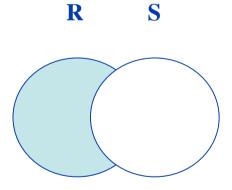
J	Α	В
	а	2
	b	3

A	В
а	1
a	2
b	1 1
b	3

UPPSALA UNIVERSITET

Difference operation

- The **difference** between two union-compatible sets *R* and *S* is the set of all tuples that occur in *R* but not in *S*.
- Notation: R S
- Defined as: $R S = \{t \mid t \in R \text{ and } t \notin S\}$
- For example:



A	B
a	1
a	2
b	1

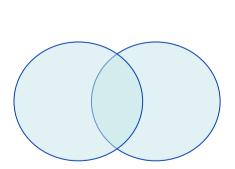
$\mid B \mid$
2
3

Α	В
а	1
b	1

Intersection

- The **intersection** of two union-compatible sets *R* and *S*, is the set of all tuples that occur in both *R* and *S*.
- Notation: $R \cap S$
- Defined as: $R \cap S = \{t \mid t \in R \text{ and } t \in S\}$
- For example:

R



S

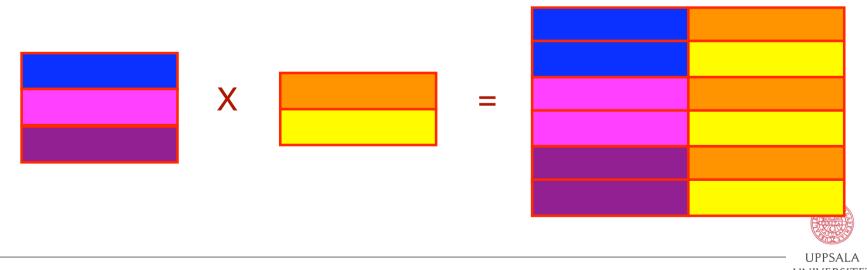
A	В
а	1
a	2
b	1

Α	В
а	2
b	3

Α	В
а	2

Cartesian product

- Let R and S be relations with k1 and k2 arities resp. The **cartesian product** of R and S is the set of all possible k₁+k₂ tuples where the first k₁ components constitute a tuple in R and the last k₂ components a tuple in S.
- Notation: R × S
- Defined as: $R \times S = \{t \ q \mid t \in R \text{ and } q \in S\}$
- Assume that attributes of r(R) and s(S) are disjoint. (i.e. $R \cap S = \emptyset$). If attributes of r(R) and s(S) are not disjoint, then renaming must be used.



Kjell Orsborn

Cartesian product example

A	B	
a b	1 2	

C	D
а	5
b	5
b	6
С	5

Α	В	C	D
а	1	а	5
a	1	b	5
a	1	b	6
a	1	c a	5
b	2	a	5
b	2	b	5
b	2 2 2	b	5 5 6 5 5 5 6 5
b	2	С	5

Selection operation

- The selection operator, σ , selects a specific set of tuples from a relation according to a selection condition (or selection predicate) P.
- Notation: $\sigma_p(R)$
- Defined as: $\sigma_p(R) = \{t \mid t \in R \text{ and } P(t) \}$ (i.e. the set of tuples t in R that fulfills the condition P)
- Where P is a logical expression^(*) consisting of terms connected by:
 ∧ (and), ∨ (or), ¬ (not)

and each term is one of:

<a tribute > op <a tribute > or <a tribute > or <a tribute > op is one of: =, \neq , >, \geq , <, \leq

Example: $\sigma_{SALARY>30000}$ (EMPLOYEE)

(*) a formula in propositional calculus

Selection example

$$R = \begin{array}{c|cccc} A & B & C & D \\ \hline a & a & 1 & 7 \\ a & b & 5 & 7 \\ b & b & 2 & 3 \\ b & b & 4 & 9 \end{array}$$

$${}^{\circ}A = B \land D > 5^{(R)} = \begin{bmatrix} A & B & C & D \\ a & a & 1 & 7 \\ b & b & 4 & 9 \end{bmatrix}$$

Projection operation

- The **projection** operator, Π , picks out (or projects) listed columns from a relation and creates a new relation consisting of these columns.
- Notation: $\Pi_{A_1,A_2,...,A_k}(R)$ where A_1,A_2 are attribute names and R is a relation name.
- The result is a new relation of k columns.
- Duplicate rows removed from result, since relations are sets.

Example: Π_{LNAME},FNAME,SALARY (EMPLOYEE)

Projection example

$$R = \begin{array}{c|cccc} A & B & C \\ \hline a & 1 & 1 \\ a & 2 & 1 \\ b & 3 & 1 \\ b & 4 & 2 \\ \end{array}$$

$$\Pi_{A,C}(R) = \begin{bmatrix} A & C \\ a & 1 \\ b & 1 \\ b & 2 \end{bmatrix} = \begin{bmatrix} A & C \\ a & 1 \\ b & 1 \\ b & 2 \end{bmatrix}$$

Join operator

- The **join** operator, \otimes (almost, correct \bowtie), creates a new relation by joining related tuples from two relations.
- Notation: $R \otimes_C S$ C is the join condition which has the form $A_r \theta A_S$, where θ is one of $\{=, <, >, \le, \ge, \ne\}$. Several terms can be connected as $C_1 \wedge C_2 \wedge ... C_k$.
- A join operation with this kind of general join condition is called "Theta join".

Example Theta join

4/23/07

R

S

 $R \otimes_{A \leq D} S$

A	В	C
1	2	3
6	7	8
9	7	8

$$\otimes$$
 $A \leq D$

В	C	D
2	3	4
7	3	5
7	8	9

Kjell Orsborn

Equijoin

- The same as join but it is required that attribute A_r and attribute A_s should have the same value.
- Notation: $R \otimes_C S$ C is the join condition which has the form $A_r = A_s$. Several terms can be connected as $C_1 \wedge C_2 \wedge ... C_k$.

Example Equijoin

R

S

 $R \otimes_{B=C} S$

$$\otimes$$
B=C

d	е
d	е
d	е
	d

Natural join

- Natural join is equivalent with the application of join to R and S with the equality condition $A_r = A_s$ (i.e. an equijoin) and then removing the redundant column A_s in the result.
- Notation: $R *_{Ar,As} S$ $A_r A_s$ are attribute pairs that should fulfil the join condition which has the form $A_r = A_s$. Several terms can be connected as $C_1 \land C_2 \land ... C_k$.

Example Natural join

R

S

$$R *_{B=C} S$$

E

е

$$\otimes$$
B=C

D	E
d	е
d	е
d	е
	d

Composition of operations

- Expressions can be built by composing multiple operations
- Example: $\sigma_{A=C}(R \times S)$

$$R \times S =$$

A	В
а	1
b	2

C	D
а	5
b	5
b	6
С	5

$$\sigma_{A=C}(R \times S) =$$

A	В	C	D
а	1	а	5
b	2	b	5
b	2	b	6

Α	В	C	D
а	1	а	5
a	1	b	5
a	1	b	6
a	1	С	5 5
b	2	a	5
b	2	b	5
b	2 2 2	b	6
b	2	С	5

Assignment operation

- The assignment operation (←) makes it possible to assign the result of an expression to a temporary relation variable.
- Example:

```
temp \leftarrow \sigma_{dno = 5} (EMPLOYEE)
result \leftarrow \prod_{fname, Iname, salary} (temp)
```

- The result to the right of the \leftarrow is assigned to the relation variable on the left of the \leftarrow .
- The variable may be used in subsequent expressions.

Renaming relations and attribute

- The assignment operation can also be used to rename relations and attributes.
- Example:

$$NEWEMP \leftarrow \sigma_{dno} = 5^{(EMPLOYEE)}$$

$$R(FIRSTNAME,LASTNAME,SALARY) \leftarrow \Pi_{fname,lname,salary} (NEWEMP)$$

Division operation

- Suited to queries that include the phrase "for all".
- Let R and S be relations on schemas R and S respectively, where

$$R = (A_1, ..., A_m, B_1, ..., B_n)$$

 $S = (B_1, ..., B_n)$

• The result of R ÷ S is a relation on the schema $R - S = (A_1, ..., A_m)$

$$R \div S = \{ t \mid t \in \Pi_{R-S}(R) \ \forall u \in S \land tu \in R \}$$

Example Division operation

R

S

 $R \div S$

Α	В
а	1
a	2
a	3
b	1
С	1
d	1
d	3
d	4
d	6
е	1
е	2

1 2 a e

Relation algebra as a query language

- Relational schema: supplies(sname, iname, price)
- "What is the names of the suppliers that supply cheese?"
 - $\pi_{sname}(\sigma_{iname='CHEESE'}(SUPPLIES))$
- "What is the name and price of the items that cost less than 5 \$ and that are supplied by WALMART"
 - π iname,price $(\sigma_{sname='WALMART'} \land price < 5 (SUPPLIES))$

