
Mimer SQL
User’s Manual

Version 8.2

Copyright © 2000 Mimer Information Technology AB

Mimer Information Technology AB
Editor's Note:There are some blank pages between chapters in this document. This is to produce the correct layout when printed in Duplex (double-sided) format using A4 paper.The syntax diagrams in this manual may not appear correctly at certain zoom percentages, depending on screen and window size. If lines are missing from the syntax diagrams, adjust the zoom percentage until you find the optimal view settings for your screen and window size.

http://www.mimer.com

Mimer SQL version 8.2 User’s Manual
Second revised edition

December, 2000

Copyright © 2000 Mimer Information Technology AB.

Published by Mimer Information Technology AB,
P.O. Box 1713,
SE-751 47 Uppsala, Sweden.
Tel +46(0)18-18 50 00.
Fax +46(0)18-18 51 00.
Internet: http://www.mimer.com

Produced by Mimer Information Technology AB, Uppsala, Sweden.

All rights reserved under international copyright conventions.

The contents of this manual may be printed in limited quantities for use at a
Mimer SQL installation site. No parts of the manual may be reproduced for sale
to a third party.

http://www.mimer.com

Foreword i

Mimer SQL version 8.2
User’s Manual

FOREWORD

Documentation objectives
This manual is intended primarily for users of Mimer SQL who have little or
no experience of SQL (Structured Query Language). It describes how to use
Mimer SQL for creating and manipulating the database contents without
attempting to give an exhaustive description of Mimer SQL.

Refer to the Mimer SQL Reference Manual for a complete syntax description
of the statements supported in Mimer SQL.

Also included in this manual is a detailed description of the facilities provided
in BSQL.

Prerequisites
There are no prerequisites for users of this manual. However, it is to the user's
advantage to be familiar with the principles of the relational database model
when working with BSQL.

ii Foreword

Mimer SQL version 8.2
User’s Manual

Organization of this manual
This manual is divided into two main sections, dealing respectively with SQL
database management facilities and the BSQL interface.

Chapter 1 is a brief introduction to this manual.

Chapters 2-8 describe how to use SQL for database management, and may be
used as a guide to SQL for users not familiar with the language:

Chapter 2 presents the general concepts of the Mimer SQL. To a large
extent, these concepts are common to other database
management systems which support the SQL standards.

Chapter 3 describes how to manage connections (logging on) to a Mimer
SQL database.

Chapter 4 describes how to retrieve data from a database using SELECT
statements.

Chapter 5 describes how to change the database contents using
DELETE, INSERT and UPDATE statements.

Chapter 6 describes transaction handling in the Mimer SQL database
system.

Chapter 7 describes how to create database objects (idents, databanks,
domains, tables, triggers, modules, functions, procedures etc.).

Chapter 8 describes how to manage privileges in the database.

Chapters 9-11 describe the BSQL facility:

Chapter 9 describes the BSQL facility.

Chapter 10 describes how variables can be handled in BSQL.

Chapter 11 describes error handling in BSQL.

The manual also contains the following appendices:

Appendix A lists the structure and contents of an example database
provided with the Mimer SQL distribution and used in the
examples in this manual.

Foreword iii

Mimer SQL version 8.2
User’s Manual

Related Mimer SQL publications
• Mimer SQL Reference Manual contains a complete description of the

syntax and usage of all statements in Mimer SQL and is a necessary
complement to this manual.

• Mimer SQL Programmer's Manual contains a description of how
Mimer SQL can be used within the context of application programs,
written in conventional programming languages.

• Mimer SQL System Management Handbook describes system
administration functions, including export/import, backup/restore,
databank shadowing and the statistics functionality. The information in this
manual is used primarily by the system administrator, and is not required
by application program developers. The SQL statements which are part of
the System Management API are described in the Mimer SQL Reference
Manual.

• Mimer SQL platform-specific documents containing platform-specific
information. A set of one or more documents is provided, where required,
for each platform on which Mimer SQL is supplied.

• Mimer SQL Release Notes contain general and platform-specific
information relating to the Mimer SQL release for which they are supplied.

Suggestions for further reading
We can recommend to users of Mimer SQL the many works of C. J. Date. His
insight into the potential and limitations of SQL, coupled with his pedagogical
talents, makes his books invaluable sources of study material in the field of
SQL theory and usage. In particular, we can mention:

A Guide to the SQL Standard (Fourth Edition, 1997).
ISBN: 0-201-96426-0. This work contains much constructive criticism and
discussion of the SQL standard, including SQL99.

For JDBC users:

JDBC information can be found on the internet at the following web addresses:
http://java.sun.com/products/jdbc/ and http://www.mimer.com/jdbc/.

For information on specific JDBC methods, please see the online
documentation for the java.sql package. This documentation is normally
included in the Java development environment.

JDBC™ API Tutorial and Reference, 2nd edition. ISBN: 0-201-43328-1. A
useful book published by JavaSoft.

For ODBC users:

Microsoft ODBC 3.0 Programmer’s Reference and SDK Guide for
Microsoft Windows and Windows NT. ISBN: 1-57231-516-4. This manual
contains information about the Microsoft Open Database Connectivity (ODBC)
interface, including a complete API reference.

Official documentation of the accepted SQL standards may be found in:

ISO/IEC 9075:1999(E) Information technology - Database languages -
SQL. This document contains the standard referred to as SQL99.

http://java.sun.com/products/jdbc/
http://www.mimer.com/jdbc/

iv Foreword

Mimer SQL version 8.2
User’s Manual

ISO/IEC 9075:1992(E) Information technology - Database languages -
SQL. This document contains the standard referred to as SQL92.

ISO/IEC 9075-4:1996(E) Database Language SQL - Part 4: Persistent
Stored Modules (SQL/PSM). This document contains the standard which
specifies the syntax and semantics of a database language for managing and
using persistent routines.

CAE Specification, Data Management: Structured Query Language
(SQL), Version 2. X/Open document number: C449. ISBN: 1-85912-151-9.
This document contains the X/Open-95 SQL specification.

Acronyms, terms and trademarks
IEC International Electrotechnical Commission

ISO International Standards Organization

SQL Structured Query Language

PSM Persistent Stored Modules (i.e. “Stored Procedures”)

X/Open X/Open is a trademark of the X/Open Company

(All other trademarks are the property of their respective holders.)

Contents v

Mimer SQL version 8.2
User’s Manual

CONTENTS

1 INTRODUCTION

2 BASIC CONCEPTS OF MIMER SQL
2.1 The Mimer SQL relational database ..2-1
2.1.1 The data dictionary...2-1
2.1.2 Databanks...2-2
2.1.3 Idents..2-3
2.1.4 Schemas..2-3
2.1.5 Tables ...2-4
2.1.6 Base tables and views...2-5
2.1.7 Unique constraints and indexes ..2-6
2.1.8 Routines (functions and procedures) ..2-6
2.1.9 Triggers ..2-7
2.1.10 Modules..2-7
2.1.11 Synonyms ...2-8
2.1.12 Shadows ...2-8
2.1.13 Sequences...2-8
2.2 Data integrity ...2-10
2.2.1 Domains ...2-10
2.2.2 Foreign keys - referential integrity ...2-10
2.2.3 Check conditions ..2-11
2.2.4 Check options in view definitions ..2-12
2.3 Privileges ...2-12
2.4 Mimer SQL statements ..2-13

3 MANAGING DATABASE CONNECTIONS
3.1 Database connections...3-1
3.1.1 Connecting to a database..3-1
3.1.2 Changing connections ..3-2
3.1.3 Disconnecting...3-2
3.2 Program idents - ENTER and LEAVE ..3-3

4 RETRIEVING DATA FROM TABLES
4.1 Retrieval from single tables ...4-1
4.1.1 Simple retrieval ..4-1
4.1.2 Setting column labels ...4-2
4.1.3 Eliminating duplicate values ..4-3
4.1.4 Selecting specific rows...4-4
4.1.5 Retrieving computed values ...4-8
4.1.6 Using set functions ...4-10
4.1.7 Grouped set functions: the GROUP BY clause..4-12
4.1.8 Selecting groups: the HAVING clause...4-13
4.1.9 Ordering the result table ...4-14
4.1.10 Using scalar functions ..4-15
4.1.11 Using CASE expression ...4-16
4.1.12 Using CAST specification..4-18

vi Contents

Mimer SQL version 8.2
User’s Manual

4.1.13 Datetime arithmetic and functions..4-18
4.2 Retrieving data from more than one table..4-20
4.2.1 The join condition ..4-20
4.2.2 Simple joins..4-21
4.2.3 Outer joins..4-23
4.2.4 Nested selects...4-24
4.2.5 Ordering nested queries..4-26
4.2.6 Correlation names ..4-27
4.2.6.1 Simplifying complex queries ..4-27
4.2.7 Retrieving with EXISTS and NOT EXISTS ..4-29
4.2.8 Retrieval with ALL, ANY, SOME...4-30
4.2.9 Union queries ...4-31
4.3 Handling NULL values..4-34
4.3.1 Searching for NULL...4-35
4.3.2 Null values in ALL, ANY, IN and EXISTS queries4-35
4.4 Conceptual description of the selection process ..4-38

5 DATA MANIPULATION
5.1 Inserting data ...5-1
5.1.1 Inserting explicit values ...5-2
5.1.2 Inserting with a subselect ...5-3
5.1.3 Inserting sequence values...5-3
5.1.4 Inserting NULL values...5-3
5.2 Updating tables ..5-4
5.3 Deleting rows from tables ..5-4
5.4 Calling procedures ...5-5
5.5 Updatable views...5-6

6 MANAGING TRANSACTIONS
6.1 Transaction principles..6-1
6.2 Logging..6-2
6.3 Handling transactions ..6-3
6.3.1 Transaction handling in BSQL...6-3
6.3.2 Optimizing transactions..6-4
6.3.3 Consistency within a transaction ..6-4
6.3.4 Exception diagnostics within transactions..6-5
6.3.5 Default transaction options...6-5

7 DEFINING THE DATABASE
7.1 Creating idents and schemas ..7-1
7.2 Creating databanks...7-3
7.3 Creating sequences ..7-3
7.4 Creating domains ...7-4
7.4.1 Domains with a default value ...7-4
7.4.2 Domains with a check clause ...7-5
7.5 Creating tables ...7-5
7.5.1 Column definitions...7-7
7.5.2 The primary key constraint...7-7
7.5.3 Unique constraint ...7-8
7.5.4 Foreign keys - referential constraints ...7-8
7.5.5 Check constraints ...7-10
7.6 Creating functions, procedures, triggers and modules7-11
7.7 Creating views ...7-13
7.7.1 Check options...7-14
7.8 Creating secondary indexes ...7-14
7.9 Creating synonyms...7-15
7.10 Commenting objects ..7-16
7.11 Altering databanks, tables and idents...7-17

Contents vii

Mimer SQL version 8.2
User’s Manual

7.11.1 Altering a databank ..7-17
7.11.2 Altering tables ..7-17
7.11.3 Altering idents ..7-19
7.11.4 Objects which may not be altered...7-19
7.12 Dropping objects from the database...7-19
7.12.1 Dropping databanks and tables...7-20
7.12.2 Dropping sequences ...7-20
7.12.3 Dropping domains ..7-21
7.12.4 Dropping idents ..7-21
7.12.5 Dropping functions, modules, procedures and triggers7-21

8 DEFINING PRIVILEGES
8.1 Ident hierarchy ...8-2
8.2 Granting privileges...8-3
8.2.1 Granting system privileges ...8-3
8.2.2 Granting object privileges ..8-3
8.2.3 Granting access privileges..8-4
8.3 Revoking privileges ...8-5
8.3.1 Revoking system privileges..8-6
8.3.2 Revoking object privileges ...8-6
8.3.3 Revoking access privileges...8-6
8.3.4 Recursive effects of revoking privileges ..8-7

9 BSQL COMMANDS
9.1 Running BSQL...9-1
9.1.1 Running BSQL from a batch job..9-1
9.1.2 Running BSQL via the terminal ...9-2
9.1.3 BSQL command line editing ..9-3
9.2 BSQL commands ...9-4

CLOSE...9-5
DESCRIBE ..9-5
EXIT ..9-11
LIST...9-11
LOAD ..9-13
LOG ...9-14
READ INPUT..9-14
SET ECHO ..9-14
SET LINECOUNT ..9-15
SET LINESPACE..9-15
SET LINEWIDTH...9-16
SET LOG...9-16
SET MESSAGE...9-16
SET OUTPUT ...9-17
SET PAGELENGTH...9-17
SET PAGEWIDTH ...9-17
SHOW SETTINGS..9-18
UNLOAD...9-18
WHENEVER...9-19

10 VARIABLES IN BSQL
10.1 Host variables ..10-1

11 ERROR HANDLING
11.1 Errors in BSQL ..11-1
11.1.1 Semantic errors...11-1
11.1.2 Syntax errors ..11-1
11.2 Error messages...11-3

viii Contents

Mimer SQL version 8.2
User’s Manual

A EXAMPLE DATABASE
A.1 Tables in the example database... A-1
A.2 Table descriptions... A-2
A.3 The tables.. A-4
A.4 CREATE statements for example database .. A-7

Introduction 1-1

Mimer SQL version 8.2
User’s Manual

1 INTRODUCTION

Mimer SQL is an advanced database management system developed by Mimer
Information Technology AB. The database management language Mimer SQL
(Structured Query Language) is compatible in all essential features with the
currently accepted SQL standards (see the Mimer SQL Reference Manual for
details).

Mimer SQL is available through the following user interfaces:

• BSQL is a line-oriented interface designed for use from command files and
scripts. It may also be used in an interactive manner.

• Embedded SQL (ESQL) is used through a host programming language - the
programmer writes SQL statements as part of the source code for an
application program, which is pre-processed and compiled with the
appropriate language-specific facilities. The SQL statements are executed
in the context of the application program.

• ODBC is a database independent interface specified by Microsoft. Through
ODBC, Mimer SQL can support many of the tools available on the
platforms supporting ODBC (e.g. Windows, Unix).

• JDBCTM is a database independent interface for writing database
applications in JavaTM.

This manual provides an introduction to the concepts and usage of Mimer SQL,
including its use in the BSQL environment. Embedded SQL is described in the
Mimer SQL Programmer’s Manual. A full description of the syntax and
function of Mimer SQL statements is given in the Mimer SQL Reference
Manual.

Note: In the syntax descriptions appearing in this manual, items in square
brackets ([]) are optional and items separated by a vertical bar (|) are
alternatives. Example: READ [COMMAND | ALL] [INPUT FROM] 'filename'.

Basic concepts of Mimer SQL 2-1

Mimer SQL version 8.2
User’s Manual

2 BASIC CONCEPTS OF MIMER SQL

This chapter provides a general introduction to the basic concepts of Mimer
SQL databases and Mimer SQL. It is an important introduction for users who
have little or no previous knowledge of the Mimer SQL system or SQL.

2.1 The Mimer SQL relational database

A database is a collection of information organized so that storage, retrieval,
and modification of the data is as efficient as possible.

The Mimer SQL database is “relational”, which means that the information in
the database is presented to the user in the form of tables. The tables represent a
logical description of the contents of the database which is independent of, and
insulates the user from, the physical storage format of the data.

The Mimer SQL database includes the data dictionary which is a set of tables
describing the organization of the database and is used primarily by the
database management system itself.

The database, although located on a single physical platform, may be accessed
from many distinct platforms, even at remote geographical locations (linked
over a network through client/server support).

Commands are available for managing the connections to different databases
(see Chapter 3), so the actual database being accessed may change during the
course of an SQL session. At any one time, however, the database may be
regarded as one single organized collection of information.

2.1.1 The data dictionary
The data dictionary contains information on all the objects stored in a Mimer
SQL database and how they relate to one another. The data dictionary stores
information about:
• Privileges • Schemas
• Databanks • Sequences
• Domains • Shadows
• Functions • Synonyms
• Idents • Tables
• Indexes • Triggers
• Modules • Views
• Procedures

2-2 Basic concepts of Mimer SQL

Mimer SQL version 8.2
User’s Manual

The objects stored in a Mimer SQL database can be divided into the following
groups:

• System objects are global to the database. System object names must be
unique for each object type since they are global and therefore common to
all users. The system objects in a Mimer SQL database are: databanks,
idents, schemas and shadows. A system object is owned by the ident that
created it and only the creator of the object can drop it.

• Private objects belong to a schema. Private object names are local to a
schema, so two different schemas may contain an object with the same
name. The private objects in a Mimer SQL database are: domains,
functions, indexes, modules, procedures, sequences, synonyms, tables,
triggers and views.

Private objects are fully identified by their qualified name, which is the
name of the schema to which they belong and the name of the object in the
following form: schema.object (see Section 4.2.3 of the Mimer SQL
Reference Manual). Conflicts arising from the use of the same object name
in two different schemas are avoided when the qualified name is used. If a
private object name is specified without explicit reference to its schema, it
is assumed to belong to a schema with the same name as the current ident.

2.1.2 Databanks
A databank is the physical file where a collection of tables is stored. A Mimer
SQL database may include any number of databanks. There are two types of
databanks:

• System databanks contain system information used by the database
manager. These databanks are defined when the system is created. The
system databanks are SYSDB (containing the data dictionary tables),
TRANSDB (used for transaction handling), LOGDB (used for transaction
logging) and SQLDB (used in transaction handling and for temporary
storage of internal work tables).

• User databanks contain the user tables. These databanks are defined by the
user(s) responsible for setting up the database. (See Section 3.1.2.1 of the
Mimer SQL Reference Manual for details concerning pathnames for user
databank files.)

The division of tables between different user databanks is a physical file
storage issue and does not affect the way the database contents are presented to
the user. Except in special situations (such as when creating tables), databanks
are completely invisible to the user.

Note: Backup and Restore in Mimer SQL can be performed on a per-databank
basis rather than on the entire database file base (see Chapter 5 of the Mimer
SQL System Management Handbook for more information).

Basic concepts of Mimer SQL 2-3

Mimer SQL version 8.2
User’s Manual

2.1.3 Idents
An ident is an authorization-id used to identify users, programs and groups.
There are four types of ident in a Mimer SQL database:

• User idents identify individual users who can connect to a Mimer SQL
database. A user’s access to the database is protected by a password and is
restricted by the specific privileges granted to the ident. User idents are
generally associated with specific physical individuals who are authorized to
use the system.

• OS_USER idents are idents which reflect a user id defined by the operating
system. An OS_USER ident allows the user currently logged in to the
operating system to access the Mimer SQL database without providing a
username or password. For example: if the current operating system user is
ALBERT and there is an OS_USER ident called ALBERT defined in
Mimer SQL, ALBERT may start BSQL (for example) and connect directly
to Mimer SQL simply by pressing <return> at the Username: prompt. If an
OS_USER ident is defined with a password in Mimer SQL, the ident may
also connect to Mimer SQL in the same way as a user ident (i.e. by
providing the username and password). An OS_USER ident may not have
the same name as a user ident in the database.

• Program idents do not strictly connect to Mimer SQL, but they may be
entered from within an application program by using the ENTER statement.
The ENTER statement may only be used by an ident who is already
connected to a Mimer SQL database. An ident is granted the privilege to
enter a program ident. A program ident is set up to have certain privileges
and these apply after the ENTER statement has been used. Program idents
are generally associated with specific functions within the system, rather
than with physical individuals. The LEAVE statement is used to return to
the state of privileges and database access that existed before ENTER was
used.

• Group idents are collective identities used to define groups of user and/or
program idents. Any privileges granted to or revoked from a group ident
automatically apply to all members of the group. Any ident can be a member
of as many groups as required, and a group can include any number of
members. Group idents provide a facility for organizing the privilege
structure in the database system. All idents are automatically members of a
logical group which is specified in Mimer SQL statements by using the
keyword PUBLIC.

2.1.4 Schemas
A schema defines a local environment within which private database objects
can be created. The ident creating the schema has the right to create objects in
it and to drop objects from it.

When a USER, OS_USER or PROGRAM ident is created, a schema with the
same name can also be automatically created and the created ident becomes the
creator of the schema. This happens by default unless WITHOUT SCHEMA is
specified in the CREATE IDENT statement.

2-4 Basic concepts of Mimer SQL

Mimer SQL version 8.2
User’s Manual

When a private database object is created, the name for it can be specified in a
fully qualified form which identifies the schema in which it is to be created.
The names of objects must be unique within the schema to which they belong,
according to the rules for the particular object-type.

If an unqualified name is specified for a private database object, a schema name
equivalent to the name of the current ident is assumed.

2.1.5 Tables
Data in a relational database is logically organized in tables, which consist of
horizontal rows and vertical columns. Columns are identified by a column-
name. Each row in a table contains data pertaining to a specific entry in the
database. Each field, defined by the intersection of a row and a column,
contains a single item of data.

For example, a table containing information on the guests staying at a particular
hotel may have columns for the guest’s last name, address, check-in and check-
out dates:
GUESTS
GUEST_LNAME ADDRESS CHECKIN CHECKOUT
FRANCIS VIMPELGATAN 7, SKARA 1997-06-19 1997-06-20
LE FEVRE 6 RUE PARISIEN, PARIS,FRA 1997-06-27 1997-07-03
JOHNSSON DALGATAN 51, SALA 1997-07-14 1997-07-15
PEREZ CARLOTA 7, MADRID, SPAIN 1997-08-06 -
PERSSON GROPGATAN 43A, VADSTENA 1997-08-17 -
NYQVIST KARPV. 33, NYBROVIK 1997-08-18 -
TORP GRANDV. 77, KRISTIANSTAD 1997-08-19 -

Each row in a table must have the same set of data items (one for each column
in the table), but not all the items need to be filled in. A column can have a
default value defined (either as part of the column specification itself or by
using a domain with a default value) and this is stored in a field where an
explicit value for the data item has not been specified.

If no default value been defined for a column, the NULL value (which means
the value is unknown) is stored when no data value is supplied.

For example, in the table above, Julio Perez does not have a check-out date
listed and the table displays a minus sign in the CHECKOUT column on that
row. The minus sign indicates that there is a NULL value stored in the field
(the minus sign is how the NULL value is displayed in BSQL, other
applications may do it differently).

A relational database is built up of several inter-dependent tables which can be
joined together. Tables are joined by using related values that appear in one or
more columns in each of the tables. Part of the flexibility of a relational
database structure is the ability to add more tables to an existing database. A
new table can relate to an existing database structure by having columns with
data that relates to the data in columns of the existing tables. No alterations to
the existing data structure are required.

All the fields in any one column contain the same data type with the same
maximum length. See Section 4.3 of the Mimer SQL Reference Manual for a
detailed description of data types supported by Mimer SQL.

Basic concepts of Mimer SQL 2-5

Mimer SQL version 8.2
User’s Manual

2.1.6 Base tables and views
The logical representation of data in a Mimer SQL database is stored in tables
(this is what the user sees, as distinct from the physical storage format which is
transparent to the user). The tables which store the data are referred to as base
tables. Users can directly examine data in the base tables. In addition, data may
be presented using views, which are created from specific parts of one or more
base tables or views. To the user, views may look that same as tables, but
operations on views are actually performed on the underlying base tables.
Access privileges on views and their underlying base tables are completely
independent of each other, so views provide a mechanism for setting up
specific access to tables.

The essential difference between a table and a view is underlined by the action
of the DROP command, which removes objects from the database. If a table is
dropped, all data in the table is lost from the database and can only be
recovered by redefining the table and re-entering the data. If a view is dropped,
however, the table or tables on which the view is defined remain in the
database, and no data is lost. Data may, however, become inaccessible to a user
who was allowed to access the view but who is not permitted to access the
underlying base table(s).

Note: Since views are logical representations of tables, all operations requested
on a view are actually performed on the underlying base table, so care must be
taken when granting access privileges on views. Such privileges may include
the right to insert, update and delete information. As an example, deleting a row
from a view will remove the entire row from the underlying base table and this
may include table columns the user of the view had no privilege to access.

Views may be created to simplify presentation of data to the user by including
only some of the base table columns in the view or only by including selected
rows from the base table. Views of this kind are called restriction views.

For example, a view may be created on the GUESTS table in the example
above to include only GUEST_LNAME and dates for CHECKIN and
CHECKOUT:
GUESTS_VIEW
GUEST_LNAME CHECKIN CHECKOUT
FRANCIS 1997-06-19 1997-06-20
LE FEVRE 1997-06-27 1997-07-03
JOHNSSON 1997-07-14 1997-07-15
PEREZ 1997-08-06 -
PERSSON 1997-08-17 -
NYQVIST 1997-08-18 -
TORP 1997-08-19 -

Similarly, a view may be created to include only the rows in GUESTS where
the CHECKIN column is filled and the CHECKOUT column is NULL (i.e.
only guests who are currently staying at the hotel).

Views may also be created to combine information from several tables (join
views). Join views can be used to present data in more natural or useful
combinations than the base tables themselves provide (the optimal design of the
base tables will have been governed by rules of relational database modeling).
Join views may also contain restriction conditions.

2-6 Basic concepts of Mimer SQL

Mimer SQL version 8.2
User’s Manual

For example, the join view below presents the names and amounts due (as
separate items) for guests currently staying at the hotel (bill data is stored in a
separate BILL table, linked to GUESTS through the RESERVATION column).
Only a portion of the full set of data is shown in this example:
BILL_VIEW
GUEST_LNAME COST
FIMPLY 100
FIMPLY 70
FIMPLY -
PEREZ 370
PERSSON 100
... ...
... ...

2.1.7 Unique constraints and indexes
Rows in a base table are uniquely identified by the value of the primary key
defined for the table. The primary key for a table is composed of the values of
one or more columns. A table cannot contain two rows with the same primary
key value. (If the primary key contains more than one column, the key value is
the combined value of all the columns in the key. Individual columns in the key
may contain duplicate values as long as the whole key value is unique).

Other columns may also be defined as UNIQUE. A unique column is also a
key, because it may not contain duplicate values, and need not necessarily be
part of the primary key.

Primary key and unique columns are automatically indexed to facilitate
effective information retrieval.

Other columns or combinations of columns may be defined as a secondary
index to improve performance in data retrieval. Secondary indexes are defined
on a table after it has been created (using the CREATE INDEX statement).

An example of when a secondary index may be useful is when a search is
regularly performed on a non-keyed column in a table with many rows,
defining an index on the column may speed up the search. The search result is
not affected by the index but the speed of the search is optimized.

It should be noted, however, that indexes create an overhead for update, delete
and insert operations because the index must also be updated.

Indexes are internal structures which cannot be explicitly accessed by the user
once created. An index will be used if the internal query optimization process
determines it will improve the efficiency of a search.

SQL queries are automatically optimized when they are internally prepared for
execution. The optimization process determines the most effective way to
execute each query, which may or may not involve using an applicable index.

2.1.8 Routines (functions and procedures)
In Mimer SQL it is possible to define SQL routines that are stored in the data
dictionary and which may be invoked when needed. The term “routine” is a
collective term for functions and procedures. The acronym PSM, Persistent
Stored Modules, is sometimes used for routines.

Basic concepts of Mimer SQL 2-7

Mimer SQL version 8.2
User’s Manual

For a complete and detailed discussion of functions, procedures and the Stored
Procedures functionality supported in Mimer SQL see Chapter 8 of the Mimer
SQL Programmer’s Manual.

Functions are distinguished from procedures in that they return a single value
and have parameters that are used for input only. A function is invoked by
using it where a value expression would normally be used.

Mimer SQL supports standard procedures and result set procedures. Result set
procedures are procedures capable of returning the row value(s) of a result-set.

Standard procedures are invoked directly by using the CALL statement and can
pass values back to the calling environment through the procedure parameters.

In embedded SQL, result set procedures are invoked by declaring a cursor
which includes a CALL statement and by then using the FETCH statement to
execute the procedure and return the row(s) of the result-set.

In interactive SQL, a result set procedure is invoked by using the CALL
statement directly and the result-set values are presented in the same way as for
a select returning more than one row.

The ident invoking a routine must hold EXECUTE privilege on it.

The creator of a routine must hold the appropriate privileges on any database
objects referenced from within the routine. The routine can exist as long as the
privileges are held.

Routine names, like the names of other private objects in the database, are
qualified with the name of the schema to which they belong.

The PSM constructs available in Mimer SQL allow powerful functionality to
be defined and used through the creation and execution of routines. The use of
routines also makes it possible to move application logic from the client to the
server, thereby reducing network traffic.

2.1.9 Triggers
A trigger defines a number of procedural SQL statements that are executed
whenever a specified data manipulation statement is executed on the table or
view on which the trigger has been created.

The trigger can be set up to execute AFTER, BEFORE or INSTEAD OF the
data manipulation statement. Trigger execution can also be made conditional
on a search condition specified as part of the trigger.

Triggers are described in detail in Chapter 9 of the Mimer SQL Programmer’s
Manual.

2.1.10 Modules
A module is simply a collection of routines. All the routines in a module are
created when the module is created and belong to the same schema.

EXECUTE privilege on the routines contained in a module are held on a per-
routine basis, not on the module.

2-8 Basic concepts of Mimer SQL

Mimer SQL version 8.2
User’s Manual

If a module is dropped, all the routines contained in the module are dropped.

Under certain circumstances a routine may be dropped because of the cascade
effect of dropping some other database object. If such a routine is contained in
a module, it is implicitly removed from the module and dropped. The other
routines contained in the module remain unaffected.

In general, care should be taken when using DROP or REVOKE in connection
with routines, modules or objects referenced from within routines because the
cascade effects can often affect many other objects (see Sections 7.12 and 8.3.4
for details).

2.1.11 Synonyms
A synonym is an alternative name for a table, view or another synonym.
Synonyms can be created or dropped at any time.

A synonym cannot be created for a function, procedure or a module.

Using synonyms can be a convenient way to address tables that are contained in
another schema. For example, if a view called ROOM_VIEW is contained in
the schema called SAMMY, the full name of the view is
SAMMY.ROOM_VIEW.

This view may be referenced from the schema called JIMMY by its fully
qualified name as given above.

Alternatively, a synonym may be created for the view in schema JIMMY,
e.g. RM_VIEW. Then the name RM_VIEW can simply be used to refer to the
view SAMMY.ROOM_VIEW.

Note: The name RM_VIEW is contained in schema JIMMY and can only be
used in that context.

2.1.12 Shadows
Mimer SQL Shadowing is a product that can create and maintain one or more
copies of a databank on different disks. This provides extra protection from the
consequences of disk crashes, etc. Shadowing requires a separate license.

2.1.13 Sequences
A sequence is a private database object that can provide a series of integer
values. A sequence can be defined as unique or non-unique.

A sequence has an initial value, an increment step value and a maximum value
defined when it is created (by using the CREATE SEQUENCE statement).

A unique sequence will generate a series of values that change by the increment
value from the initial value to a value that does not exceed the maximum value.
A unique sequence never generates the same value twice.

Basic concepts of Mimer SQL 2-9

Mimer SQL version 8.2
User’s Manual

A non-unique sequence generates a series of values by starting at the initial
value and proceeding in increment steps. If all values in a non-unique sequence
has been exhausted, the sequence will start over again with the initial value.

A sequence is created with an undefined value initially.

It is possible to generate the next value in the integer series of a sequence by
using the “NEXT_VALUE OF sequence_name” construct. This is used for the
first time after the sequence has been created to establish the initial value
defined for the sequence. Subsequent uses will add the increment step value to
the value of the sequence and the result will be established as the current value
of the sequence.

It is possible to get the value of a sequence by using the “CURRENT_VALUE
OF sequence_name” construct. This construct cannot be used until the initial
value has been established for the sequence (i.e. using it immediately after the
sequence has been created will raise an error).

When the current value of a unique sequence is equal to the last value in the
series it defines, “NEXT_VALUE OF sequence_name” will raise an error and
the value of the sequence will remain unaltered.

If the sequence is non-unique, “NEXT_VALUE OF sequence_name” will
always succeed. If the current value of the sequence is equal to the last value in
the series it defines, the initial value of the sequence will be returned.

The value of “CURRENT_VALUE OF sequence_name” and “NEXT_VALUE
OF sequence_name” can be used where a value-expression would normally be
used. The value may also be used after the DEFAULT clause in the CREATE
DOMAIN, CREATE TABLE and ALTER TABLE statements.

An ident must hold USAGE privilege on the sequence in order to use it.

If a sequence is dropped, with the CASCADE option in effect, all object
referencing the sequence will also be dropped.

Examples:
A non-unique sequence with initial value 1, increment 3 and maximum 10 will
generate the following series of values: 1, 4, 7, 10, 3, 6, 9, 2, 5, 8, 1, 4, 7… .

A unique sequence with initial value 1, increment 3 and maximum 10 will
generate the following series of values: 1, 4, 7, 10, 3, 6, 9, 2, 5, 8.

Note: It is possible that not every value in the series defined by the sequence
will be generated. If a database server crash etc. occurs during the life of a
sequence it is possible that some of the values in the series might be skipped.

2-10 Basic concepts of Mimer SQL

Mimer SQL version 8.2
User’s Manual

2.2 Data integrity

A vital aspect of a Mimer SQL database is data integrity. Data integrity means
that the data in the database is complete and consistent both at its creation and
at all times during use.

Mimer SQL has four built-in facilities that ensure the data integrity in the
database:

• Domains

• Foreign keys (also referred to as referential integrity)

• Check statements in table definitions

• Check options in view definitions

These features should be used whenever possible to protect the integrity of the
database, guaranteeing that incorrect or inconsistent data is not entered into it.
By applying data integrity constraints through the database management
system, the responsibility of ensuring the data integrity of the database is
moved from the users of the database to the database designer.

2.2.1 Domains
Each column in a table holds data of a single data type and length, specified
when the column is created or altered. The data type and length may be
specified explicitly (e.g. CHARACTER(20) or INTEGER(5)) or through the
use of domains, which can give more precise control over the data that will be
accepted in the column.

A domain definition consists of a data type, a length specification, optional
check conditions and a default value. Data which falls outside the constraints
defined by the check conditions will not be accepted in a column which is
defined as belonging to the domain.

A column belonging to a domain for which a default value is defined (unless
there is an explicit default value for the column) will automatically receive that
value if row data is entered without a value being explicitly specified for the
column.

In order for an ident to create a table containing columns whose data type is
defined through the use of a domain, the ident must first have been granted
USAGE privilege on the domain (see Section 8.2.2).

2.2.2 Foreign keys - referential integrity
A foreign key is one or more columns in a table defined as cross-referencing
the primary key or a unique key of another table. Data entered into the foreign
key must either exist in the key that it cross-references or be NULL. This
maintains referential integrity in the database, ensuring that a table can only
contain data that already exists in the selected key of the referenced table.

As a consequence of this, a key value that is cross-referenced by a foreign key
of another table must not be removed from the table to which it belongs by an
update or delete operation.

Basic concepts of Mimer SQL 2-11

Mimer SQL version 8.2
User’s Manual

The DELETE and UPDATE rules defined for the referential constraint provide
a mechanism for adjusting the values in a foreign key in a way that may permit
a cross-referenced key value to effectively be removed.

Note: The referential integrity constraints are effectively checked at the end of
an INSERT, DELETE or UPDATE statement.

The following example illustrates the column HOTELCODE in table ROOMS
as a foreign key referencing the primary key of table HOTEL.

ROOMS
ROOMNO HOTELCODE ROOMTYPE STATUS
LAP110 LAP SSGLS FREE
LAP211 LAP NSDBLB UNKNOWN
LAP309 LAP NSSGLS UNKNOWN
...
...

HOTEL
HOTELCODE NAME CITY
LAP LAPONIA STOCKHOLM
SKY SKYLINE UPPSALA
STG ST. GEORGE STOCKHOLM
WINS WINSTON GOTHENBURG
WIND WINSTON COPENHAGEN
WIN Winston London

In this example, the referential constraint means there cannot be a room in a
hotel that does not exist, and a hotel cannot be deleted if it has any rooms.

Foreign key relationships are defined when a table is created using the
CREATE TABLE statement and can be added to an existing table by using the
ALTER TABLE statement.

The cross-referenced table must exist prior to the declaration of foreign keys on
that table, unless the cross-referenced and referencing tables are the same.

The exception to this rule is when foreign key relationships are defined for
tables in a CREATE SCHEMA statement. Object references in a CREATE
SCHEMA statement are not verified until the end of the statement, when all the
objects have been created. Therefore, it is possible to reference a table that will
not be created until later in the CREATE SCHEMA statement.

2.2.3 Check conditions
Check conditions may be specified in table and domain definitions to make
sure that the values in a column conform to certain conditions. For example, the
check condition in the definition of the BOOK_GUEST table (see Appendix A)
specifies that a guest must be booked to arrive before they depart, and to
checkout no earlier than they check in.

Check conditions are discussed in detail in Section 7.5.5.

2-12 Basic concepts of Mimer SQL

Mimer SQL version 8.2
User’s Manual

2.2.4 Check options in view definitions
You can maintain view integrity by including a check option in the view
definition. This causes data entered through the view to be checked against the
view definition. If the data conflicts with the conditions in the view definition,
it is rejected.

For example, the restriction view HOTEL_STOCKHOLM is created with the
following SQL statement:

CREATE VIEW HOTEL_STOCKHOLM
 AS SELECT NAME, CITY
 FROM HOTEL
 WHERE CITY = 'STOCKHOLM'
 WITH CHECK OPTION;

This means that the view HOTEL_STOCKHOLM contains NAME and CITY
columns from the HOTEL table on the condition that the value in the CITY
column is STOCKHOLM. Any attempts to change contents of the CITY
column in the view or to insert data in the view where CITY does not contain
STOCKHOLM is rejected.

2.3 Privileges

Privileges control how users may access database objects and the operations
they can perform in the database.

User and program idents are protected by a password, which must be given
together with the correct ident name in order for a user to gain access to the
database or to enter a program ident. Passwords are stored in encrypted form in
the data dictionary and cannot be read by any ident, including the system
administrator. An ident’s password may only be changed by the ident or by the
creator of the ident.

A set of privileges define the operations each ident is permitted to perform.
There are three classes of privileges in a Mimer SQL database:

• System privileges, which control the right to perform backup and restore
operations, the right to execute the UPDATE STATISTICS statement as
well as the right to create new databanks, idents, schemas and to manage
shadows. System privileges are granted to the system administrator when
the system is installed and may be granted by the administrator to other
idents in the database. As a general rule, system privileges should be
granted to a restricted group of users.

Note: An ident who is given the privilege to create new idents is also able
to create new schemas.

Basic concepts of Mimer SQL 2-13

Mimer SQL version 8.2
User’s Manual

• Object privileges, which control membership in group idents, the right to
invoke functions and procedures, the right to enter program idents, the right
to create new tables in a specified databank and the right to use a domain
or sequence. The creator of an object is automatically granted full
privileges on that object; thus the creator of a group is automatically a
member of the group, the creator of a function or procedure may execute it,
the creator of a program ident may enter it, the creator of a schema may
create objects in and drop objects from it, the creator of a databank may
create tables in the databank, the creator of a table holds all privileges on
the table, the creator of a domain may use that domain and the creator of a
sequence may use that sequence. The creator of an object generally has the
right to grant any of these privileges to other users, in the case of functions
and procedures this actually depends on the creator’s privileges on objects
referenced from within the routine.

• Access privileges, which define access to the contents of the database, i.e.
the rights to retrieve data from tables or views, delete data, insert new
rows, update data and to refer to table columns as foreign key references.

Granted privileges can be regarded as instances of grantor/privilege stored for
an ident. An ident will hold more than one instance of a privilege if different
grantors grant it.

A privilege will be held as long as at least one instance of that privilege is
stored for the ident. All privileges may be granted with the WITH GRANT
OPTION which means that the receiver has, in turn, the right to grant the
privilege to other idents. An ident will hold a privilege with the WITH GRANT
OPTION as long as at least one of the instances stored for the ident was granted
with this option.

If the same grantor grants a privilege to an ident more than once, this will not
result in more than one instance of the privilege being recorded for the ident. If
a particular grantor grants a privilege without WITH GRANT OPTION and
subsequently grants the privilege again with WITH GRANT OPTION, then
WITH GRANT OPTION will be added to the existing instance of the privilege.

Each instance of a privilege held by an ident is revoked separately by the
appropriate grantor. It is possible to revoke WITH GRANT OPTION without
revoking the associated privilege completely. Section 8.3 describes revoking
privileges in more detail.

2.4 Mimer SQL statements

Mimer SQL is a language made up of a number of different statements, which
may be divided into the following basic categories:

• data definition statements, used to maintain objects in a database
CREATE creates objects
ALTER modifies objects
DROP drops objects
COMMENT documents objects

2-14 Basic concepts of Mimer SQL

Mimer SQL version 8.2
User’s Manual

• access control statements, used to manage privileges
GRANT grants privileges
REVOKE revokes privileges

• data manipulation statements, used to examine and change data in the
database
SELECT retrieves data
INSERT adds new rows to tables
UPDATE changes data in existing rows
DELETE deletes data
CALL executes routines
SET value assignment

• connection statements, used to connect and disconnect user and program
idents to or from the database
CONNECT connects a user ident to the database
DISCONNECT disconnects a user ident from the database
SET CONNECTION changes the active database connection
ENTER enters a program ident
LEAVE leaves a program ident

• transaction control statements, used to control when database transactions
begin and end, and when updates take effect
SET TRANSACTION set transaction options for subsequent transactions
SET SESSION set the default transaction options for the session
START starts a transaction build-up
COMMIT commits the current transaction
ROLLBACK abandons the current transaction

• database administration statements, used to manage backup/restore
operations and the statistical information used to optimize queries
CREATE BACKUP creates a backup copy of a databank, with an

optional incremental backup. Incremental backups
may also be taken on their own with the statement
CREATE INCREMENTAL BACKUP

ALTER DATABANK the RESTORE variant of this statement recovers
a databank from incremental backup information

SET DATABASE sets the database ONLINE or OFFLINE
SET DATABANK sets a databank ONLINE or OFFLINE
SET SHADOW sets one or more shadows ONLINE or OFFLINE
UPDATE STATISTICS updates the statistical information used for

query optimization

The SQL statements are described in detail in subsequent chapters of this
manual and in the Mimer SQL Reference Manual.

In addition, there is a set of commands specific to the BSQL environment, for
managing output formatting and so on (see Chapter 9).

Basic concepts of Mimer SQL 2-15

Mimer SQL version 8.2
User’s Manual

Note: In BSQL, statements are terminated by a semicolon (;). This is not part
of the SQL statement syntax, but is included in the examples in this manual.

Managing database connections 3-1

Mimer SQL version 8.2
User’s Manual

3 MANAGING DATABASE
CONNECTIONS

An application gains access to a Mimer SQL database by establishing a
connection to it. A program may have several database connections established
simultaneously. Mimer SQL supports the ability to switch between different
connections (i.e. access different databases) from within the same application
program. Only one database connection is active at any one time.

3.1 Database connections

3.1.1 Connecting to a database
Only idents of type USER and OS_USER can be used to connect to a Mimer
SQL database. A connection is established using the CONNECT statement,
with the general form (see the Mimer SQL Reference Manual for details):

CONNECT TO 'DATABASE' [AS 'CONNECTION_NAME’]
 USER 'USER_NAME' USING 'password';

This statement establishes a connection between the user and a database.

A connection may be established to any local or remote database, which has
been made accessible from the current machine - see the Mimer SQL System
Management Handbook for details. The database can be specified by name or
by using the keyword DEFAULT.

Note: If the keyword DEFAULT is used, a user and password cannot be
specified - see Chapter 6 of the Mimer SQL Reference Manual. If you wish to
connect to the default database and specify a user and password, specify an
empty string (‘’) for the database.

The database may be given an explicit connection name for use in
DISCONNECT and SET CONNECTION statements. If no explicit connection
name is specified, the database name is used as the connection name.

3-2 Managing database connections

Mimer SQL version 8.2
User’s Manual

3.1.2 Changing connections
An application program may make multiple connections to the same or
different databases using the same or different idents, provided that each
connection is identified by a unique connection name. In this situation only one
connection is active and the other connections are inactive. A connection
established by a successful CONNECT statement is automatically active. A
connection may be made active by the SET CONNECTION statement.

SET CONNECTION 'CONNECTION_NAME';

3.1.3 Disconnecting
The DISCONNECT statement breaks the connection between the user and a
database. The connection to be broken is specified as the connection name or as
one of the keywords ALL, CURRENT or DEFAULT.

DISCONNECT 'CONNECTION_NAME';

A connection does not have to be active in order to be disconnected. If an
inactive connection is broken, the application still has uninterrupted access to
the database through the current (active) connection, but the broken connection
is no longer available for activation with SET CONNECTION.

If the active connection is broken, the application program cannot access any
database until a new CONNECT or SET CONNECTION statement is issued.

Note: The distinction between breaking a connection with DISCONNECT and
making a connection inactive by issuing a CONNECT or SET CONNECTION
for a different connection is, a broken connection has no saved resources and
cannot be reactivated by SET CONNECTION.

The table below summarizes the effect on the connection “con1” of
CONNECT, DISCONNECT and SET CONNECTION statements depending
on the state of the connection

Statement con1 non-existent con1 current con1 inactive

CONNECT TO 'DB1' AS
'CON1'

con1 current error - connection
already exists

error - connection
already exists

DISCONNECT 'CON1' error - connection
doesn’t exist

con1 disconnected con1 disconnected

SET CONNECTION 'CON1' error - connection
doesn’t exist

ignored con1 made current

CONNECT TO 'DB2' AS
'CON2'

- con1 made inactive con1 unaffected

DISCONNECT 'CON2' - con1 unaffected con1 unaffected

SET CONNECTION 'CON2' - con1 made inactive con1 unaffected

Managing database connections 3-3

Mimer SQL version 8.2
User’s Manual

3.2 Program idents - ENTER and LEAVE

Program idents may be entered from within an SQL session by using the
ENTER statement. The current user must have EXECUTE privilege on the
program ident in order to perform an ENTER.

When a program ident is entered, any privileges granted to that ident become
current and privileges belonging to the previous ident (i.e. the ident issuing the
ENTER statement) are suspended.

Program idents are disconnected with the LEAVE statement.

Example:

 ENTER 'PROGRAM_NAME' USING 'secret';

 LEAVE RETAIN;

The statements ENTER and LEAVE may not be issued within transactions (see
Chapter 6).

Retrieving data from tables 4-1

Mimer SQL version 8.2
User’s Manual

4 RETRIEVING DATA FROM TABLES

This chapter describes how to retrieve information from the database. In a
relational database, information retrieved from one or more source tables is
returned in the form of a result table (sometimes called a result set). The
statement used to retrieve information is SELECT.

The examples in this chapter are based on the example database included with
the Mimer SQL distribution (see Appendix A).

4.1 Retrieval from single tables

4.1.1 Simple retrieval
The simplest retrievals fetch information from one table. The general form of
the simple SELECT statement is

SELECT column-list FROM table [WHERE condition];

The column-list specifies which columns to select, and the WHERE condition
determines which rows to select. If no WHERE condition is specified, all rows
are retrieved from the source table.

Find the name and city for all hotels.

SELECT NAME,CITY
FROM HOTEL;

 NAME CITY
 LAPONIA STOCKHOLM
 SKYLINE UPPSALA
 ST. GEORGE STOCKHOLM
 Winston London
 WINSTON COPENHAGEN
 WINSTON GOTHENBURG

Find the name and city for hotels in Stockholm.

SELECT NAME,CITY
FROM HOTEL
WHERE CITY='STOCKHOLM';

 NAME CITY
 LAPONIA STOCKHOLM
 ST. GEORGE STOCKHOLM

4-2 Retrieving data from tables

Mimer SQL version 8.2
User’s Manual

The formulation of selection conditions is described in detail in Section 4.1.4.

The columns in the result table are ordered as they are written in the SELECT
statement, irrespective of the ordering in the source table:

SELECT CITY,NAME
FROM HOTEL;

CITY NAME
STOCKHOLM LAPONIA
UPPSALA SKYLINE
STOCKHOLM ST. GEORGE
London Winston
COPENHAGEN WINSTON
GOTHENBURG WINSTON

A shorthand form for selecting all columns from a table is

SELECT * FROM table ...

In this case, the columns in the result table are ordered as they are defined in
the source table.

Any table name in a SELECT statement may be qualified by the name of the
schema to which the table belongs in the form schema.table. Unqualified table
names are implicitly qualified by the ident name of the current user. The table
name must be written in the qualified form if the schema to which it belongs
was not created by the current user, unless it is replaced by a synonym.

Example

SELECT *
FROM HOTELADM.ROOMTYPES;

ROOMTYPE DESCRIPTION
NSDBLB NO SMOKING - DOUBLE WITH BATH
NSDBLS NO SMOKING - DOUBLE WITH SHOWER
NSSGLB NO SMOKING - SINGLE WITH BATH
NSSGLS NO SMOKING - SINGLE WITH SHOWER
SDBLB SMOKING - DOUBLE WITH BATH
SDBLS SMOKING - DOUBLE WITH SHOWER
SSGLB SMOKING - SINGLE WITH BATH
SSGLS SMOKING - SINGLE WITH SHOWER

4.1.2 Setting column labels
Columns in the result table normally have the same name as the corresponding
columns in the source table. By using an AS clause after the column name in
the SELECT statement, the column in the result table can be given an
alternative name. AS clauses can be used for as many columns as required. A
label may be up to 128 characters long, and follows the same syntax rules as
column names (see the Mimer SQL Reference Manual).

Retrieving data from tables 4-3

Mimer SQL version 8.2
User’s Manual

SELECT NAME AS HOTEL_NAME, CITY AS TOWN
FROM HOTEL;

HOTEL_NAME TOWN
LAPONIA STOCKHOLM
SKYLINE UPPSALA
ST. GEORGE STOCKHOLM
Winston London
WINSTON COPENHAGEN
WINSTON GOTHENBURG

Labels are particularly useful in queries that retrieve computed values, where
the result table column is otherwise unnamed (see Section 4.1.5).

4.1.3 Eliminating duplicate values
The simple SELECT statement retrieves all rows which fulfill the selection
conditions. The result table does not have a primary key, and may contain
duplicate values.

SELECT RESERVATION, CHARGE_CODE
FROM BILL;

RESERVATION CHARGE_CODE
1347 100
1347 120
1347 210
1347 700
1347 120
1348 700
1348 700
1348 200
1348 230
... ...

Adding the keyword DISTINCT before the column list eliminates all duplicate
rows from the result table. The keyword DISTINCT may only be used once in a
simple SELECT statement.

SELECT DISTINCT RESERVATION, CHARGE_CODE
FROM BILL;

RESERVATION CHARGE_CODE
1347 100
1347 120
1347 210
1347 700
1348 700
1348 200
1348 230
... ...

DISTINCT also eliminates duplicate rows containing NULL values, although
technically NULL is not regarded as equal to NULL (see Section 4.3).

4-4 Retrieving data from tables

Mimer SQL version 8.2
User’s Manual

If the selected columns include the whole primary key in the source table, the
keyword DISTINCT is unnecessary, since all rows in the result table will be
unique. Remember however that a view may contain duplicate rows, so that
selecting all columns does not always guarantee that the result does not contain
duplicate rows.

4.1.4 Selecting specific rows
Rows are selected in the SELECT statement according to the search condition
in the WHERE clause. This condition relates column value(s) to expressions.

Comparison conditions
Comparison operators that may be used in the WHERE clause are:

= equal to
<> not equal to
< less than
<= less than or equal to
> greater than
>= greater than or equal to

Comparisons can be combined in the search condition using the logical
operators AND and OR, and reversed using NOT. Each comparison must be
expressed in full; for example

WHERE PRICE > 800 AND PRICE < 1000

may not be expressed as

WHERE PRICE > 800 AND < 1000

Character strings are compared character by character from left to right. If
strings are of different lengths, the shorter is conceptually padded to the right
with blanks before the comparison is made (i.e. character difference takes
precedence over length difference). The collating sequence for characters is an
extended ASCII character set as defined by ISO 8859-1 (see Appendix B of the
Mimer SQL Reference Manual for the exact sequence).

Retrieve the room type, price, and date from which the prices apply for all
rooms with hotel code LAP and a cost of under 700.

SELECT ROOMTYPE, PRICE, FROM_DATE, TO_DATE
FROM ROOM_PRICES
WHERE HOTELCODE = 'LAP' AND PRICE < 700;

ROOMTYPE PRICE FROM_DATE TO_DATE
NSSGLB 660 1997-11-15 1998-03-10
NSSGLS 680 1997-08-08 1997-11-14
NSSGLS 640 1997-11-15 1998-03-10
SSGLB 660 1997-11-15 1998-03-10
SSGLS 680 1997-08-08 1997-11-14
SSGLS 640 1997-11-15 1998-03-10

Retrieving data from tables 4-5

Mimer SQL version 8.2
User’s Manual

When stating conditions on temporal data in tables, datetime and interval
literals can be specified. There are also the pseudo literals CURRENT_DATE,
LOCALTIME and LOCALTIMESTAMP which read the server clock and
return that value. If there is more than one occurrence of these pseudo literals in
a statement the clock is only read once.

Retrieve guests who requested a wake up call at 6:00 o’clock today.

SELECT ROOMNO
FROM WAKE_UP
WHERE WAKE_DATE = CURRENT_DATE
AND WAKE_TIME = TIME '06:00:00';

ROOMNO
LAP112
SKY111
STG009

Are there any guests scheduled for check in today?

SELECT RESERVED_FNAME, RESERVED_LNAME
FROM BOOK_GUEST
WHERE ARRIVE = CURRENT_DATE;

RESERVED_FNAME RESERVED_LNAME
ALEX OLSSON
BERTIL GUSTAVSSON
URBAN FRANSSON

For an example of interval literals, see Section 4.1.13 on datetime arithmetic.

Pattern conditions
LIKE is used to search for character strings that match a specified pattern.

Patterns in the LIKE condition can be written with “wildcard” characters (also
called “meta-characters”):

_ (underscore) stands for any single character
% stands for any sequence of zero or more characters

Wildcards only have significance in LIKE predicates.

Find all guests at the Hotel Laponia whose names include “HANSEN” .

SELECT GUEST_LNAME
FROM BOOK_GUEST
WHERE GUEST_LNAME LIKE '%HANSEN%' AND HOTELCODE = 'LAP';

GUEST_LNAME
JOHANSEN
HANSEN

4-6 Retrieving data from tables

Mimer SQL version 8.2
User’s Manual

Find all guests at the Hotel Laponia whose last names do not include
“HANSEN”.

SELECT GUEST
FROM BOOK_GUEST
WHERE GUEST_LNAME NOT LIKE '%HANSEN%' AND HOTELCODE = 'LAP';

GUEST_LNAME
DATE
ALVE
KRISTOFERSEN
HOLMER
KULLMER
SMITH
SCHMIDT
ZETTERBERG
HANSSON

Remember that character strings in Mimer SQL statements are always written
within apostrophes ('). A LIKE predicate where the pattern string does not
contain any wildcard characters is essentially equivalent to a basic predicate
using the “=” operator, except that comparison strings in an “=” comparison are
conceptually padded with blanks whereas those in the LIKE comparison are
not. Thus

'SKYLINE ' = 'SKYLINE' is true
'SKYLINE ' LIKE 'SKYLINE ' is true
'SKYLINE ' LIKE 'SKYLINE%' is true

 but 'SKYLINE ' LIKE 'SKYLINE' is false

The LIKE predicate may include an ESCAPE clause defining a character which
is used to “escape” wildcard characters. A wildcard character immediately
following an escape character is taken at face value. See the Mimer SQL
Reference Manual for more details.

Some other examples of searching for character strings are:

LIKE '%P%' matches any string that contains an upper-case “P”

LIKE '_abc' matches any four letter character string ending with
lower case “abc”

LIKE '%A\%' ESCAPE '\' matches any string ending with “A%”

LIKE 'D_d_' matches any four letter string with D and d in the
first and third positions respectively. Examples of
possible values: Dude, Dads.

Set conditions
The operator IN finds the values that are contained in a set of values. The set is
given as a comma-separated list enclosed in parentheses. NOT IN finds values
which are not contained in the specified set.

Retrieving data from tables 4-7

Mimer SQL version 8.2
User’s Manual

Which hotels are in Stockholm or Copenhagen?

SELECT NAME, CITY
FROM HOTEL
WHERE CITY IN ('STOCKHOLM','COPENHAGEN');

NAME CITY
LAPONIA STOCKHOLM
ST. GEORGE STOCKHOLM
WINSTON COPENHAGEN

Which hotels are not in Stockholm or Copenhagen?

SELECT NAME, CITY
FROM HOTEL
WHERE CITY NOT IN ('STOCKHOLM','COPENHAGEN');

NAME CITY
SKYLINE UPPSALA
Winston London
WINSTON GOTHENBURG

The operators BETWEEN and NOT BETWEEN are used to find values that
are within or outside an interval. The interval includes the limits specified in
the BETWEEN condition.

Find which room types that have prices in the range 700 to 1000 at hotel
LAPONIA.

SELECT ROOMTYPE, PRICE
FROM ROOM_PRICES
WHERE PRICE BETWEEN 700 AND 1000
AND HOTELCODE = 'LAP'

ROOMTYPE PRICE
NSDBLB 900
NSDBLB 830
NSDBLS 760
NSDBLS 710
NSDBLS 800
SDBLB 900
SDBLB 830
SDBLS 710
SDBLS 760
SSGLB 800

4-8 Retrieving data from tables

Mimer SQL version 8.2
User’s Manual

Find the date, charge code and amount for items billed on dates outside the
range 1997-08-30 and 1997-09-01 for the reservation number 1371.

SELECT ON_DATE, CHARGE_CODE, COST
FROM BILL
WHERE RESERVATION = 1371
AND ON_DATE NOT BETWEEN TIMESTAMP '1997-08-30 00:00:00' AND
 TIMESTAMP '1997-09-01 23:59:59';

ON_DATE CHARGE_CODE COST
1997-07-06 13:38:19 700 -
1997-07-06 13:38:19 230 200
1997-07-07 13:38:19 100 100
1997-07-08 13:38:19 100 100
1997-07-08 13:38:19 200 -
1997-07-08 13:38:20 230 200
1997-07-09 13:38:20 100 100
1997-07-09 13:38:20 270 95
1997-07-10 13:38:20 100 100
1997-07-10 13:38:20 330 120
1997-07-11 13:38:20 100 100
1997-07-11 13:38:20 200 -
1997-07-12 13:38:20 100 100

BETWEEN may also be used for character comparisons. Strings are compared
character by character from left to right.

SELECT NAME
FROM HOTEL
WHERE NAME BETWEEN 'SKYLINE' AND 'WINSTON';

NAME
SKYLINE
ST. GEORGE
WINSTON
WINSTON

4.1.5 Retrieving computed values
You can retrieve computed values by using arithmetic and string operators in
the SELECT clause of the statement. The following computational operators
may be used:

+ addition
- subtraction
* multiplication
/ division
|| string concatenation

See the Mimer SQL Reference Manual for information regarding the type and
precision of the result of an arithmetic expression.

Retrieving data from tables 4-9

Mimer SQL version 8.2
User’s Manual

List room prices with a 12% reduction.

SELECT PRICE, PRICE*0.88
FROM ROOM_PRICES;

PRICE
900 792.00
830 730.40
760 668.80
710 624.80
800 704.00
... ...

The computed column is unnamed by default in the result table. A label may be
used to provide a name:

SELECT PRICE, PRICE*0.88 AS SPECIAL_RATE
FROM ROOM_PRICES;

PRICE SPECIAL_RATE
900 792.00
830 730.40
760 668.80
710 624.80
800 704.00
... ...

A column may also be “computed” as a constant value, which adds an extra
column to the result table:

SELECT PRICE, '12% reduction:', PRICE*0.88 AS SPECIAL_RATE
FROM ROOM_PRICES;

PRICE SPECIAL_RATE
900 12% reduction: 792.00
830 12% reduction: 730.40
760 12% reduction: 668.80
710 12% reduction: 624.80
800 12% reduction: 704.00
...

You may also retrieve a value computed using the values in two or more
columns, providing that the data types are compatible.

Retrieve hotel names prefixed with the word “HOTEL ” and cities.

SELECT 'HOTEL ' || NAME, CITY
FROM HOTEL;

 CITY
HOTEL LAPONIA STOCKHOLM
HOTEL SKYLINE UPPSALA
HOTEL ST. GEORGE STOCKHOLM
HOTEL Winston London
HOTEL WINSTON COPENHAGEN
HOTEL WINSTON GOTHENBURG

4-10 Retrieving data from tables

Mimer SQL version 8.2
User’s Manual

For string concatenation, column values are padded with trailing blanks to the
length of the column definition. For example:

SELECT NAME || 'HOTEL', CITY
FROM HOTEL;

 CITY
LAPONIA HOTEL STOCKHOLM
SKYLINE HOTEL UPPSALA
ST. GEORGE HOTEL STOCKHOLM
Winston HOTEL London
WINSTON HOTEL COPENHAGEN
WINSTON HOTEL GOTHENBURG

When retrieving computed values, parentheses can be used to force the
operation priority. Without parentheses, the normal precedence rules for
arithmetic apply, i.e. multiplication and division are performed before addition
and subtraction, and operators with the same precedence are evaluated from left
to right.

4.1.6 Using set functions
The functions listed below can be used in the column list of the SELECT
statement to retrieve the result of the function on a specified column. Set
functions in SELECT statements are applied to data in the result table, not in
the source table. Set functions return a single value for the whole table unless a
GROUP BY clause is specified (see Section 4.1.7).

AVG average of values (numerical columns only)

COUNT number of rows

MAX largest value

MIN smallest value

SUM sum of values (numerical columns only)

For all set functions, NULL values are eliminated from the column before the
function is applied. The special form COUNT(*) counts the number of rows
including NULL values.

The keywords ALL and DISTINCT may be used to qualify set functions. ALL
gives a result based on all values including duplicates. DISTINCT eliminates
duplicates before applying the function. If neither keyword is specified,
duplicates are not removed.

Set functions may not be used together with direct column references in the
SELECT list (unless the SELECT statement includes a GROUP BY clause, see
Section 4.1.7). Thus

SELECT COUNT(HOTELCODE), NAME, CITY
FROM HOTEL;

is illegal.

Retrieving data from tables 4-11

Mimer SQL version 8.2
User’s Manual

The set functions are illustrated with results from the table

SAMPLE
1.0
2.0
2.0
2.0
3.0
3.0
4.0
5.0

- (A hyphen “-” indicates NULL).
-

COUNT(SAMPLE) 8
COUNT(*) 10
COUNT(DISTINCT SAMPLE) 5
SUM(SAMPLE) 22.0
SUM(ALL SAMPLE) 22.0
SUM(DISTINCT SAMPLE) 15.0
AVG(SAMPLE) 2.75000000000
AVG(ALL SAMPLE) 2.75000000000
AVG(DISTINCT SAMPLE) 3.00000000000
MAX(SAMPLE) 5.0
MIN(SAMPLE) 1.0

Note: AVG(column) is equivalent to SUM(column)/COUNT(column).
However, the expression SUM(column)/COUNT(*) will give a different
answer if the column includes NULL values.

Thus, for the table above:

SUM(SAMPLE)/COUNT(SAMPLE) 2.75000000000 (22/8)
SUM(SAMPLE)/COUNT(*) 2.20000000000 (22/10).

Some further examples of set functions applied to the example database are
given below.

How many rows are there in the BOOK_GUEST table?

SELECT COUNT(*)
FROM BOOK_GUEST;

How many guests have checked out (i.e. CHECKOUT is not NULL)?

SELECT COUNT(ALL CHECKOUT)
FROM BOOK_GUEST;

What is the total bill for reservation number 1359.

SELECT SUM(COST)
FROM BILL
WHERE RESERVATION = 1359;

Find the average price of NO SMOKING single rooms in the hotel chain.

SELECT AVG(PRICE)
FROM ROOM_PRICES
WHERE ROOMTYPE IN ('NSSGLB','NSSGLS');

4-12 Retrieving data from tables

Mimer SQL version 8.2
User’s Manual

The AVG function returns an integer if the operand is an integer, and a decimal
if the operand is decimal. To force decimal calculation of averages from an
integer column, cast the column operand as decimal:

SELECT AVG(cast (column as decimal)) ...

4.1.7 Grouped set functions: the GROUP BY clause
Normally, set functions return a single value, calculated from the set of all
values in the column or expression. If the SELECT statement includes a
GROUP BY clause, set functions will be applied to groups of values. Columns
used for GROUP BY do not have to be included in the SELECT list.

Find the most expensive NO SMOKING single room in each hotel.

SELECT HOTELCODE, MAX(PRICE) AS EXPENSIVE
FROM ROOM_PRICES
WHERE ROOMTYPE = 'NSSGLB'
OR ROOMTYPE = 'NSSGLS'
GROUP BY HOTELCODE;

HOTELCODE EXPENSIVE
LAP 800
SKY 870
STG 680
WIND 1410
WINS 1370

Using a GROUP BY clause places some restrictions on the SELECT statement:

• Only constants, columns used in the GROUP BY clause, and columns used
in set functions may be included in the SELECT list

• A column used in the GROUP BY clause may not be used in a set function.

How many hotels are there in each city?

SELECT CITY, COUNT(HOTELCODE)
FROM HOTEL
GROUP BY CITY;

CITY
COPENHAGEN 1
GOTHENBURG 1
London 1
STOCKHOLM 2
UPPSALA 1

In a statement with column references in the SELECT list, all columns not used
in set functions must be used as grouping columns.

Retrieving data from tables 4-13

Mimer SQL version 8.2
User’s Manual

For grouping purposes, NULL values are regarded as equivalent. Thus for the
example table:

SAMPLE
1.0
2.0
2.0
2.0
3.0
3.0
4.0
5.0

-
-

SELECT SAMPLE, COUNT(*) AS NUMBER
...
GROUP BY SAMPLE;

SAMPLE NUMBER
1.0 1
2.0 3
3.0 2
4.0 1
5.0 1

- 2

4.1.8 Selecting groups: the HAVING clause
The HAVING clause restricts the selection of groups in the same way that a
WHERE clause restricts the selection of rows. However, in contrast to the
WHERE clause, a HAVING clause may use a set function on the left-hand side
of a comparison.

The HAVING clause is most often used together with a GROUP BY clause, but
may also be used to impose selection conditions on a column derived from a set
function.

Find the highest price for a SMOKING single room in each hotel, but restrict
the selection to prices over 1000.

SELECT HOTELCODE, MAX(PRICE)
FROM ROOM_PRICES
WHERE ROOMTYPE = 'SSGLB'
OR ROOMTYPE = 'SSGLS'
GROUP BY HOTELCODE
HAVING MAX(PRICE) > 1000;

HOTELCODE
WIND 1410
WINS 1370

4-14 Retrieving data from tables

Mimer SQL version 8.2
User’s Manual

4.1.9 Ordering the result table
Strictly, the order of rows in a result table is undefined unless an ORDER BY
clause is included in the SELECT statement. Ascending or descending order
may be specified; ascending order is the default. (A SELECT statement without
an ORDER BY clause may appear to give an ordered result in Mimer SQL, but
you should include an ORDER BY clause if the ordering is important. A
change in the database contents may otherwise change the order, particularly
for a complex query where the order of execution is determined by the SQL
optimizer).

Retrieve the hotel code, room type, from date and price for SMOKING single
rooms with showers with a cost of under 800 and order by the price in
descending order.

SELECT *
FROM ROOM_PRICES
WHERE PRICE < 800
AND ROOMTYPE = 'SSGLS'
ORDER BY PRICE DESC;

HOTELCODE ROOMTYPE FROM_DATE TO_DATE PRICE
SKY SSGLS 1997-08-08 1997-11-14 750
STG SSGLS 1997-08-08 1997-11-14 680
LAP SSGLS 1997-08-08 1997-11-14 680
STG SSGLS 1997-11-15 1998-03-10 640
LAP SSGLS 1997-11-15 1998-03-10 640

More than one column may be specified in the ORDER BY clause:

SELECT *
FROM ROOM_PRICES
WHERE PRICE < 800
AND ROOMTYPE = 'NSSGLS'
ORDER BY HOTELCODE, PRICE;

HOTELCODE ROOMTYPE FROM_DATE TO_DATE PRICE
LAP NSSGLS 1997-11-15 1998-03-10 640
LAP NSSGLS 1997-08-08 1997-11-14 680
SKY NSSGLS 1997-08-08 1997-11-14 750
STG NSSGLS 1997-11-15 1998-03-10 640
STG NSSGLS 1997-08-08 1997-11-14 680

To order a result table by a set function or computed value, the column in the
result table is given a label and the label is used in the ORDER BY clause:

SELECT ROOMTYPE, AVG(PRICE) AS AVERAGE_PRICE
FROM ROOM_PRICES
GROUP BY ROOMTYPE
ORDER BY AVERAGE_PRICE;

ROOMTYPE AVERAGE_PRICE
NSSGLS 793
SSGLS 793
NSDBLS 910
NSSGLB 910
SDBLS 910
SSGLB 910
NSDBLB 1128
SDBLB 1128

Retrieving data from tables 4-15

Mimer SQL version 8.2
User’s Manual

The following formulation is incorrect, since there is no PRICE column in the
result table by which to perform the ordering:

SELECT ROOMTYPE, AVG(PRICE)
FROM ROOM_PRICES
GROUP BY ROOMTYPE
ORDER BY PRICE;

4.1.10 Using scalar functions
These functions operate on expressions or on a single value received from a
SELECT statement.

Some of the standard scalar functions available are (the complete list of scalar
functions can be found in the Mimer SQL Reference Manual):

CHAR_LENGTH returns the length of a string

EXTRACT returns a single field from a DATETIME or
INTERVAL value

LOWER converts all upper case letters in a character string to
lower case

POSITION returns the starting position of the first occurrence
of a specified string expression, starting from the
left, in the given character string

SOUNDEX returns a character string containing six digits which
represents an encoding of the sound of the given
character string

SUBSTRING extracts a substring from a given string, according
to specified start position and length of the substring

TRIM removes leading and/or trailing instances of a
specified character from a string

UPPER converts all lower case letters in a character string to
upper case

See the Mimer SQL Reference Manual for the syntax rules and for information
regarding the data type of the result of the scalar functions.

Here follows some examples in order to illustrate how the scalar functions may
be used:

List all hotels with name Winston, spelled with either upper or lower case
letters.

SELECT NAME,CITY
FROM HOTEL
WHERE UPPER(NAME) = 'WINSTON';

NAME CITY
Winston London
WINSTON COPENHAGEN
WINSTON GOTHENBURG

4-16 Retrieving data from tables

Mimer SQL version 8.2
User’s Manual

List all double rooms at hotel SKY.

SELECT ROOMNO,ROOMTYPE
FROM ROOMS
WHERE SUBSTRING(ROOMTYPE FROM 3 FOR 3) = 'DBL'
AND HOTELCODE = 'SKY';

ROOMNO ROOMTYPE
SKY121 NSDBLS
SKY124 NSDBLB
SKY125 NSDBLB
SKY212 NSDBLB

Get name and address (without trailing blanks) of guest with reservation
number 1348.

SELECT TRIM(TRAILING FROM GUEST_LNAME) ||
 ', ' ||
 TRIM(TRAILING FROM ADDRESS)
FROM BOOK_GUEST
WHERE RESERVATION = 1348;

JOHANSEN, MIMERGATAN 4, UPPSALA

Remove leading and trailing spaces and get length (no. of characters) of
description and the description (in lower case) for all charges.

SELECT CHAR_LENGTH(TRIM(DESCRIPTION)), LOWER(TRIM(DESCRIPTION))
FROM CHARGES;

7 lodging
9 telephone
8 car park
10 restaurant
7 minibar
3 bar
12 room service
7 laundry
4 room
9 extra bed
13 miscellaneous

List all the guest names that sounds like “Johnson”.

SELECT GUEST_LNAME
FROM BOOK_GUEST
WHERE SOUNDEX(GUEST_LNAME) = SOUNDEX('JOHNSON');

JANSSON
JONSON
JOHNZON

4.1.11 Using CASE expression
With a case expression it is possible to specify a conditional value. Depending
on the result of one or more conditional expressions the case expression can
return different values.

Retrieving data from tables 4-17

Mimer SQL version 8.2
User’s Manual

The rules for CASE expressions are fully described in Section 5.6 of the Mimer
SQL Reference Manual. The following select statements presents two examples
of how CASE expressions can be used:

Translate the currency code in the exchange_rate table to descriptive names.

SELECT CASE CURRENCY
 WHEN 'DEM' THEN 'German Marks'
 WHEN 'DKK' THEN 'Danish Crowns'
 WHEN 'FRF' THEN 'French Francs'
 WHEN 'GBP' THEN 'British Pounds'
 WHEN 'ITL' THEN 'Italian Lira'
 ELSE CURRENCY
 END AS CURRENCY, RATE
FROM EXCHANGE_RATE;

CURRENCY RATE
German Marks 0.223
Danish Crowns 0.849
FIM 0.656
French Francs 0.742
British Pounds 0.081
Italian Lira 206.820
JPY 16.380
NOK 0.881
SEK 1.000
USD 0.133

This form of a case expression is known as a simple case expression, in which
an operand (CURRENCY in this case) is compared to a list of values. If there is
a match in one of the when clauses, the result is the value to the right of the
then clause. If none of these matches, the value in the else clause is returned. If
there is no else clause in a case expression and no when clause matches, a null
value is returned.

The other form of the case expression can be seen in the following example:

Divide room prices into different categories.

SELECT CASE
 WHEN PRICE >= 900 then 'Expensive'
 WHEN PRICE <= 700 then 'Budget'
 ELSE 'Moderate'
 END AS CATEGORY, ROOMTYPE, PRICE
FROM ROOM_PRICES;

CATEGORY ROOMTYPE PRICE
Expensive NSDBLB 900
...
Budget NSSGLB 660
...
Moderate SDBLB 830
...

In this form it is possible that more than one of the when clauses evaluates to
true, in which case the value in the first (from left) of the matching clauses is
returned.

4-18 Retrieving data from tables

Mimer SQL version 8.2
User’s Manual

4.1.12 Using CAST specification
The cast specification explicitly converts data of one data type to another data
type. Conversion between data types is allowed if the rules for assignment to
the target data type are not violated. See Mimer SQL Reference Manual for
conversion rules.

List the billed charges for reservation number 1347. Convert the charged
amounts to US-dollars to decimal with scale 4. Convert the date of charges (in
format YYYY-MM-DD) to character in format DD/MM/YY.

SELECT CAST(CHARGE_CODE AS SMALLINT) AS CODE,
 CAST(COST/7.835 AS DECIMAL(10,4)) AS USD,
 SUBSTRING(CAST(ON_DATE AS CHAR(26)) FROM 9 FOR 2)||'/'||
 SUBSTRING(CAST(ON_DATE AS CHAR(26)) FROM 6 FOR 2)||'/'||
 SUBSTRING(CAST(ON_DATE AS CHAR(26)) FROM 3 FOR 2) AS DATE
FROM BILL
WHERE RESERVATION = 1347
ORDER BY CODE;

CODE USD DATE
100 12.7632 21/08/97
120 5.1052 21/08/97
120 5.1052 21/08/97
210 - 21/08/97
700 - 21/08/97

4.1.13 Datetime arithmetic and functions
It is possible to use datetime and interval values in expressions to calculate new
datetime and interval values.

Valid operations are:

• addition or subtraction between an interval value and a datetime value

• subtracting a datetime from another datetime value

• adding or subtracting two interval values

• multiplying or dividing an interval by a numerical value

The first of these operations yields a datetime value while the others result in
an interval value.

How many days have the guests at hotel LAPONIA stayed?

SELECT GUEST_LNAME,
 (COALESCE(CHECKOUT,CURRENT_DATE)-CHECKIN) DAY(2) AS DAYS
FROM BOOK_GUEST
WHERE HOTELCODE = 'LAP'
AND CHECKIN IS NOT NULL;

GUEST_LNAME DAYS
DATE 1
JOHANSEN 2
HANSEN 1
ALVE 2
KRISTOFFERSEN 1
HOLMER 4
... ...
ZETTERBERG 3
HANSSON 6

Retrieving data from tables 4-19

Mimer SQL version 8.2
User’s Manual

When taking the difference between two datetime values it is necessary to
specify the type of the resulting interval. It is also possible to specify the
precision of the interval as shown in the example above. In that example the
precision is actually superfluous as the default precision for day is 2.

The above example uses the COALESCE short form of the CASE expression, a
complete description of this can be found in Section 5.6 of the Mimer SQL
Reference Manual.

Which hotel rooms have requested a wake up call within the next hour and a
half (assuming the time is 08:35:00)?

SELECT ROOMNO
FROM WAKE_UP
WHERE WAKE_DATE = CURRENT_DATE
AND WAKE_TIME BETWEEN LOCALTIME AND
 LOCALTIME + INTERVAL '01:30' HOUR TO MINUTE;

ROOMNO
SKY101
SKY201

SQL distinguishes between YEAR-MONTH (long) intervals and DAY-TIME
(short) intervals.

YEAR-MONTH intervals are: YEAR, MONTH and YEAR TO MONTH.

DAY-TIME intervals are: DAY, HOUR, MINUTE, SECOND,
HOUR TO MINUTE, HOUR TO SECOND, MINUTE TO SECOND,
DAY TO HOUR, DAY TO MINUTE and DAY TO SECOND.

It is possible to extract part of a datetime value with the EXTRACT function.
The function returns a numeric value.

Which month did FREDRIK SELLIN stay at any of the hotels?

SELECT CASE EXTRACT (MONTH FROM ARRIVE)
 WHEN 1 THEN 'JANUARY'
 WHEN 2 THEN 'FEBRUARY'
 WHEN 3 THEN 'MARCH'
 WHEN 4 THEN 'APRIL'
 WHEN 5 THEN 'MAY'
 WHEN 6 THEN 'JUNE'
 WHEN 7 THEN 'JULY'
 WHEN 8 THEN 'AUGUST'
 WHEN 9 THEN 'SEPTEMBER'
 WHEN 10 THEN 'OCTOBER'
 WHEN 11 THEN 'NOVEMBER'
 WHEN 12 THEN 'DECEMBER'
 END AS MONTH
FROM BOOK_GUEST
WHERE GUEST_FNAME = 'FREDRIK' AND GUEST_LNAME = 'SELLIN';

MONTH
JULY

Another useful function is DAYOFWEEK which returns the day number
within a week. MONDAY has the value 1 and SUNDAY has the value 7.

4-20 Retrieving data from tables

Mimer SQL version 8.2
User’s Manual

Which day did FREDRIK SELLIN arrive at any of the hotels?

SELECT CASE DAYOFWEEK(ARRIVE)
 WHEN 1 THEN 'MONDAY'
 WHEN 2 THEN 'TUESDAY'
 WHEN 3 THEN 'WEDNESDAY'
 WHEN 4 THEN 'THURSDAY'
 WHEN 5 THEN 'FRIDAY'
 WHEN 6 THEN 'SATURDAY'
 WHEN 7 THEN 'SUNDAY'
 END AS DAY
FROM BOOK_GUEST
WHERE GUEST_FNAME = 'FREDRIK' AND GUEST_LNAME = 'SELLIN';

DAY
SUNDAY

4.2 Retrieving data from more than one table

The examples presented up to now in this chapter have illustrated the essential
features of simple SELECT statements with data retrieval from single tables.
However, much of the power of SQL lies in the ability to perform joins through
a single statement, i.e. to select data from two or more tables, using the search
condition to link the tables in a meaningful way.

4.2.1 The join condition
In retrieving data from more than one table, the search condition or join
condition specifies the way the tables are to be linked.

List the billed charges for reservation number 1349.

SELECT DESCRIPTION, COST
FROM CHARGES, BILL
WHERE RESERVATION = 1349
AND BILL.CHARGE_CODE = CHARGES.CHARGE_CODE;

The join condition here is BILL.CHARGE_CODE = CHARGES.CHARGE_CODE,
which relates the charge code in table BILL (where amounts are listed) to the
charge code in table CHARGES (where the text description of the charge code
is listed). The result is:

DESCRIPTION COST
ROOM -
CAR PARK 70
MISCELLANEOUS 30

Conceptually, the join first establishes a table containing all combinations of
the rows in CHARGES with the rows in BILL, then selects those rows in which
the two CHARGE_CODE values are equal (see Section 4.4 for a fuller
description of the conceptual SELECT process). This does not necessarily
represent the order in which the operations are actually performed; the order of
evaluation of a complex SELECT statement is determined by the SQL
optimizer, regardless of the order in which the component clauses are written.

Retrieving data from tables 4-21

Mimer SQL version 8.2
User’s Manual

Without the join condition, the result is a cross product of the columns in the
tables in question, containing all possible combinations of the selected
columns:

SELECT DESCRIPTION, COST
FROM CHARGES, BILL
WHERE RESERVATION = 1349;

DESCRIPTION COST
LODGING -
TELEPHONE -
CAR PARK -
RESTAURANT -
MINIBAR -
BAR -
ROOM SERVICE -
LAUNDRY -
ROOM -
EXTRA BED -
MISCELLANEOUS -
LODGING 70
TELEPHONE 70
CAR PARK 70
RESTAURANT 70
MINIBAR 70
BAR 70
ROOM SERVICE 70
LAUNDRY 70
ROOM 70
EXTRA BED 70
MISCELLANEOUS 70
LODGING 30
TELEPHONE 30
CAR PARK 30
RESTAURANT 30
MINIBAR 30
BAR 30
ROOM SERVICE 30
LAUNDRY 30
ROOM 30
EXTRA BED 30
MISCELLANEOUS 30

It is easy to see that a carelessly formulated join query can produce a very large
result table. Two tables of 100 rows each, for instance, give a cross product
with 10,000 rows; three tables of 100 rows each give a cross product with
1,000,000 rows! The risk of generating large (erroneous) result tables is
particularly high in interactive SQL (e.g. when BSQL is used), where queries
are so easily written and submitted.

4.2.2 Simple joins
In simple joins, all tables used in the join are listed in the FROM clause of the
SELECT statement. This is in distinction to nested joins, where the search
condition for one SELECT is expressed in terms of another SELECT (see
Section 4.2.4).

4-22 Retrieving data from tables

Mimer SQL version 8.2
User’s Manual

An example of a simple join is the query described in Section 4.2.1:

SELECT DESCRIPTION, COST
FROM CHARGES, BILL
WHERE BILL.CHARGE_CODE = CHARGES.CHARGE_CODE
AND RESERVATION = 1349;

DESCRIPTION COST
ROOM -
CAR PARK 70
MISCELLANEOUS 30

The form SELECT * may be used in a join query, but since this selects all
columns in the result set, at least one column is usually duplicated:

SELECT *
FROM CHARGES, BILL
...;

(From CHARGES) (From BILL)
CHARGE_CODE DESCRIPTION CHARGE_PRICE RESERVATION ON_DATE CHARGE_CODE COST
...

Columns in the join query that are uniquely identified by the column name may
be specified by name alone. Columns that have the same name in the joined
tables must be qualified by their respective table names.

There is an alternative formulation of the query above:

SELECT DESCRIPTION, COST
FROM CHARGES JOIN BILL
ON CHARGES.CHARGE_CODE = BILL.CHARGE_CODE
AND RESERVATION = 1349;

All predicates that can be used in a where clause, except sub-selects, can be
used in an on-clause. The join clause can be used as a statement on it’s own:

CHARGES JOIN BILL ON CHARGES.CHARGE_CODE = BILL.CHARGE_CODE;

 or

CHARGES NATURAL JOIN BILL;

A natural join, joins the table on the condition of equality between any columns
with the same name, in the two tables. In the first example, all columns from
the two tables are present in the result. In the second example the join columns
will only occur once. Thus, in the first case, the CHARGE_CODE column
appears twice in the result, while there is only one occurrence of this column in
the second result.

It is possible to nest join-clauses:

Select the status of all rooms at hotel LAPONIA.

SELECT ROOMNO, STATUS
FROM ROOMSTATUS NATURAL JOIN ROOMS
JOIN HOTEL
ON HOTEL.HOTELCODE = ROOMS.HOTELCODE
AND HOTEL.NAME = 'LAPONIA';

Retrieving data from tables 4-23

Mimer SQL version 8.2
User’s Manual

ROONO STATUS
LAP110 FREE
LAP111 UNKNOWN
LAP112 FREE
LAP120 UNKNOWN
LAP121 UNKNOWN
LAP122 UNKNOWN
LAP200 UNKNOWN
LAP201 UNKNOWN
LAP205 FREE
LAP206 UNKNOWN
LAP210 UNKNOWN
LAP211 UNKNOWN
LAP212 UNKNOWN
LAP301 FREE
LAP302 FREE
LAP303 UNKNOWN
LAP304 UNKNOWN
LAP305 UNKNOWN
LAP306 UNKNOWN
LAP307 FREE
LAP308 KEY OUT
LAP309 UNKNOWN

The natural join between ROOMSTATUS and ROOMS is slightly contrived in
this example and is present to demonstrate that joins can be nested. If the
STATUS column in the ROOMS table was not a foreign key referencing the
ROOMSTATUS table, the function of the join could be to validate values in
the ROOMS.STATUS column.

A join query can join any number of tables, using complex search conditions to
select the relevant information from each table:

Select the total bill for guest Sten Johansen and list it in both Swedish and
Danish crowns (SEK and DKK respectively).

SELECT GUEST_LNAME, SUM(COST)/RATE AS TOTAL_BILL, CURRENCY
FROM BOOK_GUEST, BILL, EXCHANGE_RATE
WHERE GUEST_LNAME = 'JOHANSEN'
AND (CURRENCY = 'DKK'
OR CURRENCY = 'SEK')
AND BOOK_GUEST.RESERVATION = BILL.RESERVATION
GROUP BY GUEST_LNAME, CURRENCY, RATE;

GUEST_LNAME TOTAL_BILL CURRENCY
JOHANSEN 235.571 DKK
JOHANSEN 200.000 SEK

In formulating a search condition for a join query, it can help to write out the
columns that would appear in a complete cross-product of the tables. The
search condition is then formulated as though the query was a simple SELECT
from the cross-product table.

4.2.3 Outer joins
The joins in the previous chapter were all inner joins. In an inner join between
two tables, only rows that fulfill the join condition are present in the result. An
outer join, on the contrary, contains non-matching rows as well. The outer join
has two options, LEFT and RIGHT.

4-24 Retrieving data from tables

Mimer SQL version 8.2
User’s Manual

SELECT DESCRIPTION, COST
FROM CHARGES LEFT OUTER JOIN BILL
ON CHARGES.CHARGE_CODE = BILL.CHARGE_CODE
AND RESERVATION = 1349;

DESCRIPTION COST
LODGING -
TELEPHONE -
CAR PARK 70
RESTAURANT -
MINIBAR -
BAR -
ROOM SERVICE -
LAUNDRY -
ROOM -
EXTRA BED -
MISCELLANEOUS 30

In this example, all rows from the table to the left in the join clause, i.e.
CHARGES, are present in the result. Non-matching rows from the BILL table
are filled with null values in the result.

Observe the difference in result for the next statement and the previous one.

SELECT DESCRIPTION, COST
FROM CHARGES LEFT OUTER JOIN BILL
ON CHARGES.CHARGE_CODE = BILL.CHARGE_CODE
WHERE RESERVATION = 1349;

DESCRIPTION COST
CAR PARK 70
ROOM -
MISCELLANEOUS 30

The reason is that conditions in the where clause are applied to the result of the
join-clause and not to the joined tables as is the case with the conditions in the
on-clause.

A right outer join will take all records from the table to the right in the join-
clause.

As with inner joins, it is possible to nest join-clauses. Nested joins can be of
different types, i.e. both inner and outer joins. The result of nested outer joins
can be somewhat unexpected though, as it is the result of the first join-clause
that is the left table in the next join, and not the right table in the first join-
clause.

4.2.4 Nested selects
A form of SELECT, called a subselect, can be used in the search condition of a
SELECT statement to form a nested query. The main SELECT statement is
then referred to as the outer select. For example:

Select the names of hotels which have rooms with a price under 750.

SELECT NAME
FROM HOTEL
WHERE HOTELCODE IN (SELECT HOTELCODE
 FROM ROOM_PRICES
 WHERE PRICE < 750);

Retrieving data from tables 4-25

Mimer SQL version 8.2
User’s Manual

NAME
LAPONIA
ST. GEORGE

To see how this works, evaluate the subselect first:

SELECT HOTELCODE
FROM ROOM_PRICES
WHERE PRICE < 750;

HOTELCODE
LAP
LAP
LAP
LAP
LAP
LAP
LAP
LAP
STG
STG
STG
STG
STG
STG
STG
STG
STG
STG

Then use the result of the subselect in the search condition of the outer select:

SELECT NAME
FROM HOTEL
WHERE HOTELCODE IN ('LAP','STG');

NAME
LAPONIA
ST. GEORGE

A subselect can be used in a search condition wherever the result of the
subselect can provide the correct form of the data for the search condition.

Thus a subselect used with “=” must give a single value as a result, a subselect
used with IN, ALL or ANY must give a set of single values (see Section 4.2.8)
and a subselect used with EXISTS may give any result (see Section 4.2.7).

WHERE column = (subselect)
WHERE column IN (subselect)
WHERE column = ALL (subselect)
WHERE column = ANY (subselect)
WHERE EXISTS (subselect)

Subselects cannot include ORDER BY clauses. The UNION operator can be
used to combine two or more subselects in more complex statements (see
Section 4.2.9).

4-26 Retrieving data from tables

Mimer SQL version 8.2
User’s Manual

Many nested queries can equally well be written as simple joins. For example:

Select the names of hotels which have rooms with a price under 750.

SELECT NAME
FROM HOTEL
WHERE HOTELCODE IN (SELECT HOTELCODE
 FROM ROOM_PRICES
 WHERE PRICE < 750);

or alternatively

SELECT DISTINCT NAME
FROM HOTEL, ROOM_PRICES
WHERE HOTEL.HOTELCODE = ROOM_PRICES.HOTELCODE
AND ROOM_PRICES.PRICE < 750;

Both these queries give exactly the same result. In most cases, the choice of
which form to use is a matter of personal preference. Choose the form which
you can understand most easily; the clearest formulation is least likely to cause
problems.

Queries may contain any number of subselects, for example:

List hotels which have rooms that are more expensive than any of the rooms at
the Hotel Laponia.

SELECT NAME
FROM HOTEL
WHERE HOTELCODE IN
 (SELECT HOTELCODE
 FROM ROOM_PRICES
 WHERE PRICE >
 (SELECT MAX(PRICE)
 FROM ROOM_PRICES
 WHERE HOTELCODE =
 (SELECT HOTELCODE
 FROM HOTEL
 WHERE NAME = 'LAPONIA')));

(Note the balanced parentheses for the nested levels.)

It is particularly important at this level of complication to think carefully
through the query to make sure that it is correctly formulated.

Often, writing some of the levels as simple joins can simplify the structure. The
previous example may also be written:

SELECT DISTINCT NAME
FROM HOTEL, ROOM_PRICES
WHERE HOTEL.HOTELCODE = ROOM_PRICES.HOTELCODE
AND PRICE > (SELECT MAX(PRICE)
 FROM ROOM_PRICES, HOTEL
 WHERE ROOM_PRICES.HOTELCODE = HOTEL.HOTELCODE
 AND NAME = 'LAPONIA');

4.2.5 Ordering nested queries
The ORDER BY clause may only be used in outer SELECT statements and not
in subselects.

Retrieving data from tables 4-27

Mimer SQL version 8.2
User’s Manual

The following example is correct:

SELECT NAME, ROOMTYPE, FROM_DATE, PRICE
FROM HOTEL, ROOM_PRICES
WHERE ROOMTYPE IN ('NSSGLS','NSSGLB')
ORDER BY NAME;

The following example is incorrect:

SELECT NAME, ROOMTYPE, FROM_DATE, PRICE
FROM HOTEL, ROOM_PRICES
WHERE HOTEL.HOTELCODE IN (SELECT HOTELCODE
 FROM ROOM_PRICES
 WHERE ROOMTYPE IN ('NSSGLS','NSSGLB')
 ORDER BY HOTELCODE);

4.2.6 Correlation names
A correlation name is a temporary name given to a table to represent a logical
copy of the table within a query. Correlation names can be up to a maximum of
128 characters long.

There are three uses for correlation names:

• simplifying complex queries

• joining a table to itself

• outer references in subselects

4.2.6.1 Simplifying complex queries
Using short correlation names into complicated queries can make the query
easier to write and understand, particularly when qualified table names are
used:

SELECT HOTELADM.BOOK_GUEST.GUEST_LNAME,
 HOTELADM.HOTEL.NAME, SUM(COST)
FROM HOTELADM.BOOK_GUEST, HOTELADM.HOTEL, HOTELADM.BILL
WHERE HOTELADM.BILL.RESERVATION = HOTELADM.BOOK_GUEST.RESERVATION
AND HOTELADM.HOTEL.HOTELCODE = 'WINS'
GROUP BY HOTELADM.BOOK_GUEST.GUEST_LNAME, HOTELADM.HOTEL.NAME;

may be rewritten

SELECT G.GUEST_LNAME, H.NAME, SUM(COST)
FROM HOTELADM.BOOK_GUEST AS G,
 HOTELADM.HOTEL AS H,
 HOTELADM.BILL AS B
WHERE B.RESERVATION = G.RESERVATION
AND H.HOTELCODE = 'WINS'
GROUP BY G.GUEST_LNAME, H.NAME;

The keyword AS in the FROM clause may be omitted, but is recommended for
clarity. Do not confuse AS in the FROM clause (defining a correlation name)
with AS in the select list (see Section 4.1.2, defining a label).

Correlation names are local to the query in which they are defined.

4-28 Retrieving data from tables

Mimer SQL version 8.2
User’s Manual

When a correlation name is introduced for a table name, all references to the
table in the same query must use the correlation name. The following
expression is not accepted:

...
FROM HOTELADM.BOOK_GUEST AS G,
...
WHERE H.RESERVATION = HOTELADM.BOOK_GUEST.RESERVATION

4.2.6.2 Joining a table with itself
Joining a table with itself allows you to compare information in a table with
other information in the same table. This can be done with a correlation name.

Select all pairs of hotels located in the same city.

SELECT HOTEL.NAME, HOTEL.CITY
FROM HOTEL, HOTEL AS COPY
WHERE HOTEL.CITY = COPY.CITY
AND HOTEL.NAME <> COPY.NAME;

NAME CITY
LAPONIA STOCKHOLM
ST. GEORGE STOCKHOLM

Here, the table HOTEL is joined to a logical copy of itself called COPY. The
first search condition finds pairs of hotels in the same city, and the second
eliminates “pairs” with the same name. (Without the second condition in the
search condition, all hotel names would be selected!)

Without correlation names, this kind of query cannot be formulated. The
following query would select all the hotel names from the table:

SELECT HOTEL.NAME, HOTEL.CITY
FROM HOTEL
WHERE HOTEL.CITY = HOTEL.CITY;

4.2.6.3 Outer references in subselects
In some constructions using subselects, a subselect at a lower level may refer to
a value in a table addressed at a higher level. This kind of reference is called an
outer reference.

SELECT NAME
FROM HOTEL
WHERE EXISTS (SELECT *
 FROM BOOK_GUEST
 WHERE HOTELCODE = HOTEL.HOTELCODE);

This kind of query processes the subselect for every row in the outer select, and
the outer reference represents the value in the current outer select row. In
descriptive terms, the query says “For each row in HOTEL, select the NAME
column if there are rows in BOOK_GUEST containing the current
HOTELCODE value”.

If the qualifying name in an outer reference is not unambiguous in the context
of the subselect, a correlation name must be defined in the outer select.

Retrieving data from tables 4-29

Mimer SQL version 8.2
User’s Manual

A correlation name may always be used for clarity, as in the following
example:

SELECT NAME
FROM HOTEL AS H
WHERE EXISTS (SELECT *
 FROM BOOK_GUEST
 WHERE HOTELCODE = H.HOTELCODE);

4.2.7 Retrieving with EXISTS and NOT EXISTS
EXISTS is used to check for the existence of some row or rows which satisfy a
specified condition. EXISTS differs from the other operators in that it does not
compare specific values; instead, it tests whether a set of values is empty or not.
The set of values is specified as a subselect.

The subselect following the EXISTS clause most often uses of “SELECT *” as
opposed to “SELECT column-list” since EXISTS only searches to see if the set
of values addressed by the subselect is empty or not - a specified column is
seldom relevant in the subquery.

EXISTS (subselect) is true if the result set of the subselect is not empty

NOT EXISTS (subselect) is true if the result set of the subselect is empty

SELECT statements with EXISTS almost always include an outer reference
linking the subselect to the outer select.

Find the names of hotels for which guests exist in the BOOK_GUEST table.

SELECT NAME
FROM HOTEL AS H
WHERE EXISTS (SELECT *
 FROM BOOK_GUEST
 WHERE HOTELCODE = H.HOTELCODE);

Without the outer reference, the select becomes a conditional “all-or-nothing”
statement: perform the outer select if the subselect result is not empty,
otherwise select nothing.

List all reservation numbers if anybody has checked out without paying.

SELECT DISTINCT RESERVATION
FROM BILL
WHERE EXISTS (SELECT *
 FROM BOOK_GUEST
 WHERE CHECKOUT IS NOT NULL
 AND PAYMENT IS NULL);

4-30 Retrieving data from tables

Mimer SQL version 8.2
User’s Manual

The next example illustrates NOT EXISTS:

Which hotels do not have double rooms with showers?

SELECT NAME, HOTELCODE
FROM HOTEL AS H
WHERE NOT EXISTS (SELECT *
 FROM ROOMS
 WHERE HOTELCODE = H.HOTELCODE
 AND ROOMTYPE IN ('NSDBLS','SDBLS');

NAME HOTELCODE
WINSTON WINS
Winston WIN

Negated EXISTS clauses must be handled with care. There are two semantic
“opposites” to EXISTS, with very different meanings:

WHERE EXISTS (SELECT *
 FROM GUESTS
 WHERE GUEST = 'CODD')

is true if at least one guest is called CODD.

WHERE NOT EXISTS (SELECT *
 FROM GUESTS
 WHERE GUEST = 'CODD')

is true if no guest is called CODD.

But

WHERE EXISTS (SELECT *
 FROM GUESTS
 WHERE GUEST <> 'CODD')

is true if at least one guest is not called CODD.

WHERE NOT EXISTS (SELECT *
 FROM GUESTS
 WHERE GUEST <> 'CODD')

is true if no guest is not called CODD, that is, if every guest is called CODD.

The double negative in the previous example is an SQL implementation of the
universal quantifier FORALL (see “A Guide to DB2” by C. J. Date for more
information on EXISTS and FORALL).

4.2.8 Retrieval with ALL, ANY, SOME
Subselects that return a set of values may be used in the quantified predicates
ALL, ANY or SOME. Thus

WHERE PRICE < ALL (subselect)

selects rows where the price is less than every value returned by the subselect

WHERE PRICE < ANY (subselect)

selects rows where the price is less than at least one of the values returned by
the subselect

Retrieving data from tables 4-31

Mimer SQL version 8.2
User’s Manual

Select room types and hotel codes for rooms with a price that differs from that
of each room at Hotel Skyline.

SELECT DISTINCT ROOMTYPE, HOTELCODE
FROM ROOM_PRICES
WHERE PRICE <> ALL (SELECT PRICE
 FROM ROOM_PRICES
 WHERE HOTELCODE = 'SKY');

If the result of the subselect is an empty set, ALL evaluates to true, while ANY
or SOME evaluates to false.

An alternative to using ALL, ANY or SOME in a value comparison against a
general sub-select, is to use EXISTS or NOT EXISTS to see if values are
returned by a sub-select which only selects for specific values.

For example:

Select the room type, price and hotel code for rooms which have the same price
as a room at the hotel Skyline.

SELECT ROOMTYPE, PRICE, HOTELCODE
FROM ROOM_PRICES
WHERE PRICE = ANY (SELECT PRICE
 FROM ROOM_PRICES
 WHERE HOTELCODE = 'SKY');

is equivalent to

SELECT ROOMTYPE, PRICE, HOTELCODE
FROM ROOM_PRICES RP
WHERE EXISTS (SELECT *
 FROM ROOM_PRICES
 WHERE HOTELCODE = 'SKY'
 AND RP.PRICE = PRICE);

4.2.9 Union queries
The UNION operator combines the results of two or more subselect clauses.
UNION first merges the result tables specified by the separate subselects and
then eliminates duplicate rows from the merged set.

Select the codes for hotels which are in Stockholm or have single rooms with
showers.

SELECT HOTELCODE
FROM HOTEL
WHERE CITY = 'STOCKHOLM'

UNION

SELECT DISTINCT HOTELCODE
FROM ROOMS
WHERE ROOMTYPE IN ('NSSGLS','SSGLS');

4-32 Retrieving data from tables

Mimer SQL version 8.2
User’s Manual

The result is obtained by merging the results of the two subselects and
eliminating duplicates:

SELECT HOTELCODE SELECT DISTINCT HOTELCODE
FROM HOTEL FROM ROOMS
WHERE CITY = 'STOCKHOLM'; WHERE ROOMTYPE IN ('NSSGLS','SSGLS');

HOTELCODE HOTELCODE
LAP LAP
STG SKY

STG
WIND

giving the result table

HOTELCODE
LAP
SKY
STG
WIND

To retain duplicates in the result table, use UNION ALL in place of UNION
(see the Mimer SQL Reference Manual for details).

Columns which are merged by UNION must have compatible data types
(numerical with numerical, character with character). Subselects addressing
more than one result column are merged column by column in the order of
selection. The number of columns addressed in each subselect must be the
same.

The column names in the result of a UNION are taken from the names in the
first subselect. Use labels in the first subselect to assign different column
names to the result table:

Merge the codes and names of hotels in Stockholm with the hotel codes and
room type for rooms which are more expensive than any room at the St. George
hotel.

SELECT HOTELCODE AS CODE, NAME AS NAME_OR_TYPE
FROM HOTEL
WHERE CITY = 'STOCKHOLM'

UNION

SELECT HOTELCODE, ROOMTYPE
FROM ROOM_PRICES
WHERE PRICE > (SELECT MAX(PRICE)
 FROM ROOM_PRICES
 WHERE HOTELCODE = 'STG');

Retrieving data from tables 4-33

Mimer SQL version 8.2
User’s Manual

CODE NAME_OR_TYPE
LAP LAPONIA
STG ST. GEORGE
WIND NSDBLB
WIND NSDBLS
WIND NSSGLB
WIND NSSGLS
WIND SDBLB
WIND SDBLS
WIND SSGLB
WIND SSGLS
WINS NSDBLB
WINS NSSGLB
WINS SDBLB
WINS SSGLB

Subselects merged by UNION may not include an ORDER BY clause.
However, the result of the UNION query may be ordered with an ORDER BY
clause placed after the last query in the UNION.

UNION may not be used within a nested subselect. However, the results of
nested queries may be joined by UNION.

Unions can also be used to combine information from the same table:

Find the highest and lowest prices for rooms at the Hotel Skyline.

SELECT 'HIGHEST' AS PRICE, MAX(PRICE) AS AMOUNT
FROM ROOM_PRICES
WHERE HOTELCODE = 'SKY'

UNION

SELECT 'LOWEST', MIN(PRICE)
FROM ROOM_PRICES
WHERE HOTELCODE = 'SKY'
ORDER BY AMOUNT;

PRICE AMOUNT
LOWEST 750
HIGHEST 1080

4-34 Retrieving data from tables

Mimer SQL version 8.2
User’s Manual

Unions can also be used to perform outer joins, joining information in a table
or tables with information not listed in those tables (i.e. information that is
null). For example:

List the room types available for each hotel code. Include a row for hotel codes
which do not have a given room type with a shower.

SELECT DISTINCT H.HOTELCODE, ROOMTYPE
FROM ROOMS R, HOTEL H
WHERE R.HOTELCODE = H.HOTELCODE

UNION

SELECT DISTINCT H.HOTELCODE, 'NO '|| ROOMTYPE AS ROOMTYPE
FROM HOTEL H, ROOMS
WHERE H.HOTELCODE = ROOMS.HOTELCODE
AND NOT EXISTS (SELECT *
 FROM ROOMS R
 WHERE R.HOTELCODE = H.HOTELCODE
 AND ROOMTYPE LIKE '%S')
ORDER BY HOTELCODE;

HOTELCODE ROOMTYPE
LAP NSDBLB
LAP NSDBLS
LAP NSSGLB
LAP NSSGLS
LAP SDBLS
LAP SSGLB
LAP SSGLS
SKY NSDBLB
SKY NSDBLS
SKY NSSGLB
SKY NSSGLS
SKY SDBLS
SKY SSGLB
SKY SSGLS
STG NSDBLB
STG NSDBLS
STG NSSGLB
STG NSSGLS
STG SDBLB
STG SSGLB
STG SSGLS
WIND NSDBLB
WIND NSDBLS
... ...

Note: UNION statements including DISTINCT treat NULL values as
duplicates.

In UNION queries, the keyword NULL can be included in the column list of
one or both of the queries, so that columns not represented in all of the queries
in the statement are retained in the result set.

4.3 Handling NULL values

NULL values require special handling in SQL queries. NULL represents an
unknown value, and strictly speaking NULL is never equal to NULL. (NULL
values are however treated as equal for the purposes of GROUP BY,
DISTINCT and UNION).

Retrieving data from tables 4-35

Mimer SQL version 8.2
User’s Manual

4.3.1 Searching for NULL
The search condition

WHERE column = NULL

will not retrieve any rows since NULL is not equal to anything. The condition
for selecting NULL values is

WHERE column IS NULL

The negated form (WHERE column IS NOT NULL) selects values which are not
NULL (i.e. values which are known).

Find the names of the persons who made the reservations for those customers
who have not yet checked in to the Hotel Skyline.

“Not checked in” is represented by NULL in the CHECKIN column.

SELECT RESERVED_FNAME, RESERVED_LNAME
FROM BOOK_GUEST
WHERE CHECKIN IS NULL
AND HOTELCODE = (SELECT HOTELCODE
 FROM HOTEL
 WHERE NAME = 'SKYLINE');

RESERVED_FNAME RESERVED_LNAME
OMAR CHAFIR
AGNETA ERIKSSON
SVEN LINDHOLM
HENRIK PIHL
URBAN FRANSSON

Find the names of the guests who have checked in to the Hotel Laponia.

SELECT GUEST_FNAME, GUEST_LNAME
FROM BOOK_GUEST
WHERE CHECKIN IS NOT NULL
AND HOTELCODE = (SELECT HOTELCODE
 FROM HOTEL
 WHERE NAME = 'LAPONIA');

GUEST_FNAME GUEST_LNAME
CHRISTOPHER DATE
STEN JOHANSEN
STEFAN HANSEN
GUNNAR ALVE
NILS KRISTOFERSEN
LARS HOLMER
KNUT KULLMER
JUDITH SMITH
ADOLF SCHMIDT
LAILA ZETTERBERG
MATS HANSSON

4.3.2 Null values in ALL, ANY, IN and EXISTS queries
Null values should be treated cautiously, particularly in ALL, ANY, IN and
EXISTS queries.

4-36 Retrieving data from tables

Mimer SQL version 8.2
User’s Manual

The result of a comparison involving NULL is unknown, which is generally
treated as false. This can lead to unexpected results. For example, neither of the
following conditions are true:

<null> IN (...,null,...)
<null> NOT IN (...,null,...)

The first result is almost intuitive: since NULL is not equal to NULL, NULL is
not a member of a set containing NULL. But if NULL is not a member of a set
containing NULL, the second result is intuitively true. In fact, neither result is
true or false: both are unknown. If NULL values are involved on either side of
the comparison, IN and NOT IN are not complementary. Similar arguments
apply to queries containing ALL or ANY:

Where are hotels with rooms that are more expensive than those at the hotel
Skyline (hotel code SKY)?

SELECT NAME, CITY
FROM HOTEL AS H, ROOM_PRICES AS RP
WHERE H.HOTELCODE = RP.HOTELCODE
AND PRICE > ALL (SELECT PRICE
 FROM ROOM_PRICES
 WHERE HOTELCODE = 'SKY');

This query works as long as there are no NULL values in the PRICE column.
But introduce a new room type at Skyline with an unknown price, and the
query results in an empty set. Moreover, the reverse query (hotels that are
cheaper than all rooms at Skyline) also results in an empty set. (A justification
for this is that as long as one price at Skyline is unknown, it is impossible to say
whether rooms at other hotels are more or less expensive than those at Skyline).

It is always possible to rephrase a query using ALL, ANY or IN in terms of one
using EXISTS (with an outer reference between the selection and the EXISTS
condition). This is to be recommended if the NULL indicator is to be permitted
in the comparison sets, since NULL handling is then written out explicitly in
the query. Thus, the query above can also be written as follows:

SELECT NAME, CITY
FROM HOTEL AS H, ROOM_PRICES AS RP
WHERE H.HOTELCODE = RP.HOTELCODE
AND NOT EXISTS (SELECT *
 FROM ROOM_PRICES
 WHERE HOTELCODE = 'SKY'
 AND (PRICE <= RP.PRICE
 OR PRICE IS NULL
 OR RP.PRICE IS NULL));

This formulation may be read as “Find hotels where no room at Skyline is
cheaper than or the same price as any room in the hotel in question, as long as
no prices are unknown”. The explicit PRICE IS NULL clause tests that if either
of the components of the comparison is NULL, then the subselect is not empty,
NOT EXISTS is false, and no row is returned.

In general, a query of the form ($ stands for any comparison operator):

SELECT column-list
FROM table1
WHERE column1 $ ALL (SELECT column2
 FROM table2
 WHERE condition)

Retrieving data from tables 4-37

Mimer SQL version 8.2
User’s Manual

is equivalent to

SELECT column-list
FROM table1
WHERE NOT EXISTS (SELECT *
 FROM table2
 WHERE condition
 AND (NOT table1.column1 $ table2.column2
 OR table1.column1 IS NULL
 OR table2.column2 IS NULL));

A similar example is:

Where are hotels with rooms that have unknown prices or that are more
expensive than rooms with known prices at hotel Skyline?

SELECT NAME, CITY
FROM HOTEL H, ROOM_PRICES RP
WHERE H.HOTELCODE = RP.HOTELCODE
AND NOT EXISTS (SELECT *
 FROM ROOM_PRICES
 WHERE HOTELCODE = 'SKY'
 AND PRICE <= RP.PRICE);

This query does not exclude the occurrence of the NULL indicator from the
comparisons. If there is an unknown price, then the hotel concerned will be
included in the result set - even if the unknown price is at Skyline itself.
(Skyline might have a room that is more expensive than all rooms with known
prices at Skyline).

Formulated with ALL, this query would be:

SELECT NAME, CITY
FROM HOTEL H, ROOM_PRICES RP
WHERE H.HOTELCODE = RP.HOTELCODE
AND PRICE > ALL (SELECT PRICE
 FROM ROOM_PRICES
 WHERE HOTELCODE = 'SKY'
 AND PRICE IS NOT NULL);

It is clear from the examples above that distinctions between queries involving
NULL comparisons are subtle and are easily overlooked. It is essential that the
aim of a query is stringently defined before the query is formulated in SQL, and
that the possible effects of NULL values in the search condition are considered.
There are many real-life examples where the presence of NULL has resulted in
unforeseen and sometimes misleading data retrievals. It is advisable to define
all columns in the database tables as NOT NULL except those where unknown
values have a specific meaning (such as the CHECKIN and CHECKOUT
columns in the BOOK_GUEST table). In this way the risks of confusion with
NULL handling are minimized.

4-38 Retrieving data from tables

Mimer SQL version 8.2
User’s Manual

4.4 Conceptual description of the selection process

This section presents a conceptual step-by-step analysis of the evaluation of a
SELECT statement. It is intended as an aid in formulating complex SELECT
statements, and can also help you in understanding details of the statement
syntax.

Note: The description here is purely conceptual. It does not represent the actual
sequence of events performed by the database manager. In particular, the
computer resource requirements implied by the intermediate result set defined
in a FROM clause do not necessarily reflect actual requirements.

The query used in the analysis is:

List the total amount due for reservations above number 1347. Sort the result
by guest name.

SELECT G.RESERVATION, G.GUEST_LNAME, SUM(B.COST)
FROM BOOK_GUEST G, BILL B
WHERE G.RESERVATION = B.RESERVATION
GROUP BY G.RESERVATION, G.GUEST_LNAME
HAVING G.RESERVATION > 1347
ORDER BY GUEST_LNAME;

RESERVATION GUEST_LNAME
1351 ALBERTSON 420
1359 ALVE 100
1356 ANDERSSON 200
1401 BLOM 500
1358 CODD 100
1353 FIMPLEY 790
1352 FRANCIS -
1397 GRANKVIST 100
1349 HANSEN 70
1404 HANSSON 500
1413 HEDIN 300
1391 HESTMAN 420
1361 HOLLINGSWORTH 100
1364 HOLLSTEN 200
1379 HOLMER 300
1348 JOHANSEN 200
1367 JOHNSSON -
1374 KARLSSON 600
1372 KRISTOFERSEN -
1388 KULLMER 440
1396 LAHTINEN 340
1363 LE FEVRE 740
1393 LE FEVRE 400
1383 LIND 240
1381 LINDE 900
1386 LUNDBECK 395
1357 NILSSON 455
1385 NYQVIST 600
1369 OLSSON 140
1370 OLSSON 100
1382 PEREZ 1310
1384 PERSSON 720
1392 PERSSON 1350
1398 RYDELL 100
1368 SCHLAGER -
1395 SCHMIDT 200
1405 SELLIN 320
1389 SMITH 100
...

Retrieving data from tables 4-39

Mimer SQL version 8.2
User’s Manual

1. Subselects at the lowest nesting level are evaluated first
The first step in evaluating a select is to resolve subselects from the lowest
level up, and conceptually replace the subselect with the result set. (The
example here does not use a nested select). When all subselects are resolved, a
(possibly complicated) single-level SELECT statement remains.

2. The FROM clause defines an intermediate result set
Tables addressed in the FROM clause are combined to form an intermediate
result set which is the full cross product of the tables. The cross product is a
table with one column for each column in each of the table, and one row for
every combination of rows from the different tables. The columns in the result
set are identified by the qualified column names from the table from which they
are derived.

FROM BOOK_GUEST G, BILL B

The FROM clause in the example produces an intermediate result set which is
the full cross product of the BOOK_GUEST table and the BILL table.

3. The WHERE clause selects rows from the intermediate set
The WHERE clause selects rows from the full cross product result set that meet
the criteria specified.

WHERE G.RESERVATION = B.RESERVATION

In this example the WHERE clause selects only those result set rows where the
value in the RESERVATION column from the BOOK_GUEST table is equal
to that in the RESERVATION column from the BILL table.

4. The GROUP BY clause groups the remaining result set

GROUP BY G.RESERVATION, G.GUEST_LNAME

G.RESERVATION G.GUEST_LNAME B.RESERVATION B.COST
1347 DATE 1347 100
1347 DATE 1347 40
1347 DATE 1347 40

1348 JOHANSEN 1348 120
1348 JOHANSEN 1348 40
1348 JOHANSEN 1348 40

1349 HANSEN 1349 70
...

5. The HAVING clause selects groups

HAVING G.RESERVATION > 1347

G.RESERVATION G.GUEST B.RESERVATION B.COST
1348 JOHANSEN 1348 120
1348 JOHANSEN 1348 40
1348 JOHANSEN 1348 40

1349 HANSEN 1349 70
...

4-40 Retrieving data from tables

Mimer SQL version 8.2
User’s Manual

6. The SELECT list selects columns, evaluates any expressions in
the SELECT list, and reduces groups to single rows if set functions
are used

SELECT G.RESERVATION,
 G.GUEST_LNAME,
 SUM(B.COST)

G.RESERVATION G.GUEST_LNAME
1348 JOHANSEN 200
1349 HANSEN 70
...

7. The results of subselects joined by UNION are merged
This example does not include a UNION.

8. The final result is sorted according to the ORDER BY clause

ORDER BY GUEST_LNAME;

RESERVATION GUEST_LNAME
1349 HANSEN 70
1348 JOHANSEN 200
...

Data manipulation 5-1

Mimer SQL version 8.2
User’s Manual

5 DATA MANIPULATION

The previous chapter described how to retrieve data from tables with SELECT.
This chapter deals with manipulating the data in tables with the statements:

• INSERT for inserting new rows into tables

• UPDATE for updating rows

• DELETE for deleting rows from tables

• CALL for manipulating data by executing procedures.

You must have the appropriate access privileges on the relevant table(s) in
order to use INSERT, UPDATE or DELETE. In addition, the table itself must
be updatable. All base tables are updatable, but some views are not (see
Section 5.5). In order to make a CALL you must have EXECUTE privilege on
the procedure.

5.1 Inserting data

The INSERT statement is used to insert new rows into existing tables.

Values to be inserted may be specified explicitly (as constants or expressions)
or in the form of a subselect (see below). The data to be inserted must be of a
type compatible with the corresponding column definition. If the length of the
inserted data differs from that of the column definition, the data is handled as
follows:

character strings If the inserted data is longer than the column definition,
an error is reported and the INSERT operation fails
(trailing spaces are truncated without error).

If the inserted data is shorter than the column definition,
it is padded to the right with spaces to the required
length when inserted into a fixed-length character
column. The inserted data is not padded when inserted
into a VARCHAR column.

5-2 Data manipulation

Mimer SQL version 8.2
User’s Manual

decimal values Decimal values which are longer than the column
definition are truncated (not rounded) from the right to
meet the column definition. Thus 12.3456 is inserted
into DECIMAL(6,3) as 12.345.

Decimal values which are shorter than the column
definition are padded to the right of the decimal point
with zeros. Thus 12.3 is inserted into DECIMAL(6,3) as
12.300.

integer values If the inserted data has more digits than the column
definition or is outside the range of the definition, an
error is reported and the INSERT operation fails.

floating point
values

Floating point values are converted to decimal by
truncating the fractional part of the value as required by
the scale of the decimal target. An error occurs if the
scale of the target cannot accommodate the integral part
of the value.

datetime values Date values are converted to timestamp by setting the
hour, minute and second fields to zero. Time values are
converted to timestamp by taking values for the year,
month and day fields from CURRENT_DATE.
Timestamp values are converted to date or time by
discarding the field values that do not appear in the
target.

interval values Single field interval values are converted to exact
numeric by truncating decimal digits or by padding
decimal digits with zeros. If any loss of leading
precision occurs, or if overflow occurs, an error is
raised.

5.1.1 Inserting explicit values
The explicit INSERT statement has the general form

INSERT INTO table [(column-list)]
VALUES (value-list);

Values in the value-list are inserted into columns in the column-list in the order
specified. The order of columns in the column-list need not be the same as the
order in the table definition. Any columns in the table definition which are not
included in the column-list are assigned NULL values (or the column default
value if one is defined).

An explicit INSERT statement can only insert a single row.

Insert the values 'SUTB' and 'SUITE WITH BATH' into the ROOMTYPE and
DESCRIPTION columns respectively into the ROOMTYPES table.

INSERT INTO ROOMTYPES (ROOMTYPE,DESCRIPTION)
VALUES ('SUTB','SUITE WITH BATH');

Data manipulation 5-3

Mimer SQL version 8.2
User’s Manual

inserts the row

 ROOMTYPE DESCRIPTION
 SUTB SUITE WITH BATH

If you insert explicit values into all of the columns in a table, the column list
can be omitted from the INSERT statement. The values specified are then
inserted into the table in the order that the columns are defined in the table.
Thus the example above could also be written:

INSERT INTO ROOMTYPES
VALUES ('SUTB','SUITE WITH BATH');

You can also insert the result of an expression into a table:

INSERT INTO ROOM_PRICES
VALUES ('LAP', 'SUTB', CURRENT_DATE,
 CURRENT_DATE + INTERVAL '32' DAY, 500 + 40);

HOTELCODE ROOMTYPE FROM_DATE TO_DATE PRICE
LAP SUTB 1997-08-22 1997-09-23 540

5.1.2 Inserting with a subselect
Values to be inserted can also be specified in the form of a subselect, i.e.
fetched from another table in the database.

INSERT INTO ROOMSTATUS
 SELECT DISTINCT ROOMNO, 'KEY OUT'
 FROM BOOK_GUEST
 WHERE CHECKIN IS NOT NULL
 AND CHECKOUT IS NULL;

The same table cannot be listed in the subselect’s FROM clause that is listed in
the INSERT INTO clause - data cannot be selected from a table for insertion
into the same table.

Inserting the result of a subselect can insert a number of rows into a table. If
any of the rows are rejected (e.g. because of a duplicate primary or unique key),
the whole INSERT statement fails and no rows are inserted.

5.1.3 Inserting sequence values
The value to be inserted can be the value of a sequence. The constructs that
return the current value or next value of a sequence can be used as column
values in the INSERT statement:

INSERT INTO BOOKGUEST (ROOMNO,KEYCODE)
VALUES ('SKY123',NEXT_VALUE OF KEYCODES_SEQUENCE);

INSERT INTO BILL (CHARGE_PERIOD_NO,COST)
VALUES (CURRENT_VALUE OF CHARGE_PERIOD_NO_SEQUENCE,400);

5.1.4 Inserting NULL values
The keyword NULL may be used to insert the NULL value into a column
(provided that the column is not defined as NOT NULL):

INSERT INTO EXCHANGE_RATE (CURRENCY,RATE)
VALUES ('XYZ',NULL);

5-4 Data manipulation

Mimer SQL version 8.2
User’s Manual

The NULL indicator is implicitly inserted into columns when no value is given
for that column and the column definition does not include a default value.
Thus, the following INSERT statement will give the same results as the
example above:

INSERT INTO EXCHANGE_RATE (CURRENCY)
VALUES ('XYZ');

5.2 Updating tables

Data in existing table rows can be changed with the UPDATE statement. This
statement has the general form:

UPDATE table
SET column = value
[WHERE search-condition];

The search condition specifies which rows in the table are to be updated. If no
search condition is specified, all rows will be updated.

Update the exchange rate for US dollars to 7.25.

UPDATE EXCHANGE_RATE
SET RATE = 7.25
WHERE CURRENCY = 'USD';

Add 20 to the 1997-08-08 to 1997-11-14 price of a no-smoking, single room
with shower in the Hotel Laponia.

UPDATE ROOM_PRICES
SET PRICE = PRICE + 20
WHERE ROOMTYPE = 'NSSGLS'
AND FROM_DATE = DATE '1997-08-08'
AND TO_DATE = DATE '1997-11-14'
AND HOTELCODE = (SELECT HOTELCODE

 FROM HOTEL
 WHERE NAME = 'LAPONIA');

When a subselect is used in the search condition, the table being updated may
not be used in the subselect.

Primary key columns can be updated provided the table is stored in a databank
with the TRANS or LOG option.

5.3 Deleting rows from tables

The DELETE statement removes rows from a table, and has the general form:

DELETE FROM table
[WHERE search-condition];

The search condition specifies which rows in the table are to be deleted. If no
search condition is specified, all rows will be deleted (the table is emptied but
not dropped).

Data manipulation 5-5

Mimer SQL version 8.2
User’s Manual

Delete all hotels in STOCKHOLM from the HOTEL table.

DELETE FROM HOTEL
WHERE CITY = 'STOCKHOLM';

Delete all rows from the HOTEL table.

DELETE FROM HOTEL;

Delete information for guests with the last name SVENSON from the BILL
table.

DELETE FROM BILL
WHERE RESERVATION IN (SELECT RESERVATION
 FROM BOOK_GUEST
 WHERE TRIM(GUEST_LNAME) = 'SVENSON');

When a subselect is used in the search condition, the table from which rows are
deleted may not be used in the subselect.

5.4 Calling procedures

In addition to using data manipulation statements directly, as just described, it
is also possible to manipulate table data by invoking a procedure. Procedures
perform the specific data manipulations laid out in the procedure definition.

Any SQL statement in the grouping procedural-sql-statement (see the
beginning of Chapter 6 of the Mimer SQL Reference Manual for a definition)
can be used in a procedure, and this includes all the data manipulation
statements.

The use of procedures allows data manipulation within the database to be
controlled both in terms of strictly defining which data manipulation operations
are performed and also in terms of regulating which database objects can be
affected.

A procedure is invoked by using the CALL statement. In the case of a result set
procedure, used in an embedded SQL context, the CALL statement is not used
directly but is specified in a cursor declaration. An ident requires EXECUTE
privilege on a procedure in order to call it.

In the CALL statement, the value-expressions or assignment targets specified
for each of the procedure parameters must be of data type which is assignment-
compatible (see Section 4.5 of the Mimer SQL Reference Manual) with the
parameter data type.

See Chapter 6 of the Mimer SQL Reference Manual for full details of the
CALL statement and Chapter 8 of the Mimer SQL Programmer’s Manual for a
general discussion of the PSM functionality supported in Mimer SQL.

Invoke the procedure called ALLOCATE_ROOM.

CALL ALLOCATE_ROOM(142,:room_no);

5-6 Data manipulation

Mimer SQL version 8.2
User’s Manual

Declare a cursor which will be used when result-set data is fetched from the
result set procedure called WAKE_UP.

DECLARE room_nos CURSOR
 FOR CALL WAKE_UP(:query_interval);

5.5 Updatable views

INSERT, UPDATE and DELETE statements may be used on views: the
operation is then performed on the base table upon which the view is defined.
However, certain views may not be updated (for example a view containing
DISTINCT values, where a single row in the view may represent several rows
in the base table). A view is not updatable if any of the following conditions are
true:

• the keyword DISTINCT is used in the view definition

• the select list contains components other than column specifications, or
contains more than one specification of the same column

• the FROM clause specifies more than one table reference or refers to a
non-updatable view

• the GROUP BY clause is used in the view definition

• the HAVING clause is used in the view definition

Note: A view will always be updatable if an INSTEAD OF trigger exists on
the view, regardless of the conditions previously mentioned. If all the
INSTEAD OF triggers on the view are dropped, the view will revert to not
updatable if one or more of these conditions are true.

Managing transactions 6-1

Mimer SQL version 8.2
User’s Manual

6 MANAGING TRANSACTIONS

6.1 Transaction principles

A transaction is an environment where it is possible to COMMIT some or all of
the operations performed within it, or to ensure that all of them fail.

Three transaction phases exist: build-up, during which the database operations
are requested; prepare, during which the transaction is validated; commitment,
during which the operations performed in the transaction are written to disk.

Read-only transactions have only two phases: build-up and prepare.

Transaction build-up, which may be started explicitly or implicitly; prepare
and commitment are both initiated explicitly through a request to commit the
transaction (using COMMIT). In interactive application programs, build-up
takes place typically over a time period determined by the user, while prepare
and commitment are part of the internal process of committing a transaction,
which occurs on a time-scale determined by machine operations.

The transaction begins by taking a snapshot of the database in a consistent
state. During build-up, changes requested to the contents of the database are
kept in a write-set and are not visible to other users of the system. This allows
the database to remain fully accessible to all users. The application program in
which build-up occurs will see the database as though the changes had already
been applied. Changes requested during transaction build-up become visible to
other users when the transaction is successfully committed.

A major function of the transaction handling in Mimer SQL multi-user systems
is concurrency control. This means protecting the database from corruption
which might arise when two users attempt to change the same information at
the same time.

See the Mimer SQL Programmer’s Manual for a more detailed discussion of
transaction handling and database security.

6-2 Managing transactions

Mimer SQL version 8.2
User’s Manual

6.2 Logging

Transaction control also provides the basis for protection of the database
against hardware failure.

Changes made to a database may be logged, to provide back-up protection in
the event of hardware failure, provided that the changes occur within a
transaction and that the databanks involved have the LOG option. Transaction
handling is, therefore, important even in standalone environments where
concurrency control issues do not arise.

The system logging databank, LOGDB is where transaction changes are
recorded. It contains a record of all transactions executed since the latest back-
up copy of a databank was taken and the log cleared. The latest back-up copy of
the databank, together with the contents of LOGDB, may be used to restore the
databank in the event of a databank crash.

Transaction control and logging is determined at the databank level by options
set when the databank is defined. The options are:

LOG All operations on the databank are performed under
transaction control. All transactions are logged.

TRANS All operations on the databank are performed under
transaction control. No transactions are logged.

NULL All operations on the databank are performed without
transaction control (even if they are requested within a
transaction), and are not logged. Sets of operations (DELETE,
UPDATE or INSERT on several rows) which are interrupted
will not be rolled back.

All important databanks should be defined with LOG option, so that valuable
data is not lost by any system failure.

Managing transactions 6-3

Mimer SQL version 8.2
User’s Manual

6.3 Handling transactions

Transaction control statements in Mimer SQL are:

COMMIT;
ROLLBACK;
SET TRANSACTION READ ONLY;
SET TRANSACTION READ WRITE;
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;
SET TRANSACTION ISOLATION LEVEL READ COMMITTED;
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED;
SET TRANSACTION START EXPLICIT;
SET TRANSACTION START IMPLICIT;
SET TRANSACTION DIAGNOSTICS SIZE;
SET SESSION READ ONLY;
SET SESSION READ WRITE;
SET SESSION ISOLATION LEVEL SERIALIZABLE;
SET SESSION ISOLATION LEVEL REPEATABLE READ;
SET SESSION ISOLATION LEVEL READ COMMITTED;
SET SESSION ISOLATION LEVEL READ UNCOMMITTED;
SET SESSION DIAGNOSTICS SIZE;
START TRANSACTION;

The following SQL statements may not be used inside a transaction:

ENTER SET DATABASE SET TRANSACTION
LEAVE SET SESSION START TRANSACTION
SET DATABANK SET SHADOW

The following SQL statements may be used inside a transaction provided they
are the only statement executed in that transaction:

ALTER CREATE PROCEDURE DROP MODULE
COMMENT CREATE SCHEMA DROP PROCEDURE
CREATE BACKUP CREATE SHADOW DROP SCHEMA
CREATE DATABANK CREATE TABLE DROP SHADOW
CREATE FUNCTION CREATE TRIGGER DROP TABLE
CREATE INCREMENTAL BACKUP DROP DATABANK DROP TRIGGER
CREATE INDEX DROP FUNCTION UPDATE STATISTICS
CREATE MODULE DROP INDEX

In addition, the following BSQL commands (see Chapter 9) may not be used
inside a transaction:

EXIT LOAD UNLOAD

6.3.1 Transaction handling in BSQL
Normal Mimer SQL transaction handling behavior applies in BSQL. The
default transaction start setting of implicit means that, by default, a transaction
is started whenever one is needed.

For a detailed description of transaction handling behavior in Mimer SQL, refer
to Section 6.2 of the Mimer SQL Programmer’s Manual.

A special feature of BSQL is that all implicitly started transactions are
automatically committed at the end of each statement, so that by default no
attention needs to be paid to transaction handling at all in BSQL.

The START and COMMIT (or ROLLBACK) statements may be used together
to group a number of statements into a single transaction when this is required.

6-4 Managing transactions

Mimer SQL version 8.2
User’s Manual

Any transactions explicitly started using START will not be automatically
committed by BSQL, so COMMIT or ROLLBACK must be used.

6.3.2 Optimizing transactions
It is strongly recommended that the SET TRANSACTION READ ONLY
option be used for each transaction that does not perform updates to the
database and that the SET TRANSACTION READ WRITE option be used
only when a transaction performs updates.

Taking a little extra care to set these options appropriately will ensure the
transaction performance remains optimal at all times.

The default transaction read option can be defined by using SET SESSION (see
Section 6.3.5). If this has not been used to set the default transaction read
option, the default is READ WRITE.

6.3.3 Consistency within a transaction
The SET TRANSACTION ISOLATION LEVEL options are provided to
control the degree to which the updates performed by one transaction are
affected by the updates performed by other transactions which are executing
concurrently.

The default isolation level can be defined by using SET SESSION (see
Section 6.3.5). If this has not been used to set a default isolation level, the
default is REPEATABLE READ. This isolation level guarantees that the end
result of the operations performed by two or more concurrent transactions is the
same as if the transactions had been executed in a serial fashion, except that an
effect known as “Phantoms” may occur.

This is where one transaction reads a set of rows that satisfy some search
condition. Another transaction then performs an update which generates one or
more new rows that satisfy that search condition. If the original query is
repeated (using exactly the same search condition), extra rows appear in the
result-set that were previously not found.

The other isolation levels are: READ UNCOMMITTED, READ
COMMITTED and SERIALIZABLE.

All four isolation levels guarantee that each transaction will be executed
completely or not at all and that no updates will be lost.

Refer to the description of SET TRANSACTION in the Mimer SQL Reference
Manual for a full description of the effects that are possible, or guaranteed
never to occur, at each of the four isolation levels.

Managing transactions 6-5

Mimer SQL version 8.2
User’s Manual

6.3.4 Exception diagnostics within transactions
The SET TRANSACTION DIAGNOSTICS SIZE option allows the size of the
diagnostics area to be defined. A unsigned integer value specifies how many
exceptions can be stacked in the diagnostics area, and examined by GET
DIAGNOSTICS, in situations where repeated RESIGNAL operations have
effectively been performed.

The SET TRANSACTION DIAGNOSTICS SIZE setting only affects the
single next transaction to be started.

The default SET TRANSACTION DIAGNOSTICS SIZE setting (5 or
whatever has been defined to be the default by using SET SESSION) applies
unless an alternative is explicitly set before each transaction.

6.3.5 Default transaction options
The SET SESSION statement is provided so that default values for certain
transaction control settings can be defined.

The transaction control settings defined by SET TRANSACTION READ
(see Section 6.3.2) and SET TRANSACTION ISOLATION LEVEL (see
Section 6.3.3) apply to the single next transaction to be started. If these
statements are not used explicitly before each transaction, the default settings
apply.

SET SESSION allows the default settings for SET TRANSACTION READ
and SET TRANSACTION ISOLATION LEVEL to be defined.

Defining the database 7-1

Mimer SQL version 8.2
User’s Manual

7 DEFINING THE DATABASE

 SQL includes statements for creating and modifying the database structure:

• create idents, schemas, databanks, shadows, domains, sequences, tables,
triggers, functions, procedures, modules, views, indexes and synonyms

• saving documentary comments on objects

• altering the definition of idents, databanks, shadows and tables

• dropping objects from the database

All information describing the database structure is stored in the data
dictionary.

Before the database is defined, it is extremely important to design the database
model. Well-functioning and efficient databases cannot be created without a
model as the foundation. Without careful design, much of the flexibility and
efficiency inherent in a relational database structure may be lost.

This chapter describes the SQL statements for creating and managing the
database structure. Examples are based on the database listed in Appendix A. In
addition, BSQL provides specific commands for listing and describing database
objects (see Chapter 9).

7.1 Creating idents and schemas

Idents are authorized users of the system or groups of users defined for easier
ident management (see Section 2.1.3).

The case of letters is insignificant for an ident name and it must be composed
of a unique sequence of case-less characters (e.g. the idents ABC and aBc
cannot both exist in the database because they are identical when case is
ignored).

The case of the characters in an ident name can be made significant by
enclosing the string in double quotes ("").

Passwords are composed of case-significant characters and must be entered
exactly as they are defined.

The statement for creating idents has the general form:

CREATE IDENT username
AS ident-type
[USING 'password'];

7-2 Defining the database

Mimer SQL version 8.2
User’s Manual

Passwords are required for user and program idents but are not used for group
idents. Passwords are optional for OS_USER idents: an OS_USER with a
password may connect to Mimer SQL in the same way as any other user ident.

When a USER, OS_USER or PROGRAM ident is created, a schema with the
same name can also be created automatically and the created ident becomes the
creator of the schema. This happens by default unless WITHOUT SCHEMA is
specified in the CREATE IDENT statement.

All private database objects created by an ident must belong to a schema which,
by default, is the schema with the same name as the ident. When any private
database object is created, its name can be specified in the fully qualified form
that explicitly identifies which schema the object is to belong to. An ident may
create objects in schemas “owned” by it (i.e. the schema created automatically
when the ident was created and any schemas explicitly created by the ident).

An ident with IDENT or SCHEMA privilege can create additional schemas by
using the CREATE SCHEMA statement. The objects belonging to the schema
can be defined in the CREATE SCHEMA statement and created at the same
time as the schema (refer to the Mimer SQL Reference Manual for details).

Create a user ident HOTELADM with the password “Hoteladm” (schema
HOTELADM will also be automatically created).

CREATE IDENT HOTELADM
AS USER
USING 'Hoteladm';

Create a program ident AUDIT with the password “economy” without creating
a schema.

CREATE IDENT AUDIT
AS PROGRAM
USING 'economy' WITHOUT SCHEMA;

Create a group ident for the group ECONOMY_DEPT.

CREATE IDENT ECONOMY_DEPT
AS GROUP;

Create a schema called NEW_SCHEMA.

CREATE SCHEMA NEW_SCHEMA;

Create table Y in the schema called NEW_SCHEMA.

CREATE TABLE NEW_SCHEMA.Y (A INTEGER);

Create schema called SCHEMA_S which contains sequence Z.

CREATE SCHEMA SCHEMA_S
 CREATE UNIQUE SEQUENCE Z;

Defining the database 7-3

Mimer SQL version 8.2
User’s Manual

7.2 Creating databanks

The statement for creating a databank has the general form

CREATE DATABANK databank-name
 [OF initial-size PAGES]
 [IN 'filename']
 [WITH transaction-control OPTION];

• The CREATE DATABANK clause defines the databank name.

• The optional OF clause allocates a specified number of Mimer pages. This
sets the initial size of the file, it will be dynamically extended as space is
required. If the OF clause is omitted, an initial file size of 1000 Mimer
pages is assumed.

• The optional IN clause defines the file where the databank is to be stored
(the form of the filename specification is machine-specific). If the IN
clause is omitted, the file is created in the database home directory with the
same name as databank-name.

• The optional WITH clause defines the transaction handling and logging
option (see Section 6.2). If the WITH clause is omitted, the TRANS option
is assumed.

Create a databank called GUESTDB with the default parameters (i.e. with
TRANS option, of size 1000 Mimer pages and stored in the file called
“guestdb”.

CREATE DATABANK GUESTDB;

Create the ROOMSDB databank with LOG option, allocate 200 Mimer pages
for it, and store it in a file call “rooms.dbnk”.

CREATE DATABANK ROOMSDB
 OF 200 PAGES
 IN 'ROOMS.DBNK'
 WITH LOG OPTION;

At this point, the databank is empty.

7.3 Creating sequences

A sequence returns a series of integer values which is defined by specifying an
initial value, a maximum value, an increment and whether the sequence is to be
unique or not.

A sequence that has been initialized has a current value, which is returned from
the function CURRENT_VALUE. The function NEXT_VALUE is used to
initialize a sequence and to subsequently advance the current value of the
sequence through its defined series of values.

A sequence can be used to provide the default value for a domain or a table
column, etc.

A unique sequence will never return the same value twice.

7-4 Defining the database

Mimer SQL version 8.2
User’s Manual

Create a sequence that defines the following (repeating) series of values:
1, 4, 7, 10, 3, 6, 9, 2, 5, 8, 1, 4, 7, 10, 3, 6, 9, 2, 5, 8, 1, 4, 7, 10, 3, 6…
CREATE SEQUENCE SEQ_1 INITIAL_VALUE = 1 INCREMENT = 3 MAX_VALUE = 10;

Create a sequence that defines the following series of values: 1, 4, 7, 10, 3, 6,
9, 2, 5, 8.

CREATE UNIQUE SEQUENCE SEQ_2 INITIAL_VALUE = 1 INCREMENT = 3
 MAX_VALUE = 10;

7.4 Creating domains

Domains are used as data types in column definitions when creating tables

• to assist in keeping the database consistent

• to limit the data (particular values or data type) accepted in the columns

• to define default values for columns

The statement for creating domains has the general form:

CREATE DOMAIN domain-name
 AS data-type
 [DEFAULT default-value]
 [[CONSTRAINT constraint_name] CHECK (check-condition)];

• The CREATE DOMAIN clause defines the domain name.

• The AS clause defines the domain data type.

• The default clause defines a default value for the domain

• The CHECK clause defines the domain limits.

It is a good practice for maintaining the integrity of the database to define
domains for as many columns as possible.

7.4.1 Domains with a default value
The default clause defines values that are inserted into the column when an
explicit value is not specified or the keyword DEFAULT is used in an INSERT
statement.

Define the default value '-ND-' (“not defined”) for the domain ROOMTYPE.

CREATE DOMAIN ROOMTYPE
 AS CHAR(4)
 DEFAULT '-ND-';

Define the current user’s name as the default value for the domain NAME.

CREATE DOMAIN NAME AS CHAR(128)
 DEFAULT CURRENT_USER;

Define the domain CHARGE_PERIOD_VALUE which uses the sequence
CHARGE_PERIOD_NO_SEQUENCE to provide a default value.

CREATE DOMAIN CHARGE_PERIOD_VALUE AS INTEGER
 DEFAULT CURRENT_VALUE OF CHARGE_PERIOD_NO_SEQUENCE;

Defining the database 7-5

Mimer SQL version 8.2
User’s Manual

Domains defining default values can also include check clauses. You could
define the ROOMTYPE domain as:

CREATE DOMAIN ROOMTYPE
 AS CHAR(4)
 DEFAULT '-ND-'
 CHECK (VALUE IS NOT NULL);

This means that the NULL indicator will not be accepted into columns
belonging to this domain.

If the default value is defined as being outside the check constraint this ensues
that an explicit value must always be inserted into the column.

7.4.2 Domains with a check clause
Specification of a CHECK clause means that only values for which the
specified search condition evaluates to true may be assigned to a column
belonging to the domain.

The search condition (see Section 5.10 of the Mimer SQL Reference Manual)
in the CHECK clause may only reference the domain values (by using the
keyword VALUE), constants, or the keywords CURRENT_USER,
SESSION_USER and NULL.

The domain CALENDAR, created below, uses a check clause to limit the
range of accepted values:

CREATE DOMAIN CALENDAR
 AS DATE
 CHECK (VALUE BETWEEN DATE '1996-01-01' AND
 DATE '2099-12-31');

7.5 Creating tables

After the physical file space has been allocated on a disk for the databank,
(CREATE DATABANK), you can create the tables. The basic CREATE
TABLE statement defines the columns in the table, the primary key, any unique
or foreign keys and which databank the table is to be stored in. Table names
and column names may be up to 128 characters long.

As a convention, we have defined primary key column(s) as the first column(s)
in the example definitions . However, this is not a necessity; primary key
columns may be defined anywhere in the column list. Primary keys are always
NOT NULL, so there is no need to explicitly state that in the table definition
(they are included in the examples here for clarity).

7-6 Defining the database

Mimer SQL version 8.2
User’s Manual

Create the table EXCHANGE_RATE with two columns. Name the first column
CURRENCY, make it of the CHARACTER data type with a maximum of three
characters. Name the second column RATE and make it of the data type
DECIMAL with a total of six digits, three of which can be decimal values.
Declare the CURRENCY column as the primary key and place this table in the
HOTELDB databank.

CREATE TABLE EXCHANGE_RATE (CURRENCY CHAR(3) NOT NULL,
 RATE DECIMAL(6,3),
 PRIMARY KEY (CURRENCY))
 IN HOTELDB;

The CREATE TABLE clause defines the name of the table followed by a
column list, which includes the names of the columns in the table, their data
type, if they should allow the NULL indicator and the primary key declaration.
Each item in the column-list is separated from the next by a comma, and the
entire list is enclosed in parentheses.

A table definition may only include one primary key clause. The primary key
can be made up of more than one column.

The IN clause states which databank the table is to be stored in. This clause
may be omitted; if the IN clause is not specified, Mimer SQL will select the
“best” databank in which to place the table (see the Mimer SQL Reference
Manual for details of how the best databank is chosen).

The empty table now exists in the databank. Data is inserted into the table with
the INSERT statement (see Section 5.1).

The preceding example shows the simplest form of column list. The following
variants may also be used:

• columns belonging to domains

• default values (overriding any domain default for the column)

• columns not belonging to the primary key defined as NOT NULL

• unique constraints (in addition to the primary key)

• foreign key constraints

• check constraints

The BOOK_GUEST table in the example database is defined with many of the
options that can be used in creating tables. See the Mimer SQL Reference
Manual for a full description of the table creation facilities.

Defining the database 7-7

Mimer SQL version 8.2
User’s Manual

CREATE TABLE BOOK_GUEST (RESERVATION INTEGER(5) NOT NULL,
 BOOKING_DATE DATE
 DEFAULT CURRENT_DATE NOT NULL,
 HOTELCODE HOTELCODE NOT NULL,
 ROOMTYPE ROOMTYPE NOT NULL,
 COMPANY VARCHAR(100) NOT NULL,
 TELEPHONE CHAR(15),
 RESERVED_FNAME PERSONNAME,
 RESERVED_LNAME PERSONNAME,
 ARRIVE DATE NOT NULL,
 DEPART DATE NOT NULL,
 GUEST_FNAME PERSONNAME,
 GUEST_LNAME PERSONNAME,
 ADDRESS VARCHAR(50),
 CHECKIN DATE,
 CHECKOUT DATE,
 ROOMNO ROOMNO,
 PAYMENT CHAR(10),
 PRIMARY KEY (RESERVATION),
 FOREIGN KEY (HOTELCODE) REFERENCES HOTEL,
 FOREIGN KEY (ROOMTYPE) REFERENCES ROOMTYPES,
 FOREIGN KEY (ROOMNO) REFERENCES ROOMS ON DELETE NO ACTION,
 CHECK (ARRIVE < DEPART AND CHECKIN <= CHECKOUT))
 IN HOTELDB;

The ordering of column specifications, key clauses and check conditions is not
fixed. If desired, the key and check clauses can be written in association with
the respective column specifications:

CREATE TABLE BOOK_GUEST
 (RESERVATION INTEGER(5) NOT NULL PRIMARY KEY,
 BOOKING_DATE DATE DEFAULT CURRENT_DATE NOT NULL,
 HOTELCODE HOTELCODE NOT NULL REFERENCES HOTEL,
 ROOMTYPE ROOMTYPE NOT NULL REFERENCES ROOMTYPES,
 ...

7.5.1 Column definitions
Domains are used for many columns in the example database to help in
maintaining database integrity. By using the same domain for columns in
different tables, the column data types are guaranteed to be consistent.

Columns should in general be defined as NOT NULL unless there is a specific
reason for using the NULL value in the column (e.g. CHECKIN and
CHECKOUT in the table BOOK_GUEST, where NULL indicates that the
reservation has not checked in or out). The presence of NULL values can often
complicate the formulation of queries (see Section 4.3). Take particular care to
exclude NULL from numerical columns which are to be used for mathematical
operations.

7.5.2 The primary key constraint
The primary key constraint can consist of more than one column in the table.
The choice of columns to use as the primary key is determined by the relational
model for the database, which is outside the scope of this manual.

7-8 Defining the database

Mimer SQL version 8.2
User’s Manual

7.5.3 Unique constraint
A unique constraint can defined for one or more columns in the table. The list
of columns that make up the unique constraint are specified in the UNIQUE
clause for the table when it is created.

This is the recommended way of defining a unique constraint, the other
methods described below are mentioned for information only.

Specifying UNIQUE in the definition of a column in the table is equivalent to
supplying a list of one column in the UNIQUE clause for the table and
effectively specifies a one-column unique constraint.

Creating a UNIQUE index on the table has the same effect as a unique
constraint.

7.5.4 Foreign keys - referential constraints
Use foreign keys to maintain integrity between the contents of related tables.

Note: The tables referenced in a foreign key clause of a table definition must
exist prior to the definition of the foreign key (unless the key is in the reference
table itself, to ensure referential integrity within a table or the table definition is
within a create schema statement and the foreign key constraint refers to a table
in the same schema definition statement).

The number of columns listed as FOREIGN KEY must be the same as the
number of columns in the primary key of the REFERENCES table, unless
columns in an unique constraint are referenced explicitly in a column list (see
the CREATE TABLE syntax in the Mimer SQL Reference Manual for details).
The nth FOREIGN KEY column corresponds to the nth column in the primary
key of the REFERENCES table, and the data types and lengths of correspond-
ing columns must be identical. Columns may not be used more than once in the
same FOREIGN KEY clause.

If the NULL indicator is permitted in a foreign key, then either at least one of
the columns in the foreign key is NULL or the values in the foreign key
columns must be present in the corresponding primary key columns of the
reference table.

A table definition may contain as many FOREIGN KEY references as required.
The same column in the table may be used in separate FOREIGN KEY clauses
referring to different REFERENCES tables.

Note: A table containing a foreign key reference or referenced in a foreign key
must be stored in a databank with either the TRANS or LOG option.

Defining the database 7-9

Mimer SQL version 8.2
User’s Manual

The BOOK_GUEST table has three foreign key references:

CREATE TABLE BOOK_GUEST (RESERVATION INTEGER(5),
 BOOKING_DATE DATE
 DEFAULT CURRENT_DATE NOT NULL,
 HOTELCODE HOTELCODE NOT NULL,
 ROOMTYPE ROOMTYPE NOT NULL,
 .
 .
 ROOMNO ROOMNO,
 .
 FOREIGN KEY (HOTELCODE) REFERENCES HOTEL,
 FOREIGN KEY (ROOMTYPE) REFERENCES ROOMTYPES,
 FOREIGN KEY (ROOMNO) REFERENCES ROOMS ON DELETE NO ACTION)
 .
 .

These maintain referential integrity as follows:

• FOREIGN KEY (HOTELCODE) REFERENCES HOTEL
Data that is not present in the HOTELCODE column of the HOTEL table
will not be accepted in the HOTELCODE column in the BOOK_GUEST
table.

• FOREIGN KEY (ROOMTYPE) REFERENCES ROOMTYPES
Data that is not present in the ROOMTYPE column of the ROOMTYPES
table will not be accepted in the ROOMTYPE column in the
BOOK_GUEST table.

• FOREIGN KEY (ROOMNO) REFERENCES ROOMS
Data that is not present in the ROOMNO column of the ROOMS table will
not be accepted in the ROOMNO column in the BOOK_GUEST table.

When defining a foreign key constraint it is possible to specify in an ON
DELETE clause what action that shall take place if the corresponding record in
the referenced table is deleted. The possible actions are

• NO ACTION
Any attempt to delete a key value that is referenced by a foreign key will
fail. This action is the default behavior.

• SET NULL
If a key value in the referenced table is deleted the corresponding values in
the foreign key table is set to the null value

• SET DEFAULT
If a key value in the referenced table is deleted the corresponding values in
the foreign key table is set to the default value for the columns in the
foreign key

• CASCADE
If a key value in the referenced table is deleted the corresponding records
in the foreign key table are also deleted

7-10 Defining the database

Mimer SQL version 8.2
User’s Manual

7.5.5 Check constraints
Check constraints in table definitions are used to make sure that data in a
column in the table fits certain conditions. This section gives three different
examples of check constraints.

Note that the first two examples shown below are not used in the example
database.

Limit the city for hotels to Stockholm or Gothenburg.

CREATE TABLE HOTEL (HOTELCODE HOTELCODE,
 NAME CHAR(15) NOT NULL,
 CITY CHAR(15) NOT NULL,
 OVERBOOK BOOK_RATE NOT NULL,
 PRIMARY KEY (HOTELCODE),
 CONSTRAINT CITY_CHECK CHECK (CITY IN ('STOCKHOLM','GOTHENBURG')))
 IN HOTELDB;

Prevent blank entries in the HOTELCODE column.

CREATE TABLE HOTEL (HOTELCODE HOTELCODE,
 NAME CHAR(15) NOT NULL,
 CITY CHAR(15) NOT NULL,
 OVERBOOK BOOK_RATE NOT NULL,
 PRIMARY KEY (HOTELCODE),
 CHECK (HOTELCODE <> ' '))
 IN HOTELDB;

This check clause extends any limitations imposed by the HOTELCODE
domain definition. The extension applies only to this table, and does not affect
other columns in the database which belong to the HOTELCODE domain. The
constraint name, CITY_CHECK in the first example above, can be used in an
alter table statement to drop the check constraint. All constraints, primary key,
unique, not null and foreign key constraints can be named in this manner. If no
constraint name is given a unique name is generated by the system. This name
can be seen by using the describe statement in BSQL. See chapter 9 in this
manual.

Make sure that arrival dates are before departure dates.

CREATE TABLE BOOK_GUEST (.
 .
 ARRIVE DATE NOT NULL,
 DEPART DATE NOT NULL,
 .
 .
 CHECKIN DATE,
 CHECKOUT DATE,
 .
 .
 CHECK (ARRIVE < DEPART AND CHECKIN <= CHECKOUT))
 IN HOTELDB;

Check conditions allow any value that does not evaluate to false in the check
condition. This means that unknown values (the NULL indicator) are allowed
in columns restricted by the check condition. Thus the check condition above
does not exclude NULL from the CHECKIN and CHECKOUT columns
(NULL values give an unknown result in the condition).

Defining the database 7-11

Mimer SQL version 8.2
User’s Manual

7.6 Creating functions, procedures, triggers and
modules

Functions and procedures are SQL routines that are stored in the data
dictionary. A module is a collection of routines.

Triggers contain the same constructs as routines but are created on tables or
views (depending on the type of trigger) and execute instead of, before or after
a specified data manipulation operation.

A module is created by using the CREATE MODULE statement and all the
routines that belong to the module are defined by declaring them within the
CREATE MODULE statement.

Routines cannot be added to a module after the module has been created and a
routine cannot be removed from the module it belongs to. The routines in a
module behave in all respects as single objects (e.g. EXECUTE privilege is
applied on individual routines in a module, not the module). If the module is
dropped, all the routines in it are dropped.

The CREATE FUNCTION statement is used to create a function that does not
belong to a module and the CREATE PROCEDURE statement is used to create
a procedure that does not belong to a module.

The format of the routine definition is the same in the CREATE FUNCTION
and CREATE PROCEDURE statements as it is in a function or procedure
declaration in a module.

The CREATE TRIGGER statement is used to define a trigger on a table or
view.

Refer to the Mimer SQL Reference Manual for the syntax definitions for
CREATE FUNCTION, CREATE MODULE, CREATE PROCEDURE and
CREATE TRIGGER, and Chapter 8 of the Mimer SQL Programmer’s Manual
for a general discussion of the PSM functionality in Mimer SQL.

Note: The examples that follow show the “@” character which is used in
BSQL to delimit SQL statements whose syntax involves use of the normal end-
of-statement character “;” before the actual end of the statement. This is the
case for many of the SQL/PSM statements. See Section 9.1 for details about
running BSQL. The “@” character may be used to delimit any statement. This
is useful when dealing with large statement as the error reporting facility in
BSQL shows more information in such cases.

Create a standalone function FUNC_1 with one input parameter of data type
VARCHAR(20) that returns a value of data type INTEGER.

@
CREATE FUNCTION FUNC_1(VARCHAR(20)) RETURNS INTEGER
 BEGIN
 ...
 END
@

7-12 Defining the database

Mimer SQL version 8.2
User’s Manual

Create a standalone procedure PROC_1 with one input parameter of data type
INTEGER and one output parameter of VARCHAR(20).

@
CREATE PROCEDURE PROC_1(IN X INTEGER, OUT Y VARCHAR(20))
 BEGIN
 ...
 END
@

Create a module M1 containing 2 procedures, PROC_1 (with no parameters),
PROC_2 (one input parameter, X, of data type INTEGER) and 1 function,
FUNC_1 (with no parameters, returning an INTEGER).

@
CREATE MODULE M1
 DECLARE PROCEDURE PROC_1()
 READS SQL DATA
 BEGIN
 ...
 END;
 DECLARE PROCEDURE PROC_2(IN X INTEGER)
 MODIFIES SQL DATA
 BEGIN
 ...
 END;
 DECLARE FUNCTION FUNC_1() RETURNS INTEGER
 READS SQL DATA
 BEGIN
 ...
 END;
END MODULE
@

Create a trigger which will execute before UPDATE operations on table
BOOK_GUEST.

@
CREATE TRIGGER VERIFY_GUEST_UPDATES BEFORE UPDATE ON BOOK_GUEST
 BEGIN
 ...
 END
@

Note: It is recommended that all functions, procedures and triggers are created
by executing a command file so that they may be easily re-created in the event
of being unintentionally dropped because of CASCADE effects following a
drop. The effect of CASCADE can be quite far-reaching where routines and
modules are concerned (see Section 8.9 of the Mimer SQL Programmer’s
Manual). The use of a command file also facilitates module re-definition by
dropping an existing module, altering the CREATE MODULE statement in the
command file and creating the new, redefined module.

Defining the database 7-13

Mimer SQL version 8.2
User’s Manual

7.7 Creating views

A view is a logical subset of one or more base tables or views where columns
are chosen by naming them and rows are chosen through specified conditions
relating to column values.

Views are created, for example, so that users who need not see all the data in a
single table are shown only the parts of the table that interest them (restriction
views). Views can also be created as a combination of a number of columns
from several different tables (join views).

Operations on views are actually performed on the underlying base tables.
Certain view definitions do not allow data to be changed in the view (read-only
views). See Section 5.5 for further details.

View names can be up to 128 characters long. Views are defined in terms of a
SELECT statement; the result of the SELECT statement forms the contents of
the view. There are no restrictions on which select statements that can be used
in a view definition.

The example database does not contain any view definitions. Two examples are
given below:

Create a restriction view of the BOOK_GUEST table called RECEPTION
containing limited information for the hotel reception (reservation number,
customer name, check-in date and room number).

CREATE VIEW RECEPTION (RESERVATION, FNAME, LNAME, DATE, ROOM)
 AS SELECT RESERVATION, GUEST_FNAME, GUEST_LNAME,
 CHECKIN, ROOMNO
 FROM BOOK_GUEST;

RESERVATION FNAME LNAME DATE ROOM
1348 STEN JOHANSEN 1997-08-23 LAP205
1349 STEFAN HANSEN 1997-08-23 LAP206
1350 SALLY WEBERT 1997-08-06 SKY124
1351 ANNA ALBERTSON 1997-08-06 SKY125
1352 MARK FRANCIS 1997-08-14 WINS103
1353 ALFRED FIMPLEY 1997-09-03 SKY110

Create a join view listing the billing details for each reservation.

CREATE VIEW CHARGE_DESCRIPTION
 AS SELECT RESERVATION, COST, DESCRIPTION
 FROM BILL, CHARGES
 WHERE BILL.CHARGE_CODE = CHARGES.CHARGE_CODE;

If the view definition does not include a list of column names, the columns in
the view will be named after the columns listed in the SELECT clause.

RESERVATION COST DESCRIPTION
1348 100 LODGING

7-14 Defining the database

Mimer SQL version 8.2
User’s Manual

7.7.1 Check options
Check options can be used in updatable view definitions to limit the data that
can be inserted into the view. If a check option is specified, data which does not
fulfill the definition of the view cannot be inserted into the view.

CREATE VIEW GUEST_VIEW
 AS SELECT RESERVATION, HOTELCODE, GUEST_FNAME, GUEST_LNAME,
 CHECKIN, ROOMNO
 FROM BOOK_GUEST
 WHERE HOTELCODE = 'STG' OR HOTELCODE = 'WINS'
 WITH CHECK OPTION;

RESERVATION HOTELCODE GUEST_FNAME GUEST_LNAME CHECKIN ROOMNO
1355 STG INGER SVENSON 1997-09-01 STG111
1363 WINS PAULE LE FEVRE 1997-08-20 WINS117
1364 STG LARS HOLLSTEN 1997-09-01 STG116
1367 WINS EARNST JOHNSSON 1997-09-06 WINS109
1371 STG MARY TENMAR 1997-08-29 STG010
1382 WINS JULIO PEREZ 1997-09-29 WINS119
1383 STG ROBERT LIND 1997-08-31 STG142
1384 WINS SIGWARD PERSSON 1997-09-25 WINS120
1385 WINS RUNE NYQVIST 1997-09-25 WINS121
1398 STG LENNART RYDELL 1997-09-30 STG1421
1401 STG JAN BLOM 1997-09-23 STG001
1408 STG EINAR SUNDMAN 1997-09-20 STG117
1412 WINS JOHAN TORP 1997-09-30 WINS119

The check option in the view definition (WITH CHECK OPTION) means that
no new rows may be inserted into the view if the value for the HOTELCODE
column is not STG or WINS. If there is an instead of trigger defined for the
view, the WITH CHECK OPTION does not have any effect.

Creating views based on other views
Views can be based on other views. When a view is created based upon another
view or views, the original view’s limitations are carried over to the new view.

CREATE VIEW NEW_VIEW
 AS SELECT RESERVATION, HOTELCODE, GUEST_FNAME, GUEST_LNAME
 FROM GUEST_VIEW
 WHERE RESERVATION > 1385;

7.8 Creating secondary indexes

Secondary indexes are maintained by the system and are invisible to the user.
The index is automatically used during searching when it improves the
efficiency of the search.

Any column(s) may be specified as a secondary index. Columns in the
PRIMARY KEY, the columns of a FOREIGN KEY and columns defined as
UNIQUE are automatically indexed, (in the order in which they are defined in
the key), and therefore creation of an index on these columns will not improve
performance.

Secondary index tables are purely for Mimer SQL’s internal use - you create
the index, and Mimer SQL handles the rest. Index names can be made up of a
maximum of 128 characters.

Defining the database 7-15

Mimer SQL version 8.2
User’s Manual

If, for instance, you want to know which room a certain person is staying in at a
hotel, Mimer SQL would have to search successively through the customer
reference numbers and the names corresponding to each in order to find the
information you want. If, however, you create a secondary index on guest
names, Mimer SQL would search for the name of that person directly in the
secondary index, which would save time.

Create a secondary index called NAME on the GUEST_LNAME column in the
BOOK_GUEST table.

CREATE INDEX NAME
ON BOOK_GUEST (GUEST_LNAME);

Primary key columns may also be included in a secondary index. If a table has
the primary key “A,B,C”, the primary index would cover all three columns of
the primary key. The following combinations of the columns in the primary key
are automatically indexed: “A”, “A,B”, and “A,B,C”. In addition, you could
create secondary indexes on columns B, C, BC, AC etc.

An index may also be defined as UNIQUE, which means that the index value
may only occur once in the table. (For this purpose, NULL is treated as equal to
NULL).

Create a UNIQUE secondary index called OCCUPANCY on the
GUEST_LNAME and ROOMNO columns in the BOOK_GUEST table.

CREATE UNIQUE INDEX OCCUPANCY
ON BOOK_GUEST (GUEST_LNAME, ROOMNO);

The sorting order for indexes may be defined as ascending or descending.
However, this makes no difference to the efficiency of the index, since Mimer
SQL searches indexes forwards or backwards depending on the circumstances.

Secondary indexes can improve the efficiency of data retrieval; but does
introduce an overhead for write operations (UPDATE, INSERT, DELETE). In
general, you should create indexes only for columns that are frequently
searched.

Indexes cannot be created directly on columns in views. However, since
searching in a view is actually implemented as searching in the base table, an
index on the base table will also be used in view operations.

7.9 Creating synonyms

Synonyms, or alternative names can be created for tables, views or other
synonyms. You can create synonyms to personalize tables or just for your own
convenience. Synonym names can be made up of a maximum of 128 characters.

Table names are “qualified” by the name of the schema to which they belong.
The qualified form of the table name is the schema name followed by the table
name and the two are separated by a period. Thus the table ROOMS in the
schema HOTELADM has the qualified name:

HOTELADM.ROOMS

7-16 Defining the database

Mimer SQL version 8.2
User’s Manual

The ident called HOTELADM need only refer to it as:

ROOMS

If another user should wish to use this table, he must refer to it by its fully
qualified name since he does not have the same name as the schema to which
the table belongs.

If a user named James, who wishes to refer to the ROOMS table, belonging to
the schema HOTELADM, as simply ROOMS, he can create a synonym. In the
following example, the schema name “James” is implied by default (which
must also have been created by user James if the CREATE is to succeed)
because the synonym name is specified in its unqualified form (and the default
schema name is the name of the current ident):

CREATE SYNONYM ROOMS
FOR HOTELADM.ROOMS;

Another user can then create his own synonym for the ROOMS synonym which
now exists in schema “James”, which has the fully qualified name:

JAMES.ROOMS

Synonyms are particularly useful when several users refer to a common table,
such as HOTELADM.ROOMS, HOTELADM.HOTEL, etc. With synonyms,
several users can work in the same apparent environment without needing to
refer to the tables by their qualified names.

7.10 Commenting objects

Comments may be stored against any of the following objects:

COLUMN FUNCTION MODULE SEQUENCE TABLE
DATABANK IDENT PROCEDURE SHADOW TRIGGER
DOMAIN INDEX SCHEMA SYNONYM VIEW

Store the comment “MIMER Hotels Databank” on the HOTELDB databank.

COMMENT ON DATABANK HOTELDB IS 'MIMER Hotels Databank';

Comments cannot be deleted - they can only be replaced by a new comment (a
blank string may be provided as a comment if you want to suppress an existing
comment).

Only the creator of the schema to which the object belongs may store a
comment for the object.

Comments are for information only and do not affect data retrieval or
manipulation in any way. Comments may be read with the DESCRIBE
command (Chapter 9) or by retrieving the appropriate columns from the
INFORMATION_SCHEMA views (see Section 7.1 of the Mimer SQL
Reference Manual).

Defining the database 7-17

Mimer SQL version 8.2
User’s Manual

7.11 Altering databanks, tables and idents

7.11.1 Altering a databank
Databanks can only be altered by their creator. There are three uses for the
ALTER statement:

• to change the physical file location for a databank

• to change the transaction and logging options on the databank

• to increase the file size allocated for the databank

Change which file the HOTELDB is stored in from its previous file to file
“SQLDB:HOTELDB.DBF” (the file specification is in Alpha/Open VMS
format).

ALTER DATABANK HOTELDB
 INTO 'SQLDB:HOTELDB.DBF';

Note: This statement changes the file name stored for the databank in the data
dictionary. It does not actually move the databank to the new location. To move
a databank, begin by copying or renaming the file in the operating system and
then use ALTER DATABANK ... INTO to change the file specification in the
data dictionary.

Change the option on the HOTELDB databank from TRANS to LOG.

ALTER DATABANK HOTELDB
 TO LOG OPTION;

Increase the size of the HOTELDB database by 20 Mimer pages.

ALTER DATABANK HOTELDB
 ADD 20 PAGES;

Note: Use of the ALTER DATABANK ... ADD statement is not strictly
necessary. However, increasing the file allocation by a relatively large figure
can help to minimize file fragmentation and improve response times.

7.11.2 Altering tables
The ALTER TABLE statement changes the definition of the specified table and
may only be used by the creator of the schema to which the table belongs.

There are the following uses for the ALTER TABLE statement:

• to add a new column or table constraint definition to an existing table

• to drop a column or table constraint from an existing table

• to change the default value for a column in an existing table

7-18 Defining the database

Mimer SQL version 8.2
User’s Manual

• to change a column in an existing table to have a specified data type or to
belong to a specified domain, provided the old and new data types are
assignment-compatible (see Section 4.5 of the Mimer SQL Reference
Manual) and the column is not be referenced by any constraints or views

• to drop the default value for a column in an existing table

A new column created with the ALTER TABLE ... ADD statement is appended
to end of the existing column list. The new column will include the default
value defined for the column or defined for the domain to which it belongs or,
if no default value exists, the NULL indicator.

Note: If a column added to a table is defined as NOT NULL, then it must have
a default value defined or belong to a domain which has a default value.

Add a column called NOSMOKE with a data type of CHAR(1) to the
BOOK_GUEST table.

ALTER TABLE BOOK_GUEST
ADD NOSMOKE CHAR(1);

This creates a column containing the NULL indicator for each row in the table.
If an constraint is added to a table it is checked that the data in the table fulfil
the restriction in the constraint.

When dropping a column from a table, the CASCADE and RESTRICT
keywords can be used to specify the action that will be taken on objects that are
dependent on the dropped column. If CASCADE is specified, depending
objects are also dropped. For instance if a dropped column is part of a primary
key, the primary key will also be dropped. If RESTRICT (the default) is
specified and there are other objects affected, the statement will be aborted,
with an error condition.

Drop the column TELEPHONE from the table BOOK_GUEST, subject to the
condition that there are no other objects dependent on this column.

ALTER TABLE BOOK_GUEST DROP TELEPHONE RESTRICT;

Change the length of the column ADDRESS in the table BOOK_GUEST

ALTER TABLE BOOK_GUEST ALTER COLUMN ADDRESS VARCHAR(100);

Drop the column TELEPHONE from the table BOOK_GUEST, if dependent
objects exist, these are dropped as well.

ALTER TABLE BOOK_GUEST DROP TELEPHONE CASCADE;

Change the default value for the column BOOKING_DATE, the new default
value is current date.

ALTER TABLE BOOK_GUEST ALTER BOOKING_DATE SET DEFAULT CURRENT_DATE;

Drop the check constraint CITY_CHECK from the HOTEL table.

ALTER TABLE HOTEL DROP CONSTRAINT CITY_CHECK;

Defining the database 7-19

Mimer SQL version 8.2
User’s Manual

Redefine a foreign key constraint for the BOOK_GUEST table.

ALTER TABLE BOOK_GUEST DROP CONSTRAINT SQL_FOREIGN_KEY_4375;
ALTER TABLE BOOK_GUEST ADD CONSTRAINT ROOMS_FOREIGN FOREIGN KEY(ROOMNO)
REFERENCES ROOMS ON DELETE CASCADE;

Drop the default value for the column BOOKING_DATE.

ALTER TABLE BOOK_GUEST ALTER BOOKING_DATE DROP DEFAULT;

7.11.3 Altering idents
Only passwords can be altered with the ALTER IDENT statement - ident
names cannot be altered. User and program idents can change their own
password if they so wish. Passwords can also be changed by the creator of the
ident.

Change the user SAMMY’s password to 'SamJo'.

ALTER IDENT SAMMY
USING 'SamJo';

7.11.4 Objects which may not be altered
Domains, functions, procedures, modules, triggers, views and indexes cannot
be altered. It is therefore important that you think through your domains and
views thoroughly and carefully before you create them to make sure that they
suit the needs of your database.

The functions and procedures contained in a module are created when the
module is created and thereafter no alterations can be made to the module (the
module and all the routines contained in it can, of course, be dropped).

The next section will discuss dropping objects and the results of this on the
database.

7.12 Dropping objects from the database

The DROP statement is used to drop the following objects from the database:

DATABANK IDENT PROCEDURE SHADOW TRIGGER
DOMAIN INDEX SCHEMA SYNONYM VIEW
FUNCTION MODULE SEQUENCE TABLE

The CASCADE or RESTRICT keywords may be used to specify the action to
be taken if other objects exist that are dependent on the object being dropped. If
RESTRICT (the default) is specified, an error is returned if other objects are
affected and the drop operation is aborted. If CASCADE is specified,
dependent objects are dropped as well. System database objects can only be
dropped by their creator. Private database objects can only be dropped by the
creator of the schema to which they belong.

7-20 Defining the database

Mimer SQL version 8.2
User’s Manual

Therefore use caution when using the DROP statement with CASCADE, as the
operation may have a recursive effect on all objects relating to it. For example,
when a table is dropped, all views, synonyms, routines and triggers created on
or referencing that table are also dropped.

The DROP statement removes whole objects from the database. It cannot be
used to remove columns from tables, this is done by the ALTER TABLE
statement (see Section 7.11.2).

7.12.1 Dropping databanks and tables

Drop the HOTEL table.

DROP TABLE HOTEL RESTRICT;

If the keyword CASCADE is specified, all views, synonyms and indexes based
on HOTEL are also dropped as well as any functions, procedures and triggers
referencing the table.

Drop the HOTELDB databank.

DROP DATABANK HOTELDB RESTRICT;

If the keyword CASCADE is specified, all tables in the HOTELDB databank
are also dropped and any views, synonyms, triggers and indexes based on those
tables are also dropped as well as any functions, procedures and triggers
referencing any of the dropped objects.

An attempt is automatically made to delete the physical databank file when a
databank is dropped. There may be occasions, because of access rights issues in
the file system, when the database server’s attempt to delete the physical
databank file might fail. If recommended procedures for databank file
management are followed (see the Mimer SQL System Management
Handbook), the databank file should be deleted correctly.

7.12.2 Dropping sequences
When a sequence is dropped, all the objects (i.e. constraints, domains,
functions, procedures, tables, triggers and views) referencing the sequence are
also dropped.

Drop the SEQ_1 sequence.

DROP SEQUENCE SEQ_1 CASCADE;

The specification of CASCADE ensures that the sequence is dropped even if it
is being referenced by other objects in the database.

Defining the database 7-21

Mimer SQL version 8.2
User’s Manual

7.12.3 Dropping domains
When a domain is dropped, existing columns assigned the domain retain all the
properties of the domain. No new columns may however be assigned the
domain.

Drop the BOOK_RATE domain.

DROP DOMAIN BOOK_RATE RESTRICT;

Note: If you re-create a domain that has been dropped, the domain will be seen
as a completely new domain and it will not be associated with any columns that
belonged to the old domain.

To change the restrictions on the columns that were defined with a domain that
has been dropped, use the ALTER TABLE statement.

7.12.4 Dropping idents
When an ident is dropped, everything that the ident has created (including other
idents and everything created by those idents) as well as all privileges granted
by the ident are dropped. For this reason, physical users should never own
objects, except for synonyms and personal views.

Drop the GUEST_CONNECT ident.

DROP IDENT GUEST_CONNECT RESTRICT;

7.12.5 Dropping functions, modules, procedures and
triggers

The effect of using the keyword CASCADE can be rather dramatic when
modules, routines and triggers are dropped. For this reason it is recommended
that all modules, routines and triggers be created by running a command file so
they can be easily reconstructed in case of being dropped in error.

Drop the function called BILL_TOTAL.

DROP FUNCTION BILL_TOTAL CASCADE;

Drop the procedure called ADD_LODGING.

DROP PROCEDURE ADD_LODGING CASCADE;

Drop the module called ROOMS_ADMIN.

DROP MODULE ROOMS_ADMIN CASCADE;

Drop the trigger called VERIFY_GUEST_UPDATES.

DROP TRIGGER VERIFY_GUEST_UPDATES CASCADE;

The following points should be noted when dropping modules and routines:

• When a module is dropped, all the routines contained in it will be dropped
(this is not a cascade effect, but it may provoke cascade effects).

7-22 Defining the database

Mimer SQL version 8.2
User’s Manual

• If a routine is dropped and it is referenced from another object, the
referencing object will also be dropped.

• If a routine belonging to a module is to be dropped as a consequence of a
cascade, only that routine is dropped (the other routines in the module and
the module itself will remain unaffected).

Defining privileges 8-1

Mimer SQL version 8.2
User’s Manual

8 DEFINING PRIVILEGES

Privileges control the operations which users are allowed to perform in the
database. Well-structured privileges are essential for maintaining data security.

There are three types of privileges:

• System privileges, which give the right to create global objects within the
database.

• Object privileges, which give rights over certain specified objects in the
database.

• Access privileges, which give rights of access to the data in a specified
table or view.

System privileges are granted to the system administrator upon installation, and
may be passed on to other idents. Objects and access privileges are initially
granted only to the creator of an object. The creator may however pass the
privileges on to other idents.

Privileges are granted to idents with the GRANT statement and revoked from
idents with the REVOKE statement.

All privileges may be granted with the “with grant option”, which means that
the receiver of the privilege in turn has the right to grant that privilege to other
idents.

The creator of an object is automatically granted full privileges on that object
with grant option. Thus the creator of a group is automatically a member of that
group, the creator of a program ident may enter it, the creator of a table has full
access privileges, the creator of a schema may create objects in it and drop
them, etc.

When privileges that were granted with the “with grant option” are revoked, the
right to grant those privileges to other idents is also revoked. The “with grant
option” can be revoked separately without revoking the privilege itself. Idents
may only grant privileges that they themselves possess to other idents, that is,
idents cannot grant privileges to themselves. Likewise, privileges may only be
revoked by the grantor - idents cannot revoke privileges from themselves.

Certain operations are not controlled by explicit privileges, but may only be
performed by the creator of the object involved. These operations include
ALTER (with the exception of ALTER IDENT, which may be performed by
either the ident himself or by the creator of the ident), DROP, and COMMENT.

8-2 Defining privileges

Mimer SQL version 8.2
User’s Manual

8.1 Ident hierarchy

In the initial installation, one user ident, the system administrator with user
ident name SYSADM, is automatically created. The system administrator has
BACKUP, DATABANK, IDENT, SCHEMA, SHADOW and STATISTICS
privileges, with GRANT OPTION, and SELECT access on all tables and views
in the data dictionary, also with GRANT OPTION. The system administrator is
ultimately responsible for the structure of the whole system.

In other respects, however, the system administrator is an ordinary user ident in
the system. There is no ident in Mimer SQL with automatic right of access to
all objects within the system. It is quite possible (and may be advisable
especially in large systems) that the system administrator is prevented from
accessing the actual contents of the database; the administrator’s job is
concerned with managing objects in the system, not with the data.

Certain system utilities may only be run by idents with BACKUP or SHADOW
privilege (see the Mimer SQL System Management Handbook).

When granting privileges, the keyword PUBLIC refers to a logical group that
covers all idents in the database, including those created in the future.

The following general recommendations can be made for structuring the idents
in a system:

• Functional roles within the system, generally defined by one or more
applications that are run, should be assigned to program idents. These are
not coupled to any physical individual or group of individuals and thus
have a lifetime independent of turnover of personnel. (The system
administrator is just such a function, but is coupled to a user ident rather
than a program ident for practical purposes).

• People accessing the system are represented by USER or OS_USER idents.
They may be dropped if the person concerned leaves the company. User
idents should not be granted privileges directly, other than membership in
groups. OS_USER idents are allowed access to the database on the
authorization of a valid log-in to the operating system. For maximum
protection, do not use OS_USER idents.

• Group idents are used to represent logical users of the system. Privileges
are granted to groups rather than to individual programs or users. The
individual idents are granted membership in the group to which they
belong, and thereby gain the correct access to the system.

• USER and OS_USER idents should not in general be granted privileges to
create objects (i.e. granted DATABANK, IDENT, SCHEMA, SHADOW
or TABLE privileges). In this way, individual user idents may be dropped
with no cascading effects except loss of views created by the user.

• WITH GRANT OPTION should be used sparingly and the ident hierarchy
kept shallow. This minimizes the chance of undesired cascading revocation
of privileges.

Defining privileges 8-3

Mimer SQL version 8.2
User’s Manual

If these recommendations are followed, maintenance of the ident structure in
the system is simplified. Access to the contents of the database is granted to
relatively few group idents instead of many individual programs or users, and
when a physical individual leaves the company, their user ident can be dropped
with no cascading consequences.

8.2 Granting privileges

8.2.1 Granting system privileges
System privileges are granted to the system administrator at the time of
installation of the system. System privileges refer to global information, that
affects the database as a whole. The system privileges are:

BACKUP The right to perform backup and restore operations.

DATABANK The right to create databanks.

IDENT The right to create idents and schemas.

SCHEMA The right to create schemas.

SHADOW The right to create shadows and perform shadow control
operations.

STATISTICS The right to execute the UPDATE STATISTICS statement.

Give the ident HOTELADM the privilege to create new databanks.

GRANT DATABANK
 TO HOTELADM;

Give the idents AUDIT and ECONOMY_DEPT the privilege to create new
idents with grant option.

GRANT IDENT
 TO AUDIT, ECONOMY_DEPT
 WITH GRANT OPTION;

8.2.2 Granting object privileges
Object privileges are held by idents on database objects (functions, procedures,
programs, groups, tables, domains and sequences). The four object privileges
are:

EXECUTE The right to execute a function or procedure or the right to
enter a specified program ident.

MEMBER Membership in a specified group ident.

TABLE The right to create tables in a specified databank.

USAGE The right to specify the named domain where a data type
would normally be specified (in contexts where use of
domains is allowed) or the right to use a specified sequence.

8-4 Defining privileges

Mimer SQL version 8.2
User’s Manual

Give STEVE and MARIANNE the privilege to execute the SUMMARY_STATS
procedure.

GRANT EXECUTE ON PROCEDURE SUMMARY_STATS
 TO STEVE, MARIANNE;

Give ECONOMY_DEPT the privilege to enter the AUDIT program ident.

GRANT EXECUTE ON PROGRAM AUDIT
 TO ECONOMY_DEPT;

Make STEVE, MARIANNE and JAMES members of the ECONOMY_DEPT
group with grant option.

GRANT MEMBER ON ECONOMY_DEPT
 TO STEVE, MARIANNE, JAMES
 WITH GRANT OPTION;

Give the members of the ECONOMY_DEPT group the privilege to create new
tables in the HOTELDB databank.

GRANT TABLE ON HOTELDB
 TO ECONOMY_DEPT;

Give the members of the ECONOMY_DEPT group the privilege to use the
LOCAL_CURRENCY domain.

GRANT USAGE ON DOMAIN LOCAL_CURRENCY
 TO ECONOMY_DEPT;

8.2.3 Granting access privileges
Access privileges define what data the idents are allowed to manipulate in
tables. There are five access privileges:

SELECT The right to read the table contents.

INSERT The right to add new rows to the table (this privilege may be
limited to specified columns within the table).

DELETE The right to remove rows from the table.

UPDATE The right to change the contents of existing rows in the table
(this privilege may be limited to specified columns within the
table).

REFERENCES The right to use the primary or unique key of the table as a
foreign key reference (this privilege may be limited to
specified columns within the table).

The keyword ALL may be used as shorthand for all of privileges that the
grantor holds with grant option (ALL may be followed by the optional keyword
PRIVILEGES).

Defining privileges 8-5

Mimer SQL version 8.2
User’s Manual

Give JAMES the privilege to read, insert, and delete rows from the
BOOK_GUEST table and give the ident the right to pass these privileges on to
other idents.

GRANT SELECT, INSERT, DELETE
 ON BOOK_GUEST
 TO JAMES
 WITH GRANT OPTION;

Give ECONOMY_DEPT and AUDIT all privileges that you hold on the table
CHARGES but do not give them the right to pass these privileges on to other
idents.

GRANT ALL ON CHARGES
 TO ECONOMY_DEPT, AUDIT;

Give ECONOMY_DEPT the privilege to update all columns in the
BOOK_GUEST table.

 GRANT UPDATE ON BOOK_GUEST
 TO ECONOMY_DEPT;

Give RECEPTION the privilege to update only the GUEST_LNAME,
ADDRESS, and ROOMNO columns in the BOOK_GUEST table.

GRANT UPDATE (GUEST_LNAME,ADDRESS,ROOMNO)
 ON BOOK_GUEST
 TO RECEPTION;

Give ECONOMY_DEPT the right to use the ROOMS table as a foreign key.

GRANT REFERENCES
 ON HOTELADM.ROOMS
 TO ECONOMY_DEPT;

8.3 Revoking privileges

Privileges can only be revoked by the grantor. Care must be taken when
revoking privileges, especially when those privileges were granted “with grant
option”. Revoking such privileges from an ident can have recursive effects on
all idents who have been granted privileges by that ident (see Section 8.3.4 for
details).

The keywords CASCADE and RESTRICT can be used in the REVOKE
statements to control whether the recursive effects should be allowed or not. If
RESTRICT (the default) is specified and any recursive effects are identified the
whole revoke operation will fail, leaving all objects intact. If the keyword
CASCADE is specified, the revoke operation will proceed with recursive
effects.

Privileges granted to a group cannot be revoked separately from individual
members of the group. To revoke a group privilege from an individual, either
revoke the privilege from the group or revoke the membership of the individual
in the group.

If a privilege has been granted with the WITH GRANT OPTION it is possible
to revoke the grant option only. That is, the ident looses the right to grant the
privilege to other idents, but he still has the privilege.

8-6 Defining privileges

Mimer SQL version 8.2
User’s Manual

8.3.1 Revoking system privileges

Take away the privilege to create new databanks from the ident HOTELADM.

REVOKE DATABANK
 FROM HOTELADM RESTRICT;

Take away the privilege to create new idents from the idents AUDIT and
ECONOMY_DEPT.

 REVOKE IDENT
 FROM AUDIT, ECONOMY_DEPT RESTRICT;

Revoking system privileges does not affect objects already created under the
authorization of the privilege.

8.3.2 Revoking object privileges

Take away the privilege to execute the ALLOCATE_ROOM procedure from
STEVE and MARIANNE.

REVOKE EXECUTE ON PROCEDURE ALLOCATE_ROOM
 FROM STEVE, MARIANNE RESTRICT;

Take away the privilege to enter the AUDIT program from the ident
ECONOMY_DEPT.

REVOKE EXECUTE ON PROGRAM AUDIT
 FROM ECONOMY_DEPT RESTRICT;

Take away the idents’ STEVE, MARIANNE and JAMES memberships in the
group ECONOMY_DEPT.

REVOKE MEMBER ON ECONOMY_DEPT
 FROM STEVE, MARIANNE, JAMES RESTRICT;

Take away the right to use the domain BOOK_RATE from the ident
ECONOMY_DEPT.

REVOKE USAGE ON DOMAIN BOOK_RATE
 FROM ECONOMY_DEPT RESTRICT;

Revoking usage on domain prevents the ident from using that domain as a data
type in new definitions, any existing definitions created by the ident will
remain unaffected.

8.3.3 Revoking access privileges

Revoke the privileges to delete and insert rows and to retrieve data from the
BOOK_GUEST table from the ident MARIANNE.

REVOKE SELECT, DELETE, INSERT ON BOOK_GUEST
 FROM MARIANNE RESTRICT;

When the REFERENCES privilege on a table is taken away from an ident, all
foreign key links referencing that table are removed.

Defining privileges 8-7

Mimer SQL version 8.2
User’s Manual

Revoke the right to use columns in ROOMS as foreign keys from
ECONOMY_DEPT.

REVOKE REFERENCES
 ON ROOMS
 FROM ECONOMY_DEPT RESTRICT;

Revoke the right to grant select on the BOOK_GUEST table from JAMES. Any
grants that JAMES has made will also be revoked.

REVOKE GRANT OPTION FOR SELECT
 ON BOOK_GUEST
 FROM JAMES CASCADE;

The keyword ALL may be used as a shorthand for all the privileges that may be
revoked in the current context.

8.3.4 Recursive effects of revoking privileges
If CASCADE is specified in a REVOKE statement, the following recursive
effects may occur:

• If a privilege WITH GRANT OPTION is revoked from an ident, all
instances of that privilege granted to other idents under the authorization of
the WITH GRANT OPTION are also revoked. All procedures, functions
and triggers that reference objects accessed by the WITH GRANT
OPTION also disappear.

• If SELECT privilege on a table is revoked from an ident, views created by
the ident under the authorization of that SELECT privilege are dropped.

• If REFERENCE privilege on a table is revoked from an ident, any
FOREIGN KEY constraints in tables created by that ident under the
authorization of that REFERENCE privilege are removed.

• If the privilege held by an ident on an object referenced in a routine or
trigger is revoked, the routine or trigger will be dropped. (This applies to
EXECUTE on a routine, USAGE on a sequence or an access privilege on a
table or view held WITH GRANT OPTION)

The recursive effect of revoking a privilege depends on how many instances of
that privilege have been granted. An ident will hold more than one instance of a
privilege when it has been granted more than once (by different idents, as an
ident cannot grant the same privilege to the same ident more than once). One or
more of those instances may have been granted WITH GRANT OPTION.

The data dictionary keeps a record of which instance of a privilege has WITH
GRANT OPTION and which does not. The recursive effects will occur only
when the last instance of the required privilege is revoked (i.e. when the last
instance of the privilege held WITH GRANT OPTION is revoked from an
ident, all instances of the ident granting the privilege to others will be
withdrawn and when the last instance of the privilege is revoked from the ident,
the cascade effects of the ident no longer holding the privilege will occur).

8-8 Defining privileges

Mimer SQL version 8.2
User’s Manual

This is illustrated in the example cases that follow:

CASE 1
1. A grants with grant option to M

M grants to X
2. B grants with grant option to M

M grants to Y
3. A revokes from M

Both X and Y keep privileges
4. B revokes from M

Both X and Y lose privileges

CASE 2
1. A grants with grant option to M
2. B grants without grant option to M

M grants to X
M grants to Y

3. A revokes from M
M loses grant option
Both X and Y lose privileges

4. B revokes from M
M loses privilege

As a consequence of the cascading effects of revoking privileges, careful
advance planning of the hierarchical structure of idents in a system can be
essential to the long term viability of the system. An unplanned ident structure
can easily become impossible to overview and control after a relatively short
period of system use.

BSQL commands 9-1

Mimer SQL version 8.2
User’s Manual

9 BSQL COMMANDS

BSQL is a facility for executing SQL statements in batch jobs. All SQL
statements may be used in BSQL. This chapter documents the set of specific
batch-oriented commands.

9.1 Running BSQL

BSQL can be run from a batch job or from a terminal. Operation from a
terminal can be used to execute statements entered directly or written in
sequential files.

It is only possible to specify up to 80 characters on the command line in BSQL.
Input lines taken from a sequential file can be longer than 80 characters.

Note: The “@” character should be used to delimit a complex SQL statement
where the normal end-of-statement character “;” appears before the end of the
statement (e.g. CREATE FUNCTION, CREATE PROCEDURE, CREATE
TRIGGER). It is also useful to use in conjunction with large statements, e.g.
create schema, in which case the error reporting in BSQL will give more
information about where the error occurred. The use of “@” cannot be used for
grouping a number of “simple” SQL statements so that they execute as one
single statement, but it is provided to give the SQL interpreter advance warning
that a complex SQL statement appears between the “@” characters which
contains end-of-statement markers occurring before the true end of construct.

9.1.1 Running BSQL from a batch job
To run BSQL unattended from a batch job, create a batch file with the
following contents:

• command to start BSQL

• username

• password

• SQL statements and BSQL commands

• EXIT command (or end of file)

9-2 BSQL commands

Mimer SQL version 8.2
User’s Manual

Note: For unattended operation, a batch file must either include the Mimer
SQL ident username and password in explicit form or connect as OS_USER.
For security reasons, make sure that your batch files are well protected and/or
remove your password from the file after execution. Alternatively, SQL
statements and BSQL commands may be written in a sequential file without
username and password, and executed with the READ command from a BSQL
terminal session.

9.1.2 Running BSQL via the terminal
For instructions on how to start BSQL see Section 3.8 of the Mimer SQL
System Management Handbook. Starting BSQL displays the following screen:

 MMMMM MMMMM MMMMM MMMMM MMMMM MMMMMMMMMM MMMMMMMM
 MMMMMM MMMMMM MMMMM MMMMMM MMMMMM MMMMMMMMMM MMMMMMMMM
 MMMMMM MMMMMM MMM MMMMMM MMMMMM MMM MMM MMM MMM
 MMMMMMMMMMMMM MMM MMMMMMMMMMMMM MMMMM MMMMMMM
 MMM MMMMM MMM MMM MMM MMMMM MMM MMM MMM MMM MMM
 MMMM MMM MMMM MMMMM MMMM MMM MMMM MMMMMMMMMM MMMM MMMM
 MMMM M MMMM MMMMM MMMM M MMMM MMMMMMMMMM MMMM MMMM

(C) Copyright Mimer Information Technology AB. All rights reserved.

 M I M E R / B S Q L
 Version 8.2.1

 Username:
 Password:

When the username and correct password are entered, the BSQL prompt will be
shown:

SQL>

BSQL commands and SQL statements can now be entered. Output will be
echoed on the terminal.

BSQL commands 9-3

Mimer SQL version 8.2
User’s Manual

9.1.3 BSQL command line editing

Unix Command line editing is available in the BSQL program, which uses a line-
oriented interface. The following functions are available:

ctrl-a Move to beginning of command

ctrl-b Move backwards in command

ctrl-d Delete current character

ctrl-e Move to end of command

ctrl-f Move forwards in command

ctrl-h Delete previous character

ctrl-k Delete after current position in command

ctrl-n Next command

ctrl-o Execute retrieved command and get next from history list

ctrl-p Previous command

ctrl-r Retrieve command by search condition

ctrl-t Change place for the previous two characters

ctrl-u Delete command

ctrl-w Delete before current position in command

ctrl-<space> Set mark in command (or “esc <space>“)

ctrl-x ctrl-x Go to mark set by “ctrl <space>”

ctrl-x ctrl-h Show the history list

ctrl-x ctrl-r Retrieve command by history list number

esc h Delete previous word

esc d Delete next word

esc b Move to previous word

esc f Move to next word

The arrow keys can be used for command retrieval and for positioning the cursor
within a line, i.e. the same function as for ctrl-b, ctrl-f, ctrl-n and ctrl-p.

To change the number of commands that can be held in the history list, the
environment variable MIMER_HISTLINES can be used (the default is 23).

Note: The operating system may have control sequences set for the terminal that,
if they overlap, override those described above. The terminal settings can be
listed using the Unix stty -a command.

9-4 BSQL commands

Mimer SQL version 8.2
User’s Manual

9.2 BSQL commands

Command Function

CLOSE Closes active log files

DESCRIBE Describes a specified object

EXIT Leaves BSQL

LIST Lists information on a specified object

LOAD Loads data into a table

LOG Logs input, output or both on a sequential file

READ INPUT Reads commands from a sequential file

SET ECHO Specifies whether lines are echoed to the terminal during READ INPUT

SET LINECOUNT Sets the terminal page size

SET LINESPACE Sets the number of blank lines between each output record

SET LINEWIDTH Sets the terminal page width

SET LOG Stops or resumes logging input, output or both

SET MESSAGE Specifies whether messages are displayed on the terminal

SET OUTPUT Specifies whether output should be written to the terminal

SET PAGELENGTH Defines the page length of output file

SET PAGEWIDTH Defines the page width of output file

SHOW SETTINGS Displays current values of all set options

UNLOAD Unloads data from a table

WHENEVER Sets action to be taken in response to an error or warning

BSQL commands are not case sensitive.

Note on syntax descriptions
In the syntax descriptions, items in square brackets ([]) are optional. Items
separated by a vertical bar (|) are alternatives. For example:

READ [COMMAND | ALL] [INPUT FROM] 'filename';

allows the following forms

READ COMMAND INPUT FROM 'filename';

READ ALL INPUT FROM 'filename';

READ INPUT FROM 'filename';

READ 'filename';

BSQL commands 9-5

Mimer SQL version 8.2
User’s Manual

CLOSE

Closes log files.

Syntax

CLOSE [INPUT|OUTPUT|INPUT,OUTPUT] log;

Description

The command closes the specified log file. If no log file is specified, all
active log files are closed.

DESCRIBE

Describes a specified object.

Syntax

DESCRIBE [object-type [object-name]];

Description

The DESCRIBE command presents the following menu:

 Menu for describe

 1. Databank 6. Table 11. Trigger
 2. Domain 7. View 12. Sequence
 3. Ident 8. Module 13. Schema
 4. Index 9. Procedure
 5. Synonym 10. Function 0. Exit

 Select :_

Choosing an item presents a submenu for choosing between different
DESCRIBE functions - see the table that follows for details. Entering an
exclamation mark (!) in the Select field returns to the previous menu level.
Entering a double exclamation mark (!!) terminates the DESCRIBE
session.

Specifying an object type and name in the command executes the first
menu choice for that object. If no object name is given, the user is
prompted for a name.

Selection numbers can be provided in a batch file for unattended operation.
However, DESCRIBE is most useful in interactive mode from a terminal.

9-6 BSQL commands

Mimer SQL version 8.2
User’s Manual

DESCRIBE OPTION RESULT

DATABANK BRIEF Lists the following information on the specified
databank:

creator
file space used
allocated size
physical file name
option
tables.

BY TABLE PRIVILEGE Lists the following information on the specified
databank:

idents with table privilege.

FULL Lists the following information on the specified
databank:

creator
file space used
allocated size
physical file name
option
tables
idents with table privilege
comment
creation date.

DOMAIN BRIEF Lists the following information on the specified
domain:

data type
default value
check constraints.

BY REFERENCES Lists the following information on the specified
domain:

referenced objects
referencing objects.

BY ACCESS Lists the following information on the specified
domain:

idents with usage privilege.

FULL Lists the following information on the specified
domain:

data type
default value
check constraints
referenced objects
referencing objects
idents with usage privilege
comment
creation date.

BSQL commands 9-7

Mimer SQL version 8.2
User’s Manual

DESCRIBE OPTION RESULT

IDENT BRIEF Lists the following information on the specified
ident:

creator
ident type
privileges held by ident.

BY ACCESS Lists the following information on the specified
ident:

accessible objects.

BY OWNERSHIP Lists the following information on the specified
ident:

created objects.

FULL Lists the following information on the specified
ident:

creator
ident type
accessible objects
created objects
comment
creation date.

INDEX BRIEF Lists the following information on the specified
index:

table name and columns on which the index
is defined
sort order
uniqueness
comment
creation date.

SYNONYM BRIEF Lists the following information on the specified
synonym:

schema and name of referenced table/view
comment
creation date.

9-8 BSQL commands

Mimer SQL version 8.2
User’s Manual

DESCRIBE OPTION RESULT

TABLE VERY BRIEF Lists the following information on the specified
table or view:

column names and types.

BRIEF Lists the following information on the specified
table or view:

column names and types
default values
constraints
referenced domains
indexes
triggers.

BY ACCESS Lists the following information on the specified
table or view:

idents with access.

BY REFERENCES Lists the following information on the specified
table or view:

referencing objects
referenced objects.

FULL Lists the following information on the specified
table or view:

column names and types
default values
constraints
referencing objects
referenced objects
indexes
triggers
idents with access
comment
creation date
date when statistics were generated.

VIEW BRIEF Lists the following information on the specified
view:

view definition
comment
creation date.

MODULE BRIEF List the following information on the specified
module:

module definition
comment
creation date.

BSQL commands 9-9

Mimer SQL version 8.2
User’s Manual

DESCRIBE OPTION RESULT

PROCEDURE BRIEF Lists the following information on the specified
procedure:

parameters
result items
procedure attributes
specific name.

BY ACCESS Lists the following information on the specified
procedure:

idents with execute privilege.

BY REFERENCES Lists the following information on the specified
procedure:

referencing objects
referenced objects.

FULL Lists the following information on the specified
procedure:

parameters
result items
procedure attributes
idents with execute privilege
referencing objects
referenced objects
source definition
module name
specific name
comment
creation date.

FUNCTION BRIEF Lists the following information on the specified
function:

parameters
result data type
function attributes
specific name.

BY ACCESS Lists the following information on the specified
function:

idents with execute privilege.

BY REFERENCES Lists the following information on the specified
procedure:

referencing objects
referenced objects.

FULL Lists the following information on the specified
function:

parameters
result data type
function attributes
specific name
idents with execute privilege
referencing objects
referenced objects
source definition
module name
comment
creation date.

9-10 BSQL commands

Mimer SQL version 8.2
User’s Manual

DESCRIBE OPTION RESULT

TRIGGER BRIEF Lists the following information on the specified
trigger:

table name on which trigger is defined
trigger event
trigger type
event time.

BY REFERENCES Lists the following information on the specified
trigger:

referenced objects.

FULL Lists the following information on the specified
trigger:

table name on which trigger is defined
trigger event
trigger type
event time
referenced objects
source definition
comment
creation date.

SEQUENCE BRIEF List the following information about the
specified sequence:

initial value
increment value
maximum value.

BY ACCESS List the following information on the specified
sequence:

idents with usage privilege.

BY REFERENCES List the following information on the specified
sequence:

referencing objects.

FULL List the following information about the
specified sequence:

initial value
increment value
maximum value
referencing objects
idents with usage privilege
comment
creation date.

SCHEMA BRIEF List the following information about the
specified schema:

schema owner
contained objects
comment
creation date.

BSQL commands 9-11

Mimer SQL version 8.2
User’s Manual

EXIT

Leave BSQL.

Syntax

EXIT;

Description

Terminates the BSQL session.

LIST

Lists information on a specified object.

Syntax

LIST [object-type];

Description

The LIST command presents the following menu:

 Menu for List

 1. Databanks 6. Synonyms 11. Functions
 2. Domains 7. Tables 12. Triggers
 3. Idents 8. Views 13. Sequences
 4. Indexes 9. Modules 14. Schemata
 5. Objects 10. Procedures 0. Exit

 Select :_

Choosing an item presents a submenu for choosing between different LIST
functions - see the table that follows for details. Entering an exclamation
mark (!) in the Select field returns to the previous menu level. Entering a
double exclamation mark (!!) returns two levels.

Giving an object type in the command executes the first menu choice for
that type.

Selection numbers can be provided in a batch file for unattended operation.
However, LIST is most useful in interactive mode from a terminal.

LIST OPTION RESULT

DATABANKS ALL Lists all databanks in the database.

CREATED BY Lists databanks created by a specified ident.

ALL SHADOWS Lists all shadows in the database.

9-12 BSQL commands

Mimer SQL version 8.2
User’s Manual

LIST OPTION RESULT

DOMAINS ALL Lists all domains in the database.

CREATED BY Lists domains created by a specified ident.

IDENTS ALL Lists all idents in the database.

CREATED BY Lists idents created by a specified ident.

INDEXES ALL Lists the secondary indexes in the database.

CREATED BY Lists secondary indexes created by a specified ident.

OBJECTS ALL Lists objects in the database.

CREATED BY Lists objects created by a specified ident.

BY TYPE Lists objects of a specified type.

SYNONYMS ALL Lists synonyms in the database.

CREATED BY Lists synonyms created by a specified ident.

TABLES ALL Lists tables in the database.

CREATED BY Lists tables created by a specified ident.

VIEWS ALL Lists views in the database.

BY CREATOR Lists views created by a specified ident.

MODULES ALL Lists all the modules in the database that are visible
to (i.e. created by) the current ident.

PROCEDURES ALL Lists all the procedures the current ident has execute
privilege on.

CREATED BY Lists procedures created by the specified ident.

FUNCTIONS ALL Lists all the functions the current ident has execute
privilege on.

CREATED BY Lists functions created by the specified ident.

TRIGGERS ALL List triggers defined on tables accessible to current
user

CREATED BY Lists procedures created by the specified ident.

SEQUENCES ALL Lists all the sequences the current ident has usage
privilege on.

CREATED BY Lists sequences created by the specified ident.

SCHEMATA ALL List schemata created by the current ident

BSQL commands 9-13

Mimer SQL version 8.2
User’s Manual

LOAD

The LOAD command can be used to load data from a sequential file into a
target table.

Syntax

LOAD FROM 'file-name' INTO table-name <NULL | NONULL,>
 <DUPLICATES | NODUPLICATES> <LOGFILE 'file-name'>
 < (col-name POS(s:e), ..., col-name POS(s:e)) | DELIMITER
'character' >;

Description

NULL (default) specifies that the first byte for each column value in the
input file is used to indicate whether the value is NULL or not. An
ampersand (&) in this byte indicates NULL, all other values indicate NOT
NULL.

NONULL specifies that the values in the input file are entered into the
columns exactly as read (i.e. NULL values can not be entered).

DUPLICATE (default) specifies that the number of duplicates found
during the load operation will be reported. NODUPLICATES means that
number of duplicates will not be reported or logged.

The number of rows not loaded because of a conversion error will be
reported (and logged if LOGFILE has been specified).

LOGFILE specifies a sequential file, where duplicate rows and rows not
loaded because of a conversion error may be logged.

If column-specifications are given, only values for the columns which are
given will be read from the input file. For each column, the sequential
position for the start and the end byte of the value to assign should be
specified in POS(s:e).

If a delimiter character is specified, the values for the columns which are
read from the input file are expected to be delimited by the specified
character.

If neither column-specifications nor a delimiter character are specified,
default values for positions to read from are determined from the table
definition. All columns will be given values.

The LOAD command may not be used if a transaction is active. For further
information on transactions, see Chapter 6.

Examples:

LOAD FROM 'rooms.dat' INTO rooms NULL,DUPLICATES
LOGFILE 'rooms.dup';

LOAD FROM 'rooms2' INTO rooms NONULL (roomno POS(1:5),
roomtype POS(8:18));

LOAD FROM 'rooms.txt' INTO rooms NONULL DELIMITER ',';

9-14 BSQL commands

Mimer SQL version 8.2
User’s Manual

LOG

Logs input, output or both to a specified sequential file.

Syntax

LOG INPUT|OUTPUT| INPUT,OUTPUT ON|APPEND 'filename';

Description

All input, output or both will be logged in the specified sequential file. If
ON is specified a new file will always be created, otherwise the log data is
appended to the file.

Logging is stopped with the SET LOG OFF command and is resumed with
the SET LOG ON command.

READ INPUT

Reads commands from a sequential file.

Syntax

READ [COMMAND|ALL] [INPUT FROM] 'filename';

Description

Commands and SQL statements are read from the specified file.

When READ COMMAND INPUT is specified, commands are read from
the file while prompt answers are taken from the terminal (batch job,
command procedure).

When READ ALL INPUT or READ INPUT is specified, both commands
and prompt answers are read from the sequential file.

SET ECHO

Controls whether or not lines read during READ INPUT are echoed.

Syntax

SET ECHO ON|OFF;

Description

When echo is set to ON, lines read during READ INPUT are echoed to the
terminal or batch log file. When echo is set to OFF, these lines are not
echoed. The default value is ON.

The setting has no effect on the output of responses to BSQL commands
and statements.

BSQL commands 9-15

Mimer SQL version 8.2
User’s Manual

SET LINECOUNT

Sets the length of the terminal page.

Syntax

SET LINECOUNT|LC value;

Description

The LINECOUNT value defines the length of the terminal page.

If LINECOUNT has a value greater than zero, terminal output will
temporarily be stopped after the number of lines defined for the value.
After the “Continue”-prompt, the user will have the choice of either
continuing with the display or terminating the output. Answering “Y”
(default) implies that the output will continue until the number of lines is
reached again. Answering “N” terminates the output. Answering “G” will
ignore the linecount and the output will continue until all data are
displayed.

If LINECOUNT is zero, the output will continue until all data is displayed.

The value of LINECOUNT must either be zero or >= 10.

Default

If BSQL is run from a batch job, LINECOUNT is zero by default. For
interactive operation, the default value is machine- and terminal-
dependent.

SET LINESPACE

Sets the number of blank lines between each output record.

Syntax

SET LINESPACE|LS value;

Description

The LINESPACE value defines the number of blank lines to be written
between each output record. This value is only used when printing the
result of a SELECT statement.

The maximum value for LINESPACE is 9. The default value is 0.

9-16 BSQL commands

Mimer SQL version 8.2
User’s Manual

SET LINEWIDTH

Specifies the width of the output.

Syntax

SET LINEWIDTH|LW value;

Description

The LINEWIDTH value defines the maximum line width for output to the
terminal or batch log file.

The value for LINEWIDTH cannot be set to a value less than 20.

SET LOG

Stops or resumes logging input, output or both.

Syntax

SET [INPUT|OUTPUT|INPUT, OUTPUT] LOG OFF|ON;

Description

When SET LOG is set to OFF, logging of input, output or both in a
sequential file is temporarily stopped.

Resume logging with the SET LOG ON command.

If no input/output log is specified, all active logs are stopped or resumed.

SET MESSAGE

Specifies whether or not messages should be displayed.

Syntax

SET MESSAGE|MSG ON|OFF;

Description

Specifies whether or not result messages such as “One row found” etc. are
written to the terminal screen or batch log file.

The default setting is ON.

BSQL commands 9-17

Mimer SQL version 8.2
User’s Manual

SET OUTPUT

Specifies whether or not output should be displayed.

Syntax

SET OUTPUT ON|OFF;

Description

When OUTPUT is set to ON, the output from BSQL is written to the
terminal or batch log file. When it is set to OFF, the output does not
appear. The default value is ON.

SET PAGELENGTH

Specifies the page size of the output log file.

Syntax

SET PAGELENGTH|PL value;

Description

The PAGELENGTH value defines the page size of the file on which
output is logged, i.e. at what interval a page break will be performed. A
value of zero will result in no page breaks.

The PAGELENGTH value can either be set to zero or >= 10. The default
value is machine-dependent.

SET PAGEWIDTH

Specifies the page width of the output log file.

Syntax

SET PAGEWIDTH|PW value;

Description

The PAGEWIDTH value defines the page width of the output file. The
value should be >= 20. The default value is machine-dependent.

9-18 BSQL commands

Mimer SQL version 8.2
User’s Manual

SHOW SETTINGS

Displays the current values of all set options.

Syntax

SHOW SETTINGS;

Description

Display the current values for all set options, i.e. ECHO, LINECOUNT,
LINESPACE, LINEWIDTH, LOG, MESSAGE, OUTPUT,
PAGELENGTH, PAGEWIDTH, TRANSACTION START,
TRANSACTION ISOLATION LEVEL and TRANSACTION MODE
(read only or read write).

Current server and connection names are also displayed.

UNLOAD

The UNLOAD command can be used to unload data from a table into a
sequential file.

Syntax

UNLOAD TO 'file-name' FROM table-name <NULL|NONULL>
 < (col-name POS(s:e), ..., col-name POS(s:e) | DELIMITER 'character'
>;

Description

NULL (default) specifies that the first byte for each column value in the
output file is used to indicate whether the value is NULL or not. This byte
is assigned an ampersand (&) if the column from which the field is derived
contains NULL, the rest of the field is filled with periods (...). Otherwise
the byte is blank.

NONULL specifies that the first byte for each column value in the output
file is the first data byte of the value.

If column-specifications are given, the output file will only hold values for
the columns which are given. For each column the sequential position of
the start and the end byte of the column value should be specified in
POS(s:e). Overlapping is not controlled.

If a delimiter character is given, column data will be written to the output
file delimited by the specified character. All columns will be included.

If neither column-specifications nor a delimiter character are given, default
values for positions are determined by the table definition. All columns
will be included.

The UNLOAD command may not be used if a transaction is active. For
further information on transactions, see Chapter 6.

BSQL commands 9-19

Mimer SQL version 8.2
User’s Manual

Example:

UNLOAD TO 'rooms.dat' FROM rooms;

UNLOAD TO 'rooms2' FROM rooms NONULL
 (roomno POS(1:5), roomtype POS(8:18));

UNLOAD TO 'rooms.txt' FROM rooms NONULL DELIMITER ',';

WHENEVER

Determines which actions should be taken in the event of an error or warning.

Syntax

WHENEVER ERROR|WARNING action<,action>;

Description

If an error or warning should occur in a file being run in batch, there are
several “action” options that may be chosen to determine what should
happen.

The actions can be broken down into two groups:

Execution flow
EXIT Leaves BSQL in batch mode. Returns to prompt if

interactive mode. I.e. if interactive mode and file input
mode, the remaining file input is ignored and a new prompt
is received.

CONTINUE Continues execution.

Transaction control
ROLLBACK Abandons the transaction; no changes are made to the

database.

COMMIT Requests that the operations are executed against the
database, and the changes in the database are made
permanent.

The transaction control action can only be used if the execution flow is
specified as EXIT. If execution flow is CONTINUE any ongoing transaction
will not be affected by an error.

Default

The default value for warning is CONTINUE.

The default values for errors are EXIT, ROLLBACK in batch mode or file
input mode and CONTINUE in interactive mode.

Variables in BSQL 10-1

Mimer SQL version 8.2
User’s Manual

10 VARIABLES IN BSQL

Host variables are used in embedded SQL statements to pass values between
the database and an application program (see the Mimer SQL Programmer’s
Manual). Host variables are also supported in BSQL, to facilitate interactive
design and testing of SQL statements intended for use in embedded SQL
application programs. In BSQL, the host variables serve as parameter markers,
and the user is prompted for parameter values when the statement is executed.

Host variables may be used to assign values to columns in the database
(UPDATE and INSERT statements), to manipulate information taken from the
database or contained in other variables (in expressions), and to provide values
for comparison predicates. In all these contexts, the data type and length of the
host variable must be compatible with that of any database values within the
same syntax unit.

Host variables are written in SQL as

:host-identifier

or :host-identifier :indicator-identifier

or :host-identifier INDICATOR :indicator-identifier

In the first construction, the host identifier is the name of the main host
variable. In the second and third constructions, the main variable host-identifier
is associated with an indicator variable indicator-identifier, used to signal the
assignment of a NULL value to the main variable. See the Mimer SQL
Programmer’s Manual for a description of the use of indicator variables.

The scope of host variables in BSQL is restricted to the individual usage
instance in each statement. Variables may not be used to pass values between
separate statements, and the same variable name used more than once in a
statement represents separate, independent variables.

10.1 Host variables

When host variables are used in BSQL, BSQL prompts for the variable values,
for example:

SQL>SELECT * FROM HOTEL WHERE CITY = :CITY;
CITY: STOCKHOLM

This statement is then executed as

SQL>SELECT * FROM HOTEL WHERE CITY = 'STOCKHOLM';

10-2 Variables in BSQL

Mimer SQL version 8.2
User’s Manual

Note: The entered variable is not enclosed between apostrophes, in contrast to
the corresponding string value. Variables enclosed in apostrophes will be
interpreted as literal strings.

If an indicator variable is included, you will be prompted for whether to use a
NULL value. If you answer the prompt with No, you will then be prompted for
a value. If you answer Yes, the NULL value will be used. For example:

SQL>UPDATE BOOK_GUEST SET ARRIVE = :ARRIVE:NULL,
SQL> DEPART = :DEPART:NULL
SQL> WHERE RESERVATION = 1348;
Null:N
ARRIVE: 2001-04-23
Null:Y

Note: The prompts appear in the order in which the variables are used in the
statement. In the example above, the ARRIVE value will be updated to
2001-04-23 and the DEPART value will be set to NULL.

Error handling 11-1

Mimer SQL version 8.2
User’s Manual

11 ERROR HANDLING

11.1 Errors in BSQL

Error messages are shown when you attempt to execute an erroneous SQL
statement. There are two types of errors: semantic errors and syntax errors.

11.1.1 Semantic errors
Semantic errors arise when SQL statements are formulated with correct syntax,
but do not reflect the user’s intentions. For example, suppose that a user wishes
to select the string constant 'Hotel:' and the actual hotel name from the table
HOTEL, but uses quotation marks instead of apostrophes around the string
constant:

SELECT "Hotel:",NAME
FROM HOTEL;

Quotation marks are used to delimit identifiers containing special characters, so
that the statement is interpreted as a request to select two columns, called
“Hotel:” and NAME, from the table. The first “column” does not exist.

This example will in fact lead to an execution error, and is easily detected.
Other semantic mistakes can be more difficult to find, when the statement is
executed but gives the “wrong” answer. An example is the incorrect use of
NULL in a search condition:

SELECT RESERVATION FROM BOOK_GUEST
WHERE CHECKOUT = CAST(NULL as DATE);

This will always give an empty result set, since NULL is not equal to anything.
(The correct formulation would read WHERE CHECKOUT IS NULL).

Always check that the result of an SQL query looks reasonable, in particular if
the query is complicated.

11.1.2 Syntax errors
Syntax errors are constructions which break the rules for formulating SQL
statements. For example:

• spelling errors in keywords
SLEECT (for SELECT)

11-2 Error handling

Mimer SQL version 8.2
User’s Manual

• incorrect or missing delimiters
DELETEFROM (for DELETE FROM)
SELECT column1 column2 (for SELECT column1,column2)

• incorrect clause ordering
 UPDATE table WHERE condition SET values

(for UPDATE table SET values WHERE condition)

Syntactically incorrect statements are not accepted and an appropriate error
message is displayed. The error must be corrected before the statement can be
executed.

For syntax errors, BSQL analyzes the statement and makes an intelligent guess
as to where the error lies. This guess is based upon the most likely syntax or
appearance of the statement in question. The system then points out the error
and lists an error message based on this analysis. The appearance of this pointer
on your screen is machine dependent. In the examples shown in this chapter,
the pointer appears as “^”. The messages are self-explanatory.

The statement analysis is however not completely foolproof and misleading
error messages may arise. If the message seems to be inaccurate, check the
statement construction against the syntax diagram in the Mimer SQL Reference
Manual.

Some examples of errors and resulting error messages are listed below.

SELECT AVG(NAME) FROM HOTEL;

 Error message:

SELECT AVG(NAME) FROM HOTEL;
 ^
Invalid operand type, expected type is NUMERIC or INTERVAL

SELECT NAME FROM HOTEL
WHERE CITY ON ('STOCKHOLM','UPPSALA');

 Error message:

SELECT NAME FROM HOTEL
WHERE CITY ON ('STOCKHOLM','UPPSALA');
 ^
Syntax error, 'ON' assumed to mean 'IN'

In the following example, the error analysis is misleading:

SELECT NAME FROM HOTEL
WJERE HOTELCODE = 'LAP';

 Error message:

SELECT NAME FROM HOTEL
WJERE HOTELCODE = 'LAP';
 ^
Syntax error, END-OF-QUERY assumed missing

The misspelled word WJERE is not recognized as an attempt to write WHERE,
so that the second line is not interpreted as a selection condition.

Error handling 11-3

Mimer SQL version 8.2
User’s Manual

11.2 Error messages

Error messages from BSQL are shown when you enter an illegal BSQL
command or attempt to execute an erroneous SQL statement. The error
messages for erroneous SQL statements are the same as the return codes found
in the Mimer SQL Programmer's Manual. Error messages that can be received
for illegal BSQL commands are:

-1500 Illegal value for <%>
-1400 Invalid numerical argument
-1300 Only select statements can be used with PRINT
-1200 Previous perform file is not finished
-1101 Disk space exhausted
-1009 Unspecified file open error
-1008 ** Installation dependent **
-1007 ** Installation dependent **
-1006 Disk space exhausted
-1005 Maximum number of opened files exceeded
-1004 File locked
-1003 File protection violation
-1002 File not found
-1001 Syntax error in file name
-999 Too long statement
-900 No buffer saved
-801 Pending transaction, Commit or Rollback
-800 Load/unload is not allowed within a transaction
-777 Maximum header length exceeded
-776 Maximum record length <%> exceeded
-701 Help topic not found
-700 Help databank not installed or inaccessible
-666 Space area exhausted
-600 The number of host variables cannot exceed 20
-400 Record too large for one page (<%> lines required)

Increase value of LC/PL or set them to zero
-300 Failed to read dictionary
-207 Too many parameters
-206 Unexpected end of command
-205 Invalid numerical literal
-204 Filenames must be enclosed in apostrophes
-203 String expected
-202 Undefined keyword
-201 Syntax error
-104 Missing statement terminator (@)
-103 Missing semicolon
-102 <%> command not valid in this context
-101 Ambiguous command <%>
-100 Undefined command <%>

11-4 Error handling

Mimer SQL version 8.2
User’s Manual

-5 Conflict. One of COMMIT or ROLLBACK and EXIT or
CONTINUE

-3 Too many files have been opened
-2 File could not be opened
-1 String exceeds 256 characters which is not allowed

Example database A-1

Mimer SQL version 8.2
User’s Manual

A EXAMPLE DATABASE

A simple example database is used throughout this manual to illustrate the use
of Mimer SQL. It is based upon an imaginary company that owns a chain of
hotels.

The database is created in the databank HOTELDB.

The schema for the example database is created by the ident HOTELADM.

This example database is provided with the Mimer SQL installation so that you
may try out the examples yourself (if you do not have the example database,
ask your Mimer SQL system administrator to generate it). The tables shown
here provide an easy reference for the examples in the manual. The statements
used to create this database are also shown in this appendix.

A.1 Tables in the example database

Tables in the example database are described in this section.

The table descriptions are set up as follows:

• The first column lists the table name and the column names.

• The second column shows which columns which make up the primary key
(*).

• The third column shows the columns that are foreign keys (f). Refer to the
CREATE statements later in this section for a full definition of foreign
keys in the database.

• The fourth column shows the column data type. CHAR(n) is a character
string of length n bytes. INT(p) specifies an integer of up to p digits long.
DEC(p,s) specifies numbers of up to p digits long, of which s follow the
decimal point. DATE is a date in the Gregorian calendar in the form
YYYY-MM-DD. TIME(s) is a time on an unspecified day, in the form
HH:MM:SS, with s digits following the decimal point in the seconds value.

• The fifth column explains the column contents.

A-2 Example database

Mimer SQL version 8.2
User’s Manual

A.2 Table descriptions
HOTEL

HOTELCODE * CHAR(4) Hotel identity code

NAME CHAR(15) Hotel name

CITY CHAR(15) Location

ROOMSTATUS

STATUS * CHAR(10) Room status

ROOMTYPES

ROOMTYPE * CHAR(6) Room type

DESCRIPTION VARCHAR(40) Room description

ROOMS

ROOMNO * CHAR(7) Room number

HOTELCODE f CHAR(4) Hotel identity code

ROOMTYPE f CHAR(6) Room type

STATUS f CHAR(10) Room status

ROOM_PRICES

HOTELCODE * f CHAR(4) Hotel identity code

ROOMTYPE * f CHAR(6) Room type

FROM_DATE * DATE Date when price becomes valid

TO_DATE DATE Date until which price is valid

PRICE INT(4) Cost of room per day

CHARGES

CHARGE_CODE * CHAR(3) Charge code

DESCRIPTION CHAR(25) Cost description

CHARGE_PRICE INT(4) Price charged for room

Example database A-3

Mimer SQL version 8.2
User’s Manual

BOOK_GUEST

RESERVATION * INT(5) Guest reference number

BOOKING_DATE DATE Date of booking

HOTELCODE f CHAR(4) Hotel identity code

ROOMTYPE f CHAR(6) Room type

COMPANY VARCHAR(100) Name of company reserving room

TELEPHONE CHAR(15) Telephone number of above

RESERVED_FNAME CHAR(25) First name of expected guest

RESERVED_LNAME CHAR(25) Last name of expected guest

ARRIVE DATE Expected check-in date

DEPART DATE Expected check-out date

GUEST_FNAME CHAR(25) Guest first name

GUEST_LNAME CHAR(25) Guest last name

ADDRESS VARCHAR(50) Guest address

CHECKIN DATE Actual check-in date

CHECKOUT DATE Actual check-out date

ROOMNO f CHAR(7) Room number

PAYMENT CHAR(10) Payment type

BILL

RESERVATION f INT(5) Guest reference number

ON_DATE TIMESTAMP(0) Billing date and time

CHARGE_CODE f CHAR(3) Charge code

COST INT(4) Cost of stay

WAKE_UP

ROOMNO * f CHAR(7) Room number

WAKE_DATE * DATE Wake up date

WAKE_TIME TIME Wake up time

EXCHANGE_RATE

CURRENCY * CHAR(3) Currency

RATE DEC(6,3) Exchange rate

A-4 Example database

Mimer SQL version 8.2
User’s Manual

A.3 The tables

This section illustrates the contents of the tables in the example database. Only
partial data is shown for some tables.

HOTEL
HOTELCODE NAME CITY
LAP LAPONIA STOCKHOLM
SKY SKYLINE UPPSALA
STG ST. GEORGE STOCKHOLM
WIN Winston London
WIND WINSTON COPENHAGEN
WINS WINSTON GOTHENBURG

ROOMSTATUS
STATUS
UNKNOWN
FREE
KEY OUT
MAINT

ROOMTYPES
ROOMTYPE DESCRIPTION
NSDBLB NO SMOKING - DOUBLE WITH BATH
NSDBLS NO SMOKING - DOUBLE WITH SHOWER
NSSGLB NO SMOKING - SINGLE WITH BATH
NSSGLS NO SMOKING - SINGLE WITH SHOWER
SDBLB SMOKING - DOUBLE WITH BATH
SDBLS SMOKING - DOUBLE WITH SHOWER
SSGLB SMOKING - SINGLE WITH BATH
SSGLS SMOKING - SINGLE WITH SHOWER

ROOMS
ROOMNO HOTELCODE ROOMTYPE STATUS
LAP110 LAP SSGLS FREE
LAP211 LAP NSDBLB UNKNOWN
LAP309 LAP NSSGLS UNKNOWN

SKY117 SKY NSSGLS UNKNOWN
SKY121 SKY NSDBLS MAINT

SKY111 SKY SSGLB KEY OUT
SKY114 SKY SSGLB UNKNOWN

WIND308 WIND NSSGLB UNKNOWN
WIND524 WIND SDBLB UNKNOWN

WINS108 WINS NSDBLB FREE
WINS109 WINS NSSGLB UNKNOWN
WINS116 WINS NSDBLB UNKNOWN

ROOM_PRICES
HOTELCODE ROOMTYPE FROM_DATE FROM_DATE PRICE
LAP NSSGLS 1997-11-15 1998-03-10 640
LAP NSSGLS 1997-08-08 1997-11-14 680
...
SKY NSSGLS 1997-08-08 1997-11-14 750
...
STG NSSGLS 1997-11-15 1998-03-10 640
STG NSSGLS 1997-08-08 1997-11-14 680

Example database A-5

Mimer SQL version 8.2
User’s Manual

CHARGES
CHARGE_CODE DESCRIPTION CHARGE_PRICE
100 LODGING 100
120 TELEPHONE 40
170 CAR PARK 70
200 RESTAURANT 250
210 MINIBAR 70
230 BAR 200
270 ROOM SERVICE 95
330 LAUNDRY 120
720 EXTRA BED 370
700 ROOM -
900 MISCELLANEOUS 30

BOOK_GUEST
RESERVATION BOOKING_DATE HOTELCODE ROOMTYPE COMPANY

1348 1997-06-10 LAP NSSGLB MIMER IT AB
1349 1997-06-10 LAP NSSGLS MIMER AB
1350 1997-06-11 SKY SDBLB SALLY WEBERT
1351 1997-06-11 SKY NSDBLB SALLY WEBERT
1352 1997-06-11 WINS NSDBLB MARK FRANCIS
1353 1997-06-11 SKY NSSGLB ASATRON AB
...
...

TELEPHONE RESERVED_FNAME RESERVED_LNAME ARRIVE DEPART
018-185210 STEN JOHANSEN 1997-08-20 1997-08-22
018-185210 MATS LINDBLOM 1997-06-30 1997-07-01
0760-57609 SALLY WEBERT 1997-08-21 1997-08-24
0760-57609 JOHN ALBERTSON 1997-06-11 1997-06-15
08-320668 MARK FRANCIS 1997-06-19 1997-06-20
08-135709 BASIL FAWCETT 1997-08-20 1997-08-22
...
...

GUEST_FNAME GUEST_LNAME ADDRESS
STEN JOHANSEN MIMERGATAN 4, UPPSALA
STEFAN HANSEN IDUNGATAN 24, UPPSALA
SALLY WEBERT KRONPARKEN 44, JOKKMOKK
ANNA ALBERTSON 32 SPRING DRIVE, DENVER, USA
MARK FRANCIS VIMPELGATAN 7, SKARA
ALFRED FIMPLEY 23 BACK NELLY VIEW, ACKWORTH
...
...

CHECKIN CHECKOUT ROOMNO PAYMENT
1997-08-20 1997-08-22 STG009 EUROCARD
1997-06-30 1997-07-01 LAP206 EUROCARD
1997-08-21 1997-08-22 SKY212 CASH
1997-06-11 1997-06-15 SKY125 AM.EXPR
1997-06-19 1997-06-20 WINS103 EUROCARD
1997-08-20 1997-08-22 SKY110 CASH
...
...

A-6 Example database

Mimer SQL version 8.2
User’s Manual

BILL
RESERVATION ON_DATE CHARGE_CODE COST

1347 1997-08-21 13:38:19 100 100
1347 1997-08-21 13:38:19 120 40
...

1347 1997-08-21 13:38:19 120 40
...

1348 1997-08-21 13:38:19 230 200
...

1349 1997-06-30 13:38:19 170 70
1349 1997-06-30 13:38:19 900 30
...

1350 1997-08-21 13:38:19 100 100
...

1350 1997-08-21 13:38:19 230 200
1350 1997-08-21 13:38:19 330 120
1350 1997-08-21 13:38:19 100 100
1350 1997-08-21 13:38:19 120 40
1350 1997-08-21 13:38:19 270 95
...

WAKE_UP
ROOMNO WAKE_DATE WAKE_TIME
LAP112 1997-08-22 06:00:00
LAP112 1997-08-23 07:00:00
LAP201 1997-08-23 06:45:00
LAP205 1997-08-22 08:00:00
SKY101 1997-08-22 09:00:00
SKY110 1997-08-22 07:30:00
SKY111 1997-08-22 06:00:00
SKY124 1997-08-22 06:15:00
SKY124 1997-08-23 06:15:00
SKY124 1997-08-24 06:15:00
SKY201 1997-08-22 10:00:00
SKY212 1997-08-22 04:30:00
STG009 1997-08-22 06:00:00
STG117 1997-08-22 07:00:00
STG142 1997-08-22 08:30:00
WIND401 1997-08-23 06:00:00
WIND402 1997-08-22 06:20:00
WIND514 1997-08-22 07:00:00
WINS119 1997-08-22 08:00:00
WINS120 1997-08-22 07:30:00
WINS121 1997-08-22 06:20:00

EXCHANGE_RATE
CURRENCY RATE
DEM 0.2230
DKK 0.8495
FIM 0.6560
FRF 0.7420
GBP 0.0810
ITL 206.82
JPY 16.38
NOK 0.8815
SEK 1.000
USD 0.1330

Example database A-7

Mimer SQL version 8.2
User’s Manual

A.4 CREATE statements for example database

The following statements were used to create the tables in the example
database. Only the CREATE statements are listed here.

CREATE DATABANK HOTELDB
 OF 60 PAGES
 IN 'HOTELDB'
 WITH TRANS OPTION;

CREATE DOMAIN HOTELCODE
 AS CHARACTER(4);

CREATE DOMAIN STATUS
 AS CHARACTER(10)
 DEFAULT 'UNKNOWN';

CREATE DOMAIN ROOMTYPE
 AS CHARACTER(6)
 DEFAULT '-ND-';

CREATE DOMAIN ROOMNO
 AS CHARACTER(7);

CREATE DOMAIN PERSONNAME
 AS CHARACTER(25);

CREATE DOMAIN NUMBER
 AS INTEGER(3)
 DEFAULT 0;

CREATE DOMAIN BOOK_RATE
 AS DECIMAL(3,2)
 DEFAULT 1.10;

CREATE TABLE HOTEL (HOTELCODE HOTELCODE NOT NULL,
 NAME CHAR(15) NOT NULL,
 CITY CHAR(15) NOT NULL,
 PRIMARY KEY (HOTELCODE))
 IN HOTELDB;

CREATE TABLE ROOMSTATUS (STATUS STATUS NOT NULL,
 PRIMARY KEY (STATUS)) IN HOTELDB;

CREATE TABLE ROOMTYPES (ROOMTYPE ROOMTYPE NOT NULL,
 DESCRIPTION VARCHAR(40) NOT NULL,
 PRIMARY KEY (ROOMTYPE))
 IN HOTELDB;

CREATE TABLE ROOMS (ROOMNO ROOMNO NOT NULL,
 HOTELCODE HOTELCODE NOT NULL,
 ROOMTYPE ROOMTYPE NOT NULL,
 STATUS STATUS NOT NULL,
 PRIMARY KEY (ROOMNO),
 FOREIGN KEY (HOTELCODE) REFERENCES HOTEL,
 FOREIGN KEY (ROOMTYPE) REFERENCES ROOMTYPES,
 FOREIGN KEY (STATUS) REFERENCES ROOMSTATUS)
 IN HOTELDB;

A-8 Example database

Mimer SQL version 8.2
User’s Manual

CREATE TABLE ROOM_PRICES (HOTELCODE HOTELCODE NOT NULL,
 ROOMTYPE ROOMTYPE NOT NULL,
 FROM_DATE DATE NOT NULL,
 TO_DATE DATE NOT NULL,
 PRICE INTEGER(4),
 PRIMARY KEY (HOTELCODE,ROOMTYPE,FROM_DATE),
 FOREIGN KEY (HOTELCODE) REFERENCES HOTEL,
 FOREIGN KEY (ROOMTYPE) REFERENCES ROOMTYPES)
 IN HOTELDB;

CREATE TABLE CHARGES (CHARGE_CODE CHAR(3) NOT NULL,
 DESCRIPTION CHAR(25) NOT NULL,
 CHARGE_PRICE INTEGER(4),
 PRIMARY KEY (CHARGE_CODE))
 IN HOTELDB;

CREATE TABLE BOOK_GUEST (RESERVATION INTEGER(5) NOT NULL,
 BOOKING_DATE DATE
 DEFAULT CURRENT_DATE NOT NULL,
 HOTELCODE HOTELCODE NOT NULL,
 ROOMTYPE ROOMTYPE NOT NULL,
 COMPANY VARCHAR(100) NOT NULL,
 TELEPHONE CHAR(15),
 RESERVED_FNAME PERSONNAME,
 RESERVED_LNAME PERSONNAME,
 ARRIVE DATE NOT NULL,
 DEPART DATE NOT NULL,
 GUEST_FNAME PERSONNAME,
 GUEST_LNAME PERSONNAME,
 ADDRESS VARCHAR(50),
 CHECKIN DATE,
 CHECKOUT DATE,
 ROOMNO ROOMNO,
 PAYMENT CHAR(10),
 PRIMARY KEY (RESERVATION),
 FOREIGN KEY (HOTELCODE) REFERENCES HOTEL,
 FOREIGN KEY (ROOMTYPE) REFERENCES ROOMTYPES,
 FOREIGN KEY (ROOMNO) REFERENCES ROOMS,
 CHECK (ARRIVE < DEPART AND CHECKIN <= CHECKOUT))
 IN HOTELDB;

CREATE TABLE BILL (RESERVATION INTEGER(5) NOT NULL,
 ON_DATE TIMESTAMP(0) NOT NULL,
 CHARGE_CODE CHAR(3) NOT NULL,
 COST INTEGER(4)
 DEFAULT NULL,
 FOREIGN KEY (RESERVATION) REFERENCES BOOK_GUEST,
 FOREIGN KEY (CHARGE_CODE) REFERENCES CHARGES)
 IN HOTELDB;

CREATE TABLE WAKE_UP(ROOMNO ROOMNO NOT NULL,
 WAKE_DATE DATE NOT NULL,
 WAKE_TIME TIME NOT NULL,
 PRIMARY KEY (ROOMNO,WAKE_DATE),
 FOREIGN KEY (ROOMNO) REFERENCES ROOMS)
 IN HOTELDB;

CREATE TABLE EXCHANGE_RATE (CURRENCY CHAR(3) NOT NULL,
 RATE DECIMAL(6,3),
 PRIMARY KEY (CURRENCY))
 IN HOTELDB;

Example database A-9

Mimer SQL version 8.2
User’s Manual

--
-- PROCEDURE TO ENTER THE CHARGE FOR LODGING ON A GUEST'S BILL
--
@
CREATE PROCEDURE ADD_LODGING (IN IN_RESERVATION INTEGER)
MODIFIES SQL DATA
BEGIN
 DECLARE P_PRICE, P_DAYS INTEGER;
 DECLARE P_CHECKIN DATE;
--
-- FIND PRICE OF ROOM
--
 SELECT PRICE INTO P_PRICE
 FROM ROOM_PRICES, BOOK_GUEST
 WHERE BOOK_GUEST.RESERVATION = IN_RESERVATION
 AND ROOM_PRICES.ROOMTYPE = BOOK_GUEST.ROOMTYPE
 AND ROOM_PRICES.HOTELCODE = BOOK_GUEST.HOTELCODE
 AND FROM_DATE <= CURRENT_DATE
 AND TO_DATE >= CURRENT_DATE;
--
-- FIND LENGTH OF STAY
--
 SELECT CAST((CHECKOUT-CHECKIN) DAY AS INTEGER), CHECKIN
 INTO P_DAYS, P_CHECKIN
 FROM BOOK_GUEST WHERE RESERVATION=IN_RESERVATION;

 BEGIN
 DECLARE P_COUNTER INTEGER DEFAULT 0;
 WHILE P_COUNTER < P_DAYS DO
 INSERT INTO BILL VALUES
 (IN_RESERVATION,
 CAST(P_CHECKIN+CAST(P_COUNTER AS INTERVAL DAY)
 AS TIMESTAMP),
 '100',
 P_PRICE);
 SET P_COUNTER = P_COUNTER+1;
 END WHILE;
 END;
END
@

--
-- PROCEDURE TO LIST ALL ROOMS THAT HAVE REQUIRED A WAKE-UP
-- CALL WITHIN THE GIVEN INTERVAL
--
@
CREATE PROCEDURE WAKE_UP(IN WAKE_UP INTERVAL MINUTE(4)) VALUES(CHAR(7))
READS SQL DATA
BEGIN
 DECLARE WAKE CURSOR FOR SELECT ROOMNO
 FROM WAKE_UP
 WHERE
 CAST(CAST(WAKE_DATE AS CHAR(10)) || ' '
 || CAST(WAKE_TIME AS CHAR(10)) AS TIMESTAMP)
 BETWEEN LOCAL_TIMESTAMP
 AND LOCAL_TIMESTAMP + WAKE_UP;
 DECLARE ROOM CHAR(7);
 OPEN WAKE;
 BEGIN
 DECLARE EXIT HANDLER FOR NOT FOUND BEGIN END;
 LOOP
 FETCH WAKE INTO ROOM;
 RETURN ROOM;
 END LOOP;
 END;
 CLOSE WAKE;
END
@

A-10 Example database

Mimer SQL version 8.2
User’s Manual

--
-- PROCEDURE TO ALLOCATE A ROOM FOR A GUEST
--
@
CREATE PROCEDURE ALLOCATE_ROOM (IN IN_RESERVATION INTEGER,INOUT
OUT_ROOMNO CHAR(6))
MODIFIES SQL DATA
BEGIN
 SELECT MAX(ROOMS.ROOMNO)
 INTO OUT_ROOMNO
 FROM ROOMS,BOOK_GUEST
 WHERE BOOK_GUEST.RESERVATION = IN_RESERVATION
 AND ROOMS.HOTELCODE = BOOK_GUEST.HOTELCODE
 AND ROOMS.ROOMTYPE = BOOK_GUEST.ROOMTYPE
 AND ROOMS.STATUS = 'FREE';

 UPDATE ROOMS
 SET STATUS = 'UNKNOWN'
 WHERE ROOMNO = OUT_ROOMNO;

 UPDATE BOOK_GUEST
 SET ROOMNO = OUT_ROOMNO
 WHERE RESERVATION = IN_RESERVATION;
END
@

--
-- PROCEDURE TO BE CALLED WHENEVER A GUEST CONSUMES ANYTHING
-- AND CHARGES IT TO HIS/HER ROOM
--
@
CREATE PROCEDURE CHARGE_ROOM(IN IN_ROOMNO CHAR(6),
 IN IN_CHARGE_CODE CHAR(3))
MODIFIES SQL DATA
BEGIN
 DECLARE P_RESERVATION, P_PRICE, P_RC INTEGER;

 SELECT RESERVATION
 INTO P_RESERVATION
 FROM BOOK_GUEST
 WHERE ROOMNO = IN_ROOMNO;

 GET DIAGNOSTICS P_RC = ROW_COUNT;
 IF P_RC = 0 THEN
 SIGNAL SQLSTATE '05001';
 END IF;

 SELECT CHARGE_PRICE
 INTO P_PRICE
 FROM CHARGES
 WHERE CHARGE_CODE = IN_CHARGE_CODE;

 GET DIAGNOSTICS P_RC = ROW_COUNT;
 IF P_RC = 0 THEN
 SIGNAL SQLSTATE '05002';
 END IF;

 BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 SIGNAL SQLSTATE '05003';
 END;
 INSERT INTO BILL VALUES
 (P_RESERVATION,
 LOCAL_TIMESTAMP,
 IN_CHARGE_CODE,
 P_PRICE);
 END;
END
@

Example database A-11

Mimer SQL version 8.2
User’s Manual

--
-- PROCEDURE TO FREE UP A ROOM
--
@
CREATE PROCEDURE DEALLOC_ROOM (IN IN_RESERVATION INTEGER)
MODIFIES SQL DATA
BEGIN
 DECLARE P_ROOMNO CHAR(7);

 SELECT ROOMNO
 INTO P_ROOMNO
 FROM BOOK_GUEST
 WHERE RESERVATION = IN_RESERVATION;

 UPDATE ROOMS
 SET STATUS = 'FREE'
 WHERE ROOMNO = P_ROOMNO;

 UPDATE BOOK_GUEST
 SET ROOMNO = NULL
 WHERE RESERVATION = IN_RESERVATION;
END
@

--
-- PROCEDURE TO FIND FREE ROOMS FOR A RESERVATION REQUEST
--
@
CREATE PROCEDURE FREEQ (IN IN_HOTELCODE CHAR(3),
 IN IN_ROOMTYPE CHAR(6),
 IN IN_ARRIVE DATE,
 IN IN_DEPART DATE,
 OUT OUT_ROOMS INTEGER)
READS SQL DATA
BEGIN
 DECLARE P_RESERVED,P_AVAIL INTEGER;

 SELECT COUNT(RESERVATION)
 INTO P_RESERVED
 FROM BOOK_GUEST
 WHERE ARRIVE <= IN_ARRIVE
 AND DEPART >= IN_DEPART
 AND ROOMTYPE = IN_ROOMTYPE
 AND HOTELCODE = IN_HOTELCODE;

 SELECT COUNT(ROOMNO)
 INTO P_AVAIL
 FROM ROOMS
 WHERE ROOMTYPE = IN_ROOMTYPE
 AND HOTELCODE = IN_HOTELCODE;

 SET OUT_ROOMS = P_AVAIL - P_RESERVED;
END
@

--
-- PROCEDURE TO PROCESS A GUEST CHECKING OUT
--
@
CREATE PROCEDURE GUEST_LEAVES(IN IN_RESERVATION INTEGER)
MODIFIES SQL DATA
BEGIN
 CALL ADD_LODGING(IN_RESERVATION);
 CALL DEALLOC_ROOM(IN_RESERVATION);
END
@

A-12 Example database

Mimer SQL version 8.2
User’s Manual

--
-- AT THE DESK OF THE HOTEL THE STAFF USE A VIEW "FREE_ROOMS" TO FIND
-- FREE ROOMS, AS IT IS A JOINVIEW IT IS NOT UPDATABLE.
--

CREATE VIEW FREE_ROOMS AS SELECT R.ROOMNO,R.HOTELCODE,T.DESCRIPTION FROM
 ROOMS R,ROOMTYPES T
 WHERE R.ROOMTYPE=T.ROOMTYPE
 AND R.STATUS='FREE';

@
CREATE TRIGGER FREEUPDATE INSTEAD OF UPDATE ON FREE_ROOMS
REFERENCING NEW TABLE AS N
BEGIN ATOMIC
 .UPDATE ROOMS
 SET STATUS = 'USED'
 WHERE ROOMS.ROOMNO =(SELECT ROOMNO FROM N);
END
@

--
-- THE STATUS OF A ROOM IS KEPT IN THE ROOMS TABLE, NOW THE HOTEL
-- POLICY IS THAT YOU MAY NEVER DO ANY MAINTAINANCE ON A ROOM WHEN THE
-- KEY IS OUT
--
-- THIS TRIGGER PREVENTS SETTING THE STATUS 'MAINT' WHEN IT IS CURRENTLY
-- 'KEY OUT'
--

@
CREATE TRIGGER SETMAINT AFTER UPDATE ON ROOMS
REFERENCING NEW TABLE AS N
 OLD TABLE AS O
BEGIN ATOMIC
 IF EXISTS (SELECT STATUS FROM O WHERE STATUS='KEY OUT')
 AND EXISTS (SELECT STATUS FROM N WHERE STATUS='MAINT') THEN
 SIGNAL SQLSTATE VALUE '07020';
 END IF ;
END
@

--
-- THIS TRIGGER ONLY WORKS IF YOU UPDATE ONLY ONE ROOM AT A TIME, TO GET
-- IT WORKING FOR MULTI-ROW-UPDATES YOU WOULD HAVE TO DECLARE 2 CURSORS
-- AND STEP IN PARALLEL OVER THE O AND N TABLE COMPARING VALUES.
--
-- IN THE BILL TABLE THERE MAY NEVER BE MORE THAN ONE
-- CHARGE FOR EACH DAY FOR THE CHARGES
-- THIS TRIGGER PREVENTS SUCH INSERTS
--
@
CREATE TRIGGER BILLINSERT AFTER INSERT ON BILL
REFERENCING NEW TABLE AS N
BEGIN ATOMIC
 IF EXISTS (SELECT *
 FROM BILL,N
 WHERE BILL.RESERVATION = N.RESERVATION
 AND BILL.ON_DATE = N.ON_DATE
 AND BILL.CHARGE_CODE = N.CHARGE_CODE
 AND N.CHARGE_CODE IN ('100','170','720')) THEN
 SIGNAL SQLSTATE VALUE '07020';
 END IF;
END
@

Example database A-13

Mimer SQL version 8.2
User’s Manual

--
-- WHEN A CUSTOMER PAYS THE BILL RECORDS IN THE BILL TABLE ARE
-- DELETED. IF THE CUSTOMER PAYS FOR LODGING (CODE=100) MAKE SURE THE
-- ROOM GETS THE STATUS 'FREE'
--

@
CREATE TRIGGER BILLDELETE AFTER DELETE ON BILL
REFERENCING OLD TABLE AS OLDROWS
BEGIN ATOMIC
 UPDATE ROOMS
 SET STATUS='FREE'
 WHERE ROOMS.ROOMNO = (SELECT BOOK_GUEST.ROOMNO
 FROM BOOK_GUEST, OLDROWS
 WHERE OLDROWS.RESERVATION
 = BOOK_GUEST.RESERVATION
 AND OLDROWS.CHARGE_CODE='100');
END
@

--
-- HOTEL MANAGEMENT DECIDES THAT A COLUMN "RATING" SHOULD BE ADDED TO THE
-- HOTEL INFORMATION. A NEW TABLE HOTELN IS DEFINED THAT CONTAINS THIS
-- NEW COLUMN.ALL NEW APPLICATIONS SHOULD USE THIS TABLE.
--

CREATE TABLE HOTELN(
 HOTELCODE HOTELCODE NOT NULL,
 NAME CHAR(15) NOT NULL,
 CITY CHAR(15) NOT NULL,
 RATING CHAR(5),
 PRIMARY KEY(HOTELCODE))
 IN HOTELDB;

--
-- IN ORDER TO GET ALL OLD APPLICATIONS WORKING A VIEW HOTEL IS DEFINED
--
CREATE VIEW HOTEL AS SELECT HOTELCODE, NAME, CITY FROM HOTELN;

--
-- BY DEFINING A INSTEAD OF INSERT TRIGGER ON THE VIEW,
-- WE CAN GET THE EFFECT THAT WHENEVER AN OLD APPLICATION
-- INSERTS THINGS IN THE HOTEL VIEW (THE OLD APPLICATIONS SEES IT AS A
-- TABLE) THE VALUE '-' IS INSERTED IN THE NEW HOTELN TABLE!
--

@
CREATE TRIGGER HOTINSERT INSTEAD OF INSERT ON HOTEL
REFERENCING NEW TABLE AS NEWROWS
BEGIN ATOMIC
 INSERT INTO HOTELN SELECT HOTELCODE, NAME, CITY, '-' FROM NEWROWS ;
END
@

Index i

Mimer SQL version 8.2
User’s Manual

INDEX

A
active connection 3-2
ALL 4-30
ALTER DATABANK 7-17
ALTER IDENT 7-19
ALTER TABLE 7-17
ANY 4-30
arithmetic operations 4-8
AS

for column labels 4-2
for connection name 3-1

AVG 4-10

B
back-up protection 6-2
batch operation 9-1
BETWEEN condition 4-7
BSQL

Commands 9-1
Errors 11-1

C
CASCADE 7-19, 8-5
CASE 4-16
CAST 4-18
changing connections 3-2
changing passwords 7-19
CHAR_LENGTH 4-15
character set 4-4
character string comparison 4-4
CHECK

in domain 7-5
check conditions 2-11
check conditions in tables 7-10
check option in views 2-12, 7-14
client/server 2-1
CLOSE

BSQL 9-5
column labels 4-2
column names in UNION 4-32
comments 7-16
COMMIT 9-19
committing transactions 6-1
comparison 4-4
computed values 4-8
concurrency control 6-1

ii Index

Mimer SQL version 8.2
User’s Manual

CONNECT 3-1
CONTINUE 9-19
correlation names 4-27
COUNT 4-10
creating

databanks 7-3
domains 7-4
modules 7-11
procedures 7-11
secondary indexes 7-14
synonyms 7-15
tables 7-5
views 7-13

cross product 4-21

D
data integrity 2-10
data manipulation 5-1
databank 2-2
databank options 6-2
DATABANK privilege 8-3
databank shadows 2-8
databanks

altering 7-17
creating 7-3
dropping 7-20

database definition statements 7-1
database design 7-1
database organization 2-1
datetime arithmetic 4-18
datetime functions 4-18
default values in domains 7-4
DELETE 5-4
DELETE access 8-4
delimiting complex statements with “@” 7-11, 9-1
DESCRIBE

BSQL 9-5
DISCONNECT 3-2
DISTINCT 4-3

in set functions 4-10
domains 2-10

creating 7-4
default values 7-4
dropping 7-21

dropping objects 7-19
duplicate values 4-3

E
ECHO 9-14
embedded SQL 1-1
ENTER 3-3
error handling 11-1
ESCAPE in LIKE conditions 4-6
ESQL 1-1
example database A-1
EXECUTE privilege 8-3
EXISTS

condition 4-29

Index iii

Mimer SQL version 8.2
User’s Manual

NULL values 4-36
EXIT

BSQL 9-11, 9-19
EXTRACT 4-15

F
FORALL 4-30
foreign keys 2-10, 7-8
functions 2-6

G
grant option 2-13, 8-1
granting privileges 8-3
GROUP BY 4-12
group idents 2-3

H
HAVING 4-13
host variables 10-1

I
IDENT privilege 8-3
idents 2-3

altering 7-19
dropping 7-21
organization 8-2

IN condition 4-6
indexes 2-6
indicator variables 10-1
INSERT 5-1
INSERT access 8-4
inserting NULL values 5-3
inserting with a subselect 5-3
inserting with a values list 5-2
IS NULL 4-35
isolation levels in transactions 6-4

J
join condition 4-20
join views 2-5
joining a table with itself 4-28
joins

natural 4-22
outer 4-23
simple 4-21

K
keys 2-6

L
LEAVE 3-3
LIKE 4-5
LINECOUNT 9-15
LINESPACE 9-15
LINEWIDTH 9-16
LIST

BSQL 9-11
LOAD

BSQL 9-13
LOG 9-16

iv Index

Mimer SQL version 8.2
User’s Manual

BSQL 9-14
LOG databank option 6-2
LOGDB 2-2
logging 6-2
logical operators 4-4
LOWER 4-15

M
MAX 4-10
MEMBER privilege 8-3
merging with UNION 4-33
MESSAGE 9-16
MIN 4-10
modules 2-7

creating 7-11

N
natural joins 4-22
nested selects 4-24
NULL databank option 6-2
NULL values

in EXISTS etc. 4-36
in SELECT 4-34
in set functions 4-10
in variables 10-1
inserting 5-3
treated as equal by distinct 4-3

O
object names 2-2
object privileges 2-13
objects 2-1
optimization 2-6
optimizing transactions

READ ONLY and READ WRITE 6-4
ORDER BY 4-14

in subselects 4-26
OS_USER 2-3
outer joins 4-23
outer references 4-28
OUTPUT 9-17

P
PAGELENGTH 9-17
PAGEWIDTH 9-17
passwords 7-1
pattern conditions 4-5
POSITION 4-15
primary key 2-6, 7-7
private objects 2-2
privileges 2-12, 8-1
procedures 2-6

creating 7-11
procedures and modules

protection against CASCADE effects 7-21
program idents 2-3, 3-3

Q
quantified predicates 4-30

Index v

Mimer SQL version 8.2
User’s Manual

R
READ INPUT 9-14
read-set 6-1
REFERENCES 7-8
REFERENCES access 8-4
referential integrity 2-10, 7-8
RESTRICT 7-19, 8-5
restriction views 2-5
result table 4-1
retrieving data

from multiple tables 4-20
from single tables 4-1

revoking privileges 8-5
ROLLBACK 9-19
routines 2-6

S
scalar functions 4-15
searching for NULL 4-35
secondary indexes 2-6

creating 7-14
SELECT

computed values 4-8
creating views 7-13
DISTINCT 4-3
EXISTS 4-29
GROUP BY 4-12
HAVING 4-13
NULL values 4-34
ordering the result 4-14
quantified predicate 4-30
simple form 4-1
UNION 4-33
WHERE 4-4

SELECT access 8-4
selecting groups 4-13
selection process 4-38
semantic errors 11-1
sequential command files 9-14
SET

CONNECTION 3-2
ECHO 9-14
LINECOUNT 9-15
LINESPACE 9-15
LINEWIDTH 9-16
LOG 9-16
MESSAGE 9-16
OUTPUT 9-17
PAGELENGTH 9-17
PAGEWIDTH 9-17

set conditions 4-6
set functions 4-10
SET SESSION 6-5
SET TRANSACTION 6-3
SETTINGS 9-18
shadowing 2-8
SHOW SETTINGS 9-18
simple joins 4-21

vi Index

Mimer SQL version 8.2
User’s Manual

SOME 4-30
source table 4-1
SQL statements 2-13
stored procedures 2-6
string concatenation 4-8
subselects 4-24

in INSERT 5-3
SUBSTRING 4-15
SUM 4-10
synonyms 2-8

creating 7-15
syntax errors 11-1
SYSADM 8-2
SYSDB 2-2
system databanks 2-2
system objects 2-2
system privileges 2-12
system utilities 8-2

T
TABLE privilege 8-3
tables 2-4

altering 7-17
check conditions 7-10
column definitions 7-7
creating 7-5
dropping 7-20

TRANS databank option 6-2
transaction consistency

SET TRANSACTION ISOLATION LEVEL 6-4
transaction control options - setting defaults 6-5
transaction control statements 6-3
transaction diagnostics size 6-5
transaction optimization 6-4
transactions

build-up 6-1
TRANSDB 2-2
TRIM 4-15

U
UNION 4-31
UNLOAD

BSQL 9-18
updatable views 5-6
UPDATE 5-4
UPDATE access 8-4
UPPER 4-15
USAGE ON DOMAIN privilege 8-3
user databanks 2-2

V
variables 10-1
views 2-5

check option 7-14
check options 2-12
creating 7-13
updatable 5-6

Index vii

Mimer SQL version 8.2
User’s Manual

W
WHENEVER

BSQL 9-19
WHERE condition 4-4
wildcard characters 4-5
write-set 6-1

viii Index

Mimer SQL version 8.2
User’s Manual

Index ix

Mimer SQL version 8.2
User’s Manual

	1 - INTRODUCTION
	2 - BASIC CONCEPTS OF MIMER SQL
	2.1 - The Mimer SQL relational database
	2.1.1 - The data dictionary
	2.1.2 - Databanks
	2.1.3 - Idents
	2.1.4 - Schemas
	2.1.5 - Tables
	2.1.6 - Base tables and views
	2.1.7 - Unique constraints and indexes
	2.1.8 - Routines (functions and procedures)
	2.1.9 - Triggers
	2.1.10 - Modules
	2.1.11 - Synonyms
	2.1.12 - Shadows
	2.1.13 - Sequences

	2.2 - Data integrity
	2.2.1 - Domains
	2.2.2 - Foreign keys - referential integrity
	2.2.3 - Check conditions
	2.2.4 - Check options in view definitions

	2.3 - Privileges
	2.4 - Mimer SQL statements

	3 - MANAGING DATABASE CONNECTIONS
	3.1 - Database connections
	3.1.1 - Connecting to a database
	3.1.2 - Changing connections
	3.1.3 - Disconnecting

	3.2 - Program idents - ENTER and LEAVE

	4 - RETRIEVING DATA FROM TABLES
	4.1 - Retrieval from single tables
	4.1.1 - Simple retrieval
	4.1.2 - Setting column labels
	4.1.3 - Eliminating duplicate values
	4.1.4 - Selecting specific rows
	4.1.5 - Retrieving computed values
	4.1.6 - Using set functions
	4.1.7 - Grouped set functions: the GROUP BY clause
	4.1.8 - Selecting groups: the HAVING clause
	4.1.9 - Ordering the result table
	4.1.10 - Using scalar functions
	4.1.11 - Using CASE expression
	4.1.12 - Using CAST specification
	4.1.13 - Datetime arithmetic and functions

	4.2 - Retrieving data from more than one table
	4.2.1 - The join condition
	4.2.2 - Simple joins
	4.2.3 - Outer joins
	4.2.4 - Nested selects
	4.2.5 - Ordering nested queries
	4.2.6 - Correlation names
	4.2.6.1 - Simplifying complex queries

	4.2.7 - Retrieving with EXISTS and NOT EXISTS
	4.2.8 - Retrieval with ALL, ANY, SOME
	4.2.9 - Union queries

	4.3 - Handling NULL values
	4.3.1 - Searching for NULL
	4.3.2 - Null values in ALL, ANY, IN and EXISTS queries

	4.4 - Conceptual description of the selection process

	5 - DATA MANIPULATION
	5.1 - Inserting data
	5.1.1 - Inserting explicit values
	5.1.2 - Inserting with a subselect
	5.1.3 - Inserting sequence values
	5.1.4 - Inserting NULL values

	5.2 - Updating tables
	5.3 - Deleting rows from tables
	5.4 - Calling procedures
	5.5 - Updatable views

	6 - MANAGING TRANSACTIONS
	6.1 - Transaction principles
	6.2 - Logging
	6.3 - Handling transactions
	6.3.1 - Transaction handling in BSQL
	6.3.2 - Optimizing transactions
	6.3.3 - Consistency within a transaction
	6.3.4 - Exception diagnostics within transactions
	6.3.5 - Default transaction options

	7 - DEFINING THE DATABASE
	7.1 - Creating idents and schemas
	7.2 - Creating databanks
	7.3 - Creating sequences
	7.4 - Creating domains
	7.4.1 - Domains with a default value
	7.4.2 - Domains with a check clause

	7.5 - Creating tables
	7.5.1 - Column definitions
	7.5.2 - The primary key constraint
	7.5.3 - Unique constraint
	7.5.4 - Foreign keys - referential constraints
	7.5.5 - Check constraints

	7.6 - Creating functions, procedures, triggers and modules
	7.7 - Creating views
	7.7.1 - Check options

	7.8 - Creating secondary indexes
	7.9 - Creating synonyms
	7.10 - Commenting objects
	7.11 - Altering databanks, tables and idents
	7.11.1 - Altering a databank
	7.11.2 - Altering tables
	7.11.3 - Altering idents
	7.11.4 - Objects which may not be altered

	7.12 - Dropping objects from the database
	7.12.1 - Dropping databanks and tables
	7.12.2 - Dropping sequences
	7.12.3 - Dropping domains
	7.12.4 - Dropping idents
	7.12.5 - Dropping functions, modules, procedures and triggers

	8 - DEFINING PRIVILEGES
	8.1 - Ident hierarchy
	8.2 - Granting privileges
	8.2.1 - Granting system privileges
	8.2.2 - Granting object privileges
	8.2.3 - Granting access privileges

	8.3 - Revoking privileges
	8.3.1 - Revoking system privileges
	8.3.2 - Revoking object privileges
	8.3.3 - Revoking access privileges
	8.3.4 - Recursive effects of revoking privileges

	9 - BSQL COMMANDS
	9.1 - Running BSQL
	9.1.1 - Running BSQL from a batch job
	9.1.2 - Running BSQL via the terminal
	9.1.3 - BSQL command line editing

	9.2 - BSQL commands
	CLOSE
	DESCRIBE
	EXIT
	LIST
	LOAD
	LOG
	READ INPUT
	SET ECHO
	SET LINECOUNT
	SET LINESPACE
	SET LINEWIDTH
	SET LOG
	SET MESSAGE
	SET OUTPUT
	SET PAGELENGTH
	SET PAGEWIDTH
	SHOW SETTINGS
	UNLOAD
	WHENEVER

	10 - VARIABLES IN BSQL
	10.1 - Host variables

	11 - ERROR HANDLING
	11.1 - Errors in BSQL
	11.1.1 - Semantic errors
	11.1.2 - Syntax errors

	11.2 - Error messages

	A - EXAMPLE DATABASE
	A.1 - Tables in the example database
	A.2 - Table descriptions
	A.3 - The tables
	A.4 - CREATE statements for example database

	mimerwww:
	msg: If clicking here fails to start a Web Browser, check your Weblink Preferences.

