
Introduction to SQL:
Data Retrieving

Ruslan Fomkin

Databasdesign för Ingenjörer – 1056F

Structured Query Language (SQL)

History:
SEQUEL (Structured English QUery Language),
earlier 70’s, IBM Research
SQL (ANSI 1986), SQL1 or SQL-86
SQL2 (SQL-92)
SQL-99 (SQL3)

core specification and optional specialized packages

Standard language for commercial DBMS
each DBMS has own features over standard

SQL includes

Data Definition Language (DDL)
Data Manipulation Language (DML)

Queries
Updates

Additional facilities
views
security and authorization
integrity constraints
transaction controls
rules for embedding SQL statements into, e.g., Java, C++

SQL based on

Formal Relational Data Model
Terminology
relation - table
tuple - row
attribute - column
SQL allows a table to have duplicates

Tuple Relational Calculus
Includes some operations from relational algebra

Basic query statement of SQL

SELECT A1, A2,…, An
FROM r1, r2, …, rm
WHERE P

A1, A2,…, An – list of the attribute names whose values to
be retrieved be the query
r1, r2, …, rm – list of the table names required to process the
query
P – conditional expression that identifies the tuples to be
retrieved by the query

connectors: AND, OR, NOT
comparison operations: =, <, <=, >, >=, <>

Result of the query is a table

Example database (from E/N ch. 5)

Example data

Query 0 (simple query)

Retrieve the birthdate and address of the
employee(s) whose last name is ‘Smith’

SELECT BDATE, ADDRESS
FROM EMPLOYEE
WHERE LNAME=‘Smith’;

Result
BDATE ADDRESS

========== ==============================

1965-01-09 731 Fondren, Houston, TX

Query 1 (select-project-join query)

Retrieve the name and address of all employees
who work for the ‘Research’ department

SELECT FNAME, LNAME, ADDRESS
FROM EMPLOYEE, DEPARTMENT
WHERE DNAME=‘Research’ AND

DNUMBER=DNO;
Result
FNAME LNAME ADDRESS
=============== =============== ========================
John Smith 731 Fondren, Houston, TX
Franklin Wong 638 Voss, Houston, TX
Joyce English 5631 Rice, Houstan, TX
Ramesh Narayan 975 Fire Oak, Humble, TX

Query 2 (more complex query)

For every project located in ‘Stafford’, list the project number, the
controlling department number, and the department manager’s
last name, address, and birthdate

SELECT PNUMBER, DNUM, LNAME, ADDRESS, BDATE
FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE DNUM=DNUMBER AND MGRSSN=SSN AND

PLOCATION=‘Stafford’;
Result
PNUMBER DNUM LNAME ADDRESS BDATE

======== ===== ======== ======================= =========

10 4 Wallance 291 Berry, Bellaire, TX 1941-06-20

30 4 Wallance 291 Berry, Bellaire, TX 1941-06-20

SQL, Relational algebra, and Relational
calculus
SELECT A1, A2,…, An

FROM R1, R2, …, Rm

WHERE P
To Relational algebra:

πA1, A2,…, An(σP(R1 x R2 x … x Rm))
To Relational calculus:

{t1.A1, t2.A2,… , tm-k.An| R1(t1) ∧ … ∧ Rm-k(tm-k) ∧
(∃tm-k+1)(∃tm)(Rm-k+1(tm-k+1) ∧ … ∧ Rm(tm) ∧ P)}

Query 0

SELECT BDATE, ADDRESS
FROM EMPLOYEE
WHERE FNAME=‘John’ AND MINIT=‘B’ AND

LNAME=‘Smith’;
In Relational algebra

πBDATE, ADDRESS(σFNAME=‘John’ ∧ MINIT=‘B’ ∧ LNAME=‘Smith’

(EMPLOYEE))
In Relational calculus

{t.BDATE, t.ADDRESS | EMPLOYEE(t) ∧ FNAME=‘John’
∧ MINIT=‘B’ ∧ LNAME=‘Smith’}

Query 1

SELECT FNAME, LNAME, ADDRESS
FROM EMPLOYEE, DEPARTMENT
WHERE DNAME=‘Research’ AND DNUMBER=DNO

In Relational algebra
π FNAME,LNAME,ADDRESS(σDNAME=‘Research’ ∧ DNUMBER=DNO

(EMPLOYEE x DEPARTMENT))
π FNAME,LNAME,ADDRESS(σDNAME=‘Research’

(EMPLOYEE DNUMBER=DNO DEPARTMENT))
In Relational calculus

{t.FNAME, t.LNAME, t.ADDRESS |
EMPLOYEE(t) ∧ (∃d)(DEPARTMENT(d) ∧

d.DNAME=‘Research’ ∧ d.DNUMBER=t.DNO)}

Queries without selection or projection

Missing WHERE clause
No selection
All tuples of the table from FROM clause are
selected
If more than 1 table, the result is Cross product

Use of Asterisk (*)
No projection
Retrieves all attribute values of selected tuples

Query 3 (query without selection)

Select all names of departments
SELECT DNAME
FROM DEPARTMENT;

Result
DNAME

===============

Headquarters

Administration

Research

Query 4 (cross product)

Select all combinations of
employees’ ssn and
department names

SELECT SSN, DNAME
FROM EMPLOYEE,

DEPARTMENT;

Result
SSN DNAME
========= ==============
123456789 Headquarters
333445555 Headquarters
453453453 Headquarters
666884444 Headquarters
888665555 Headquarters
987654321 Headquarters
987987987 Headquarters
999887777 Headquarters
123456789 Administration
333445555 Administration
453453453 Administration
666884444 Administration
888665555 Administration
987654321 Administration
987987987 Administration
999887777 Administration
123456789 Research
333445555 Research
453453453 Research
666884444 Research
888665555 Research
987654321 Research
987987987 Research
999887777 Research

Query 5 (using asterisk)

Retrieve all attribute values for employee named ‘Narayan’
SELECT *
FROM EMPLOYEE
WHERE LNAME= ‘Narayan’

Result
FNAME MINIT LNAME SSN BDATE

ADDRESS SEX SALARY SUPERSSN
DNO

==
Ramesh K Narayan 666884444 1962-09-15

975 Fire Oak, Humble, TX M 38000.00 333445555

5

Prefixing, aliasing, renaming

Prefix attribute name with table name
table_name.attribute_name
in SELECT and WHERE clauses

same attribute names from different relations in a query
Introduce tuple variable for each relation

table_name AS new_name
in FROM clause

recursive query (join relation with itself)
Rename attribute name

in SELECT clause
attribute_name AS new_name

Query 1A (Prefixing example)

Suppose
LNAME of EMPLOYEE called NAME
DNAME of DEPARTMENT called NAME

Retrieve the last name and address of all employees
who work for the ‘Research’ department

SELECT EMPLOYEE.NAME, ADDRESS
FROM EMPLOYEE, DEPARTMENT
WHERE DEPARTMENT.NAME=‘Research’ AND

DNUMBER=DNO;

Query 6 (Tuple variables)

For each employee, retrieve the employee’s first and last
name and the first and last name of his/her immediate
supervisor

SELECT E.FNAME, E.LNAME, S.FNAME, S.LNAME
FROM EMPLOYEE AS E, EMPLOYEE AS S
WHERE E.SUPERSSN=S.SSN;

Result
FNAME LNAME FNAME LNAME
=============== =============== =============== ===============
John Smith Franklin Wong
Franklin Wong James Borg
Joyce English Franklin Wong
Ramesh Narayan Franklin Wong
Jennifer Wallance James Borg
Ahmad Jabbar Jennifer Wallance
Alicia Zelaya Jennifer Wallance

Query 6 (renaming, SELECT clause)

SELECT E.FNAME AS E_FNAME, E.LNAME AS
E_LNAME, S.FNAME AS S_FNAME, S.LNAME AS
S_LNAME

FROM EMPLOYEE AS E, EMPLOYEE AS S
WHERE E.SUPERSSN=S.SSN;

Result
E_FNAME E_LNAME S_FNAME S_LNAME

=========== =========== =========== =========

…

Duplicate elimination in SQL

SQL does not automatically eliminates
duplicates

it is expensive
user wants to use duplicates
when aggregate function is applied duplicates are
wanted

could be specified explicitly by SELECT ALL …

To eliminate duplicates specify
SELECT DISTINCT …

Query 7: retrieve the location of every
project
SELECT PLOCATION
FROM PROJECT;

Result
PLOCATION

===========
Bellaire
Sugarland

Houston
Stafford
Houston

Stafford

SELECT DISTINCT
PLOCATION

FROM PROJECT;
Result
PLOCATION
============

Bellaire
Houston
Stafford

Sugarland

Set operation in SQL

Set opreations
UNION – set union
EXCEPT – set difference
INTERSECT – set intersection

table1 OP table2

Duplicates are eliminated
use ALL to keep duplicates

UNION ALL, EXCEPT ALL, INTERSECT ALL

Applied only to union-compatible tables

Query 8 (set operations)

Make a list of all project numbers for projects that involve an
employee whose name is ‘Smith’, either as a worker or as a
manager of the department that controls the project

(SELECT DISTINCT PNUMBER
FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE DNUM=DNUMBER AND MGRSSN=SSN AND

LNAME=‘Smith’)
UNION
(SELECT DISTINCT PNUMBER
FROM PROJECT, WORKS_ON, EMPLOYEE
WHERE PNUMBER=PNO AND ESSN=SSN AND

LNAME=‘Smith’)
PNUMBER

=========
1
2

Temporal data types

DATE ‘yyyy-mm-dd’
TIME ‘hh:mm:ss’

TIME WITH TIME ZONE ‘hh:mm:ss +hh:mm’
TIMESTAMP ‘yyyy-mm-dd hh:mm:ss ffffff’

with time zone
e.g., TIMESTAMP ‘2002-09-27 09:12:47 648302’

INTERVAL – a relative value
e.g., INTERVAL ‘1’ DAY

Operations

Arithmetic operators:
addition (+), subtraction (-), multiplication (*), division (/)

String operator
concatenation (||) of two strings

Temporal
incrementing (+), decrementing (-) time, date, timestamp by
interval data types

Can be used in SELECT and WHERE clauses
use rename for result column with arithmetic operation

Query 9 (arithmetic operation)

Show the resulting salaries if every employee
working on the ‘ProductX’ project is given a 10
percent raise

SELECT FNAME, LNAME,
1.1*SALARY AS INC_SAL

FROM EMPLOYEE, WORKS_ON, PROJECT
WHERE SSN=ESSN AND PNO=PNUMBER AND

PNAME=‘ProductX’;
Result
FNAME LNAME INC_SAL
=============== =============== ==============
John Smith 33000.000
Joyce English 27500.000

Specialized comparison operators

Matching strings with patters
use comparison operator LIKE
% for any number of arbitrary symbols
_ for any symbol

Check that numerical value is inside an
interval

Comparison operator BETWEEN
attribute BETWEEN value1 AND value2
(attribute >= value1) AND (attribute <= value2)

Query 10 (using LIKE)

Retrieve all employees whose address is in
Houston, Texas

SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE ADDRESS LIKE ‘%Houston, TX%’;

Result
FNAME LNAME
=============== ===============
John Smith
Franklin Wong
James Borg
Ahmad Jabbar

Query 11 (using BETWEEN)

Retrieve all employees in department 5 whose
salary is between $30,000 and $40,000

SELECT LNAME, SALARY
FROM EMPLOYEE
WHERE (SALARY BETWEEN 30000 AND 40000)

AND DNO=5;
Result
LNAME SALARY
=============== ============
Smith 30000.00
Wong 40000.00
Narayan 38000.00

Ordering result

The tuples in the result can be ordered by the
values of one or more attributes

use ORDER BY clause
tuples are ordered by first attribute than they are
ordered within same value of the attribute by
second attribute, and so on

Order can be specified by
ASC – ascending order (default)
DESC – descending order

Query 12 (using ORDER BY)

Retrieve a list of employees
in the ascending order of
their first name

SELECT FNAME, LNAME
FROM EMPLOYEE
ORDER BY FNAME;

Result
FNAME LNAME

=========== ===========

Ahmad Jabbar

Alicia Zelaya

Franklin Wong

James Borg

Jennifer Wallance

John Smith

Joyce English

Ramesh Narayan

Query 13 (using DESC)

Retrieve all employees
and their salary ordered
by their salary in
descendent order within
each salary by they last
name

SELECT FNAME, LNAME,
SALARY

FROM EMPLOYEE
ORDER BY SALARY DESC,

LNAME;

Result
FNAME LNAME SALARY
======== ========== ======
James Borg 55000.00
Jennifer Wallance 43000.00
Franklin Wong 40000.00
Ramesh Narayan 38000.00
John Smith 30000.00
Joyce English 25000.00
Ahmad Jabbar 25000.00
Alicia Zelaya 25000.00

NULL Values

Each NULL is unique (except grouping)
Three-valued logic: TRUE, FALSE,
UNKNOWN
Result of queries contain only those row for
which the condition is TRUE
Check for NULL value

IS NULL
IS NOT NULL

Query 14 (using IS NULL)

Retrieve the names of all employees who do
not have supervisors

SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE SUPERSSN IS NULL;

Result
FNAME LNAME

=============== ===============

James Borg

Three-valued logic: AND, OR, NOT

UNKNOWNTRUEFALSE
UNKNOWNFALSETRUENOT

UNKNOWNUNKNOWNTRUEUNKNOWN
UNKNOWNFALSETRUEFALSE
TRUETRUETRUETRUE
UNKNOWNFALSETRUEOR

UNKNOWNFALSEUNKNOWNUNKNOWN
FALSEFALSEFALSEFALSE
UNKNOWNFALSETRUETRUE
UNKNOWNFALSETRUEAND

Nested queries

Complete select-from-where block (nested query)
within WHERE clause of another query (outer query)
Check if a tuple is contained by the result of nested
query

attribute IN nested_query
= ANY and = SOME

Comparison operators
>,<,>=,<=,=,<> with ANY, SOME, ALL

Nested query is evaluated once for each tuple in the
outer query

Query 15 (nested query)

Retrieve SSN of all employees who work on the
same project as employee with SSN=123456789

SELECT DISTINCT ESSN
FROM WORKS_ON
WHERE PNO IN (SELECT PNO

FROM WORKS_ON
WHERE ESSN=‘123456789’);

Result
ESSN
=========
123456789
333445555
453453453

Query 16 (>ALL)

Retrieve the names of employees whose salary is
greater than the salary of all the employees in
department 5

SELECT LNAME, FNAME
FROM EMPLOYEE
WHERE SALARY > ALL (SELECT SALARY

FROM EMPLOYEE
WHERE DNO=5);
Result
LNAME FNAME
=============== ===============
Borg James
Wallance Jennifer

Nested queries

Several levels of nested queries can be used
Unqualified attribute refers to the relation
declared in the innermost nested query

always create tuple variables to avoid potential
errors and ambiguities

Correlated nested queries
an attribute of outer query is referred in WHERE
clause of nested query

Queries written with nested query and using
IN can be rewritten with single block query

Query 17 (correlated nested query)

Retrieve the name of each employee who has a dependent with
the same first name as the employee

SELECT E.FNAME, E.LNAME
FROM EMPLOYEE AS E
WHERE E.SSN IN (SELECT ESSN

FROM DEPENDENT
WHERE E.FNAME=DEPENDENT_NAME);

Rewritten query
SELECT E.FNAME, E.LNAME
FROM EMPLOYEE AS E, DEPENDENT AS D
WHERE E.SSN=D.ESS AND

E.FNAME=D.DEPENDENT_NAME;

EXISTS

EXISTS checks if result of nested query is
not empty

NOT EXISTS – opposite
EXISTS are usually used in conjunction with
correlated nested queries

Query 17B (query 17 with using EXISTS)

SELECT E.FNAME, E.LNAME
FROM EMPLOYEE AS E
WHERE EXISTS (SELECT *

FROM DEPENEDENT
WHERE E.SSN=ESSN AND
E.FNAME=DEPENDENT_NAME);

Query 18 (using NOT EXISTS)

Retrieve the names of employee who have
no dependents

SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE NOT EXISTS (SELECT *

FROM DEPENDENT
WHERE SSN=ESSN);

Join

Query with more than one table
has always join between them
join conditions specified to avoid cross product

Explicit join in FROM clause
to specify different type of join
to specify join condition together with join
table1 (INNER) JOIN table2 ON join condition

default
LEFT/RIGHT/FULL (OUTER) JOIN
NATURAL (INNER) JOIN

no condition (join on attributes with that same name)
with LEFT/RIGHT/FULL (OUTER) JOIN

Query 6 (using OUTER JOIN)

Retrieve employee’s name
with name of his supervisor

SELECT E.LNAME AS
E_NAME, S.LNAME AS
S_NAME

FROM (EMPLOYEE AS E
LEFT OUTER JOIN
EMPLOYEE AS S ON
E.SUPERSSN=S.SSN);

Result
E_NAME S_NAME

=========== ===========

Smith Wong

Wong Borg

English Wong

Narayan Wong

Borg -

Wallance Borg

Jabbar Wallance

Zelaya Wallance

Aggregate functions

Functions
COUNT for rows
SUM, AVG numerical domain
MAX, MIN domains with total ordering

NULL values discarded during applying
aggregations on an attribute
Used in SELECT and HAVING clauses

Query 19 (aggregate functions)

Find the sum, max, min and avg of the salaries of all
employees of the ‘Research’ department

SELECT SUM(SALARY), MAX(SALARY),
MIN(SALARY), AVG(SALARY)

FROM EMPLOYEE, DEPARTMENT
WHERE DNAME=‘Research’ AND

DNO=DNUMBER;
Result
=========== ========= ========== =========

133000.00 40000.00 25000.00 33250.00

Query 20 (using COUNT)

Retrieve the total number of employees in the
company

SELECT COUNT(*)
FROM EMPLOYEE;

Result
===========

8

Grouping

All result tuples are split to subgroups based
on grouping attributes

Tuples are in the same subgroup if values of
grouping attributes are the same
Separate subgroup for tuples with values NULL

Grouping attributes defined in GROUP BY
clause

Aggregate functions should be applied to all non-
grouping attributes in SELECT clause

Query 21 (grouping example)

For each department, retrieve the department
number, the number of employees in the
department, and their average salary

SELECT DNO, COUNT(*), AVG(SALARY)
FROM EMPLOYEE
GROUP BY DNO;

Result
DNO
====== ======== ============

1 1 55000.000
4 3 31000.000
5 4 33250.000

Condition on group selection

Retrieve groups that satisfy certain condition
in HAVING clause

HAVING clause is used in conjunction with
GROUP BY clause only

Query 22 (using HAVING)

For each project on which more than two employees work,
retrieve the project number, its name, and the number of its
employees

SELECT PNUMBER, PNAME, COUNT(*)
FROM PROJECT, WORKS_ON
WHERE PNUMBER=PNO
GROUP BY PNUMBER, PNAME
HAVING COUNT(*)>2;

Result
PNUMBER PNAME
========= =============== ===========

2 ProductY 3
10 Computerization 3
20 Reorganization 3
30 Newbenefits 3

Summary

Clauses:
SELECT <attribute list>
FROM <table list>
[WHERE <condition>]
[GROUP BY <grouping attributes>
[HAVING <group condition>]]
[ORDER BY <attribute list>]
Numerous ways to specify the same query

